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1. Introduction 
 

In neoclassical production theory, producers are assumed to be fully efficient. In 

practice, however, inefficiency seems to be the rule. Farrell (1957) first introduced the 

notion of a frontier, which allowed inefficiency to be measured as the distance of each 

observation from the frontier. Since then the literature on the estimation of productive 

efficiency has been extended in many directions and used in many disciplines 

(operations research, management, marketing, economics, among others).  

 

Among the different types of inefficiencies, technical inefficiency is perhaps the one 

most widely studied. A firm is said to be technically inefficient when it fails to produce 

the maximum possible output, given its current input use. Alternatively, a technically 

inefficient firm can produce the same level of output using less than its current level of 

inputs. Other definitions of efficiency that combine output increases and input 

reductions are also possible. In other words, given an inefficient production plan, it is 

possible to choose one of many possible directions to go to the frontier (e.g., output 

increase, proportional reduction in inputs, proportional increase in output and reduction 

in inputs). Associated with each direction there is a separate measure of technical 

efficiency (e.g., output-oriented, input-oriented, hyperbolic, etc.). 

 

The presence of these competing measures of technical efficiency raises some 

interesting questions. Do these measures produce identical efficiency rankings of 

producers? Which measure should be used in practice? Do the features of the 

estimated production technology depend on the choice of technical efficiency 

measure?  The key to understanding the issues embodied in the above questions lies 

on the fact that theoretical analysis of technical efficiency is always carried out under 

the assumption that the technology is known. However, in empirical work the problem 

is that the characteristics of the technology and the level of technical efficiency cannot 

be estimated independently. That is, it is necessary to choose an efficiency index (and 

therefore a direction) prior to estimating the production technology. 

 

These important questions have not been sufficiently addressed in the efficiency 

literature. In fact, only Färe and Lovell (1968) and a couple of papers by Atkinson and 

Cornwell (1993, 1994) have attempted to answer the first question. Atkinson and 
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Cornwell estimated two cost functions, with an input and output-oriented index of 

technical efficiency, and found that the technical efficiency rankings associated with 

each cost function were different. A recent paper by Orea, Roibas and Wall (2002) has 

addressed the second question. They compared the estimation of various translog cost 

functions using different specifications of the efficiency index, and used the Vuong test 

to select the best model. The third question, although partially addressed in Orea et al., 

has not yet been systematically analyzed and is therefore the focus of the present 

paper. 

 

The present paper analyzes the empirical consequences of index/direction choice in 

estimating production functions using parametric approach.1 We focus on two 

measures of technical efficiency, viz., input-oriented (IO) and output-oriented (OO) 

measures. In addition to computing efficiency rankings of producers, we estimate other 

important features of the technology such as output elasticities, returns to scale, and 

elasticities of substitution. Therefore, the paper contributes to this tiny literature in two 

directions. First, it extends the results of previous papers using a primal approach. 

Second, it studies the effects of index/direction choice not only on efficiency rankings 

but also on some important characteristics of the estimated production technology. 

 

The structure of the paper is as follows. Section 2 reviews the input- and output-

oriented measures of technical efficiency. Section 3 discusses the data and the 

empirical models. Empirical results derived from the IO and OO measures of technical 

efficiency are discussed in Section 4. Section 5 points out the difficulties of comparing 

the OO and IO indices. The paper ends with some conclusions in Section 6. 

 

 

2. Efficiency Index / Direction 
 

Efficiency analysis compares an observed production plan (y, x) with a production point 

located on the efficient frontier. Since there are infinite “paths” that lead to the frontier, 

there are an infinite number of indexes that can be used to measure technical 

efficiency (i.e., the distance between these two points). The history of direction choice 

                                                
1 The recent book by Kumbhakar and Lovell (2000) presents a variety of parametric 
econometric models to measure technical efficiency.  
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in efficiency analysis goes back to Färe and Lovell (1978) who first distinguished 

between input-oriented and output-oriented indexes of technical efficiency and showed 

that they are equivalent under constant (unitary) returns to scale. 

 

The output-oriented technical efficiency (TE) index can be defined as the proportion in 

which a firm can increase output from a given quantity of inputs. In a nonparametric 

setting this index can be represented as: 







 ∈

θ
θ= P(x)  y | min  a     (1) 

where x is an input vector, y represents output, P(x) is the production possibilities set, 

and a denotes the output-oriented index of technical efficiency (a ≤ 1). 

 

On the other hand, the input-oriented measure of technical efficiency can be defined as 

the maximum equi-proportional reduction in all inputs that still permits production of a 

given quantity of output. That is: 

     { } L(y)  x |  min b ∈θθ=     (2) 

where L(y) is the input requirement set,2 and b is the input-oriented index of technical 

efficiency (b ≤ 1). 

 

The efficiency measures can also be defined using a parametric approach. The 

parametric analysis requires the specification of both a functional form and a direction 

for the efficiency index. Here, two alternatives exist. One alternative is to model 

technical efficiency as a parameter, an approach pioneered by Lau and Yotopoulos 

(1971). The production function with an output-oriented technical efficiency index is: 

f(x)exp(v)ay =      (3) 

where v represents random noise, while the production function with an input oriented  

                                                
2 Input and output indices of TE do not exhaust the range of index direction choices. For 
example, the hyperbolic measure has been used in this literature (Färe et al., 1985). This index 
can be defined as: 









∈





= T  

θ
yθx,  | θmin  c  where T represents the technology set. 
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technical efficiency index is: 

)f(bx)exp(vy =       (4) 

The other alternative, following Aigner and Chu (1968), is to model technical efficiency 

as a random variable that becomes a part of the error term. After the path-breaking 

article by Aigner, Lovell and Schmidt (1977) the literature has adopted the error 

component structure that gave birth to stochastic frontier models. A frequent 

specification of a stochastic production frontier with an output-oriented TE is: 

   )uvexp()x(fy −=      (5) 

and exp(-u) ≤ 1 is the output-oriented TE index. The specification of a production 

function with an input-oriented TE is: 

  )vexp()xe(fy -u=      (6) 

where exp(-u) ≤ 1 is the input-oriented TE index3. 

 

The empirical literature in this field has used the output-oriented model when 

estimating production functions. That is, the models in (3) and (5) are the ones most 

commonly estimated. The main reason for this is that the input-oriented models in (4) 

and (6) are far more difficult to estimate and this probably explains why the concern 

about getting different empirical results with different index specifications in primal 

models is not voiced in the efficiency literature.4  

 

There should be concerns from theoretical points as well. For example, the output-

oriented index implies a neutral shift of the production function, which in turn implies 

that the key production characteristics (e.g. output elasticities, returns to scale, etc.) are 

independent of technical inefficiency. Perhaps these results led Schmidt (1985-86; p. 

320) to conclude “… the only compelling reason to estimate a production frontier is to 

measure efficiency”. However, the opposite is true for the input-oriented index, since in 

                                                
3 It is important to note that expressions (5) and (6) (or alternatively, (3) and (4)) represent 
exactly the same model if the production function f(⋅) is homogenous.  
4 The difficulties of estimating the model in (6) as well as concerns about exogeneity of inputs 
have triggered the search for alternative procedures. For example, Gathon and Perelman 
(1992) estimate an input specific (labor) factor requirement frontier.  
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this case TE affects output elasticities, returns to scale and input substitution 

elasticities.5  

 

Therefore, it is very likely that the OO and IO models provide different empirical 

representations of the technology. This is probably the reason why Atkinson and 

Cornwell found that the two models result in different efficiency rankings. In the next 

section we estimate a production frontier with OO and IO technical efficiency indexes 

and compare the characteristics of the technology estimated in both models. 

 

 

3. Data and the econometric model 
 

The empirical analysis is based on a balanced panel data set of 80 Spanish dairy farms 

for the years 1993 to 1998. These are all small family farms. We consider one output 

(liters of milk) and four variable inputs (viz., number of cows, kilograms of concentrates, 

hectares of land and labor (measured in man-equivalent units)). Table 1 presents 

sample mean of these variables for each year.  

 

Table 1. Sample mean of the variables used 

 1993 1994 1995 1996 1997 1998 

Milk production  112030 121410 126658 138403 134179 139232 

Cows 20.59 21.68 21.67 23.38 22.63 23.14 

Land  13.35 13.56 13.52 13.37 13.57 13.54 

Labor 1.48 1.49 1.49 1.49 1.49 1.49 

Concentrates 47362 53385 54137 62919 57906 61507 

 

It can be seen from the above table that there are very little year-to-year variations in 

the use of land and labor. Most variations are in the production milk and the use of 

concentrates. 

 

                                                
5 These results are reversed when technical efficiency is analyzed in a cost function framework. 
In fact, the returns to scale and output elasticities do not depend on technical efficiency with an 
input-oriented index while they do under the output-oriented specification (Arias and Alvarez, 
1998).  
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We estimate the technology of farms in the sample using a translog production 

function.  The translog production function with an output-oriented index of technical 

efficiency is the empirical counterpart of expression (3). It can be written as:  

it

4

1j

4

1k
kitjitjk

4

1j
jitjoiit vlnxlnxα

2
1lnxααlnalny ++++= ∑∑∑

= ==

  (7) 

where ai is the output-oriented index of technical efficiency, the α’s are the parameters 

of the translog production function and vit is a random term with mean zero and 

variance 2
vσ . Schmidt and Sickles (1984) suggest estimating model (7) as: 

it
4

1j

4

1k kitjitjk
4

1j jitj0iit vlnxlnxα
2
1lnxααlny +++= ∑

=
∑
=

∑
=

   (8) 

where i00i lnaαα +=  are the farm-specific fixed-effects.  

 

Following Schmidt and Sickles (1984) the output-oriented index of technical efficiency 

can be computed using the individual effects, 0iα , as: 

)αmaxexp(α =TE 0ii0i0i −      (9) 

On the other hand, the translog production function with an input-oriented index of 

technical efficiency can be written as: 

( ) ( )( ) it

4

1j

4

1k
ikitijitjk

4

1j
ijitj0it wlnblnxlnblnxβ

2
1lnblnxββlny ++++++= ∑∑∑

= ==
         (10) 

where bi represents the input-oriented index of technical efficiency, the β’s are the 

parameters of the translog function and wit is a random term with mean zero and 

variance 2
wσ . 

 

In order to calculate the index of TE in the input-oriented model it is necessary to 

normalize the estimates of lnbi as well. The normalization procedure is more 

cumbersome than in the output-oriented model. First, it is necessary to fix the value of 

the individual effect for one farm in order to get an estimate of the intercept and the 

individual effects for the remaining farms in the sample. In a first run, we set an 

arbitrary farm to have lnbi = 0. In practical terms, this implies settting the efficiency 

parameter of that farm to 1 and estimate the efficiency parameters of the rest of the 
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farms in the sample. The value of the individual effect for other farms is then measured 

relatively to this arbitrary farm. If the estimates of lnbi are positive for one or more farms 

then in the second run we set the farm with the largest value of lnbi equal to zero. This 

makes the values of lnbi for the other farms less than zero. 

 

 

4. Estimation and results 
 

Prior to estimating (8) and (10), all the variables were divided by their respective 

geometric means. The output-oriented model was estimated using the least squares 

dummy variable approach.6 The input-oriented model was estimated by nonlinear least 

squares since treating the index of technical efficiency as an individual parameter 

makes equation (10) non linear in parameters. The estimated parameters are reported 

in Table 2.7 

 

In general, the coefficients of the translog function with both specifications are roughly 

of the same magnitude, although some differences show up. In particular, the 

coefficients associated with land are different. Another exception is the coefficient of 

concentrate squared. In this case, the estimates have different signs, although the 

estimates are very small and not significantly different from zero. We now compare 

some other features of the production functions estimated from both models. 

 

As a result of the data transformation, the first order coefficients (i.e., the αj and βj 

parameters) can be interpreted as output elasticities evaluated at the geometric mean 

of the inputs. Both models yield similar elasticitites with the exception of the output 

elasticity of land, which is more than double in the IO model.  

                                                
6 Alternatively, the parameters of the production function can be estimated by applying least 
squares to the model in which all the variables are expressed in mean deviation form. This is 
called ‘within estimator’ in the panel data literature (Hsiao, 1986; p. 31). 
 
7 We used Gauss v.3.1 to estimate the models. 
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Table 2. Parameters of the production function models 

 Output-oriented 

TE model 

Input-oriented 

TE model 

 Parameter s.e. Parameter s.e. 

CONSTANT --- --- 0.2751 0.0552 

COWS 0.7256 0.0484 0.7949 0.0671 

LAND 0.1149 0.0515 0.2443 0.0934 

LABOR -0.0763 0.1912 -0.0619 0.2293 

CONCENTRATE 0.3101 0.0211 0.2851 0.0329 

COWS x COWS -0.0946 0.2371 -0.1377 0.2358 

COWS x LAND 0.1154 0.1198 0.1588 0.1204 

COWS x LABOR 0.2294 0.2028 0.2651 0.1867 

COWS x CONCENTRATE -0.0512 0.1027 -0.0375 0.1025 

LAND x LAND -0.1300 0.1705 -0.0917 0.1789 

LAND x LABOR 0.3010 0.2634 0.4343 0.2489 

LAND x CONCENTRATE -0.0019 0.0586 -0.0244 0.0614 

LABOR x LABOR -0.6967 1.1057 -0.7440 0.8487 

LABOR x CONCENTRATE 0.0192 0.1071 -0.0137 0.1029 

CONCENTRATE x 

CONCENTRATE 

0.0008 0.0580 -0.0017 0.0582 

 

 

Another important production characteristic is returns to scale. The value of returns to 

scale from both models are shown in Table 3. The descriptive statistics of returns to 

scale in these models are strikingly different. Although the minimum values are very 

similar (around 0.8), the mean and the maximum values are very different. The input-

oriented model seems to produce higher values of returns to scale. At the mean point 

of the data difference in the estimates of returns to scale is caused by the big 

differences in the estimates of the output elasticity of land.  
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Table 3. Returns to scale 

 MIN MEAN MAX 

Output-oriented TE model 0.814 1.074 1.560 

Input-oriented TE model 0.890 1.262 1.973 

 

 

In order to further analize the differences in the technologies estimated under both 

approaches, we check the Allen elasticities of substitution. The Allen elasticity of 

substitution between two inputs (j,k) can be computed from: 

|F|
|F|

xx

xf
jk

kj

j
jj

jk

∑
=σ   

where fj is the first derivatives of the production function with respect to input j (the 

marginal product of input xj), F is the bordered hessian of first and second derivatives 

of the production function, |F| is the determinant of the bordered hessian and |Fjk| is the 

(j,k)th minor of F. 

 

Table 4. Allen elasticities of substitution 

OUTPUT-ORIENTED MODEL 

 COWS LAND LABOR CONCENTRATE 

COWS -0.521 -0.212 -0.398 1.201 

LAND --- -8.923 -4.676 2.652 

LABOR --- --- -4.316 1.602 

CONCENTRATE --- --- --- -3.399 

INPUT-ORIENTED MODEL 

COWS -0.489 0.300 -0.115 1.081 

LAND --- -8.234 -5.598 3.857 

LABOR --- --- -5.820 3.857 

CONCENTRATE --- --- --- -6.468 
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The Allen elasticities of substitution (evaluated at the geometric mean of the sample) 

for both models are shown in Table 4. Both models provide elasticities of substitution of 

the same sign except for the elasticity between cows and land. Most of the estimates 

are roughly of the same magnitude, with the exceptions of the elasticity between cows 

and labor (larger in the output oriented model by a factor of three), and three out of four 

elasticities of substitution of concentrate. In this case, the elasticities of substitution in 

the input oriented model are larger by a factor of two. Again, these results provide 

evidence that specification of the technical efficiency index affects the estimated 

technology and its characteristics.  

 

 

5. Comparing the two indexes 

 

In our empirical exercise the specification of different index directions gives different 

estimates of the technology. These different estimates of the frontier are likely to 

produce different efficiency rankings. In this section, we analyze the relationship 

between efficiency indexes computed  from the two models estimated above. 

  

Previous research on input-output orientation is based on the theoretical relationship 

between indices of technical efficiency when the technology f(.) is known. By equalizing 

outputs in expressions (3) and (4), we get 

lna=lnf(bx)-lnf(x)      (11) 

which shows the link between the IO and OO measures of technical efficiency. 

Expression (11) can be written as  

lnblna=lnf(e x)-lnf(x)      (12) 

which upon differentiation with respect to lnb yields 

j j
jlnb lnb

j jlnb
j

f (bx)bx
lna 1= f (e x)e x = =RTS(bx)
lnb f(e x) f(bx)

∂
∂

∑
∑    (13) 

where RTS(bx) denotes the elasticity of scale evaluated at bx. This result shows that 

lna is a (positive) monotonic function of lnb (since RTS > 0). Thus, efficiency rankings 

of farms under the IO and OO models are the same (for a given x), assuming that the 

technology is known. 
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If the technology is unknown and it has to be estimated, things are far more 

complicated. In this case, we have a different technology for each index, viz., 

a a

b b

ˆˆi) lny = lna + lnf (x) + e
ˆ ˆii) lny = lnf (bx) + e

     (14) 

where â  and b̂ are the estimated indices, af̂ and bf̂  are estimates of the technology 

and ae  and be  are the residuals. As a result, the relationship between the estimated 

indexes can be written as: 

b a b a
ˆ ˆ ˆˆlna = lnf (bx) - lnf (x) + e  - e     (15) 

In this case, the relationship between the indices is affected by the differences between 

estimated technologies ( af̂ and bf̂ ) and the residuals ( ae  and be ). For example, when 

b̂  is unity, there are two reasons why â  can be less than unity ( ˆlna < 0 ): (i) 

b a
ˆ ˆf (x)  f (x)≠ and (ii) b ae e≠ . Thus, it does not look feasible to analyze the relationship 

between the indexes without looking at a particular data. Given this difficulty, it seems 

that the relationship between the estimated indexes has to be explored empirically. 

 

The estimation of the OO model (equation 8) and the IO model (equation 10) provide 

an estimated OO and IO index of technical efficiency, respectively.  These indices are 

not strictly comparable since they are defined in output and input spaces, respectively. 

However, in each model it is possible to map the index defined in the output space to 

the input space (or vice versa). This mapping can be done using the following 

expression (derived from (11) using the translog function in (10)) 

2
i i i jk

j k

1lna  = RTS(x)lnb  + (lnb ) γ
2 ∑∑    (16) 

where RTS is defined at the frontier (when bi = 1).8 

                                                
8 For a homogeneous production function jk jk

j k j k
γ  = β  = 0∑∑ ∑∑ . Therefore, 

i ilna  = RTS lnb  where RTS is a constant. 
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The input-oriented index of technical efficiency (IO) estimated in (10) is mapped into 

the output space using expression (16). This gives us a computed value of lnai (labeled 

as COO). Following the same procedure, the output-oriented index of technical 

efficiency (OO) is estimated in (9) and is mapped into the input space using (16), to get 

a computed value of lnbi (labeled as CIO). In this case, the parameters in (8) are used 

to compute RTS.  

Table 5 contains some descriptive statistics and the relative frequencies for four 

intervals of the empirical distribution of the OO index estimated in equation (9), the IO 

index estimated in equation (10) and the CIO and COO indexes. The IO and CIO 

indexes provide similar information while the OO and COO are different, as shown by 

the mean and relative frequencies. 

 
Table 5. Descriptive statistics of estimated and computed indexes of TE 

 MIN MEAN MAX 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 

OO 0.59 0.81 1 0.16 0.25 0.33 0.22 

COO 0.45 0.75 1 0.11 0.26 0.25 0.17 

IO 0.52 0.81 1 0.17 0.26 0.32 0.21 

CIO 0.54 0.82 1 0.12 0.26 0.32 0.25 

 

In Table 6 we show the Spearman rank coefficient of correlation between the four TE 

indexes. The correlations are very high. Therefore, the first conclusion is that, in this 

particular empirical example, the indexes are different but provide similar information 

about efficiency rankings. A surprising result is that the highest correlated indexes are 

the actual input-oriented and output-oriented indexes. These indexes are defined in 

different spaces (input and output) but seem to contain very similar information about 

efficiency rankings. 
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Table 6. Rank correlation between the estimated and computed TE indexes 
 OO COO IO CIO 

OO 1 0.9458 0.9793 0.9675 

COO --- 1 0.9641 0.8543 

IO --- ---- 1 0.9524 

CIO --- --- --- 1 

 

To examine the agreement of the rankings further, we compute Kendall’s coefficient of 

concordance for a set of ranks from j types (denoted by ranki,j), 

( )
2

,1 1

2 2

1 ( 1)
2

( 1) /12

n k
i ji i

rank k n
W

k n n

= =

 − +  =
−

∑ ∑
 

where k is 2 (that is, ranks based on the IO and OO measures) and n equals 80.  The 

value of zero for W indicates complete disagreement while a value of unity indicates 

complete agreement.  The null hypothesis of similar ranking between the IO and OO 

models can be tested by referring k(n-1)W to a 2χ table with n-1 (79) degrees of 

freedom.  Table 7 reports the W statistics and the p values for all pairs of IO and OO 

ranks. These results suggest that TE indexes from the IO and OO models give similar 

efficiency rankings, although the level of TE differs among different measures. 

 

Table 7. Kendall’s concordance statistic between the estimated and computed TE 

 COO IO CIO 

OO 0.9657 

(0.0000) 

0.9912 

(0.0000) 

0.8979 

(0.0000) 

COO -- 0.9797 

(0.0000) 

0.9247 

(0.0000) 

IO ---- -- 0.9748 

(0.0000) 

 

 

6. Conclusions 
 
This paper deals with the empirical consequences of estimating technical efficiency 

using different directions under a primal approach. We find that input- and output-
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oriented technical efficiency models yield different estimated frontiers, which in turn 

implies that the estimated production characteristics (such as output elasticities, returns 

to scale and elasticities of substitution) are different. We also find that the two indexes 

of technical efficiency provide different efficiency values but very similar efficiency 

rankings. Since the focus in an empirical study on production is to estimate the 

underlying technology as well as technical efficiency, we argue that one should take 

extreme care in deciding the orientation problem before estimating the model routinely 

using an orientation that is easy to estimate. 
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