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Abstract: The study of productive efficiency has not been a traditional field of research in fisheries 
economics. However, recent papers have dealt with testing what it is known as “the good captain 
hypothesis”, according to which differences in catches among vessels can be explained in terms of 
skipper skill (efficiency). These papers introduce an interesting research issue: the distinction 
between luck and efficiency. In this paper we try to shed more light on this topic using a panel data 
set on the hake fishery in Northern Spain. In particular, we are interested in separating efficiency 
not only from luck but also from other time invariant variables, such as vessel characteristics, which 
sometimes are confounded with efficiency. In contrast to the other papers that deal with this topic, 
we find that luck is more important than technical efficiency in explaining catches. We argue this 
can be explained by the fact that other papers use data at a higher level of temporal aggregation. 
Over longer periods of time, skill persists while luck averages away. 
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1. Introduction 
 
In fisheries economics, the study of productive efficiency has not been a traditional field 

of research. However, recent papers have started to deal with this important issue 

(Salvanes and Steen, 1994; Kirkley et al., 1995, 1998; Squires and Kirkley, 1999; 

Grafton et al., 2000). 

 

A common objective of some of the aforementioned papers is to test what it is known as 

“the good captain hypothesis”, which says that differences in catches among fishing 

vessels are mainly due to differences in the skill of the skippers.  That is, the hypothesis is 

that skill is more important than luck in determining the size of the catch. We can interpret 

differences in skill as differences in the technical efficiency of production, where the fishing 

boats are producing the output “fish catch” using a variety of inputs. We are then 

interested in the relative importance of luck versus technical efficiency in the fisheries 

industry.   

 

The special characteristics of fishing as a productive activity would seem to make the 

effect of randomness (luck) important.  Fish are a mobile resource and when the 

fishermen leave port they do not know with any degree of certainty where the fish will be 

found. Zero output is possible, and presumably more likely than in most production 

settings. However, all of the above studies find that technical efficiency is more important 

than luck (or other random factors) in explaining differences in catches. This is somewhat 

unexpected given the inherent randomness of the fishing process. In fact, as Kirkley et al. 

(1995) put it, “In a fishery it is surprising that technical inefficiency dominates 

uncontrollable random shocks”. 

 

In this paper we try to shed more light on this interesting topic using a panel data set on 

the hake fishery in Northern Spain. A distinguishing feature of this data set is that we have 

information on daily fishing trips. This avoids possible problems caused by data 

aggregation, and (as we will see later) the temporally disaggregated nature of our data is 

important in interpreting our results.  Furthermore, we are interested in separating 

efficiency not only from luck, but also from other input and environmental variables, some 

of which are time invariant and therefore easily confounded with technical efficiency. This 

raises some methodological issues involving the difference between fixed and random 

effects models. 
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The paper is organized as follows. The next two sections review the literature on technical 

efficiency and previous empirical work on fishing efficiency. In section 4 we describe the 

fishery and our data set. Section 5 presents the models that allow us to separate technical 

efficiency from luck. We give our empirical results in section 6, and the final section of the 

paper gives our concluding remarks. 

 

 

2. Technical efficiency 
 
The literature on the measurement of productive efficiency starts with the seminal paper 

of Farrell (1957) and has experienced a vast growth in the last several decades. Aigner, 

Lovell and Schmidt (1977) introduced the notion of a stochastic frontier, allowing for the 

separation of pure random events (such as luck) from inefficiency. The stochastic frontier 

model can be written as follows: 

iiii uv)x(fy −+=      ( 1 ) 

where yi is the output of firm i and xi is the vector of inputs. The error term is composed of 

two terms: a one-sided (positive) error term (ui) that represents technical inefficiency, and 

a symmetric error term (vi) with zero mean which captures random events which are not 

under the control of the fisherman, and which we will refer to as luck. In this model the 

relative importance of luck and technical efficiency can be assessed comparing their 

respective variances: 2
uσ and 2

vσ , and more specifically the ratio 
2
v

2
u

σ
σ  is a possible 

measure of the relative importance of skill versus luck. 

 

With panel data, at least some of the variables will show variation both over firm (i) and 

time (t).  We can therefore write the stochastic frontier model for panel data as: 

itititit uvxy −+β+α=     ( 2 ) 

However, following Schmidt and Sickles (1984) and many subsequent papers, we will 

make the assumption that technical inefficiency is time invariant.  In our setting, this 

assumption asserts that the skill of the skipper does not change over the duration of our 

sample (one year), whereas luck changes from day to day.  With this assumption, uit = ui, 

which depends only on i and not on t, and the model becomes 

iititit uvxy −+β+α=      ( 3 ) 
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In (3), we will normally view  ui as a random variable, and then this is called a random-

effects model. Alternatively, we can define the firm-specific intercept αi as αi = α – ui, in 

which case the model can be written as 

ititiit vxy +β+α=      ( 4 ) 

When the αi are treated as (fixed) parameters to be estimated, this will be referred to as a 

fixed-effects model. In this model technical efficiency is reflected in differences in the αi. 

 

It may be worthwhile to consider what technical inefficiency would reflect in our setting.  

Since Farrell, it is traditional to consider technical inefficiency as the failure to properly use 

the best-practice technology, given the current state of knowledge. There is no limit to the 

number of things that could be done incorrectly, of course.  A captain could fish at the 

wrong time of day, could set nets or lines improperly, could drop fish overboard, etc.  

However, these kinds of gross errors do not seem likely to be important in determining 

variation in output in our data.  Rather, the most important decision a skipper makes is 

where to fish, and technical inefficiency is likely to reflect a lack of skill in choosing the 

correct fishing ground (given the season, weather, sea conditions, etc.). 

 

 

3. Fishing efficiency. A review 
 
Only very recently have researchers paid attention to the study of fishing efficiency in the 

sense of Farrell. One of the first papers to use this type of analysis is Hannesson (1983), 

who estimated a deterministic production frontier for the cod and saithe fishery in Norway. 

 

Using a stochastic revenue frontier function, Salvanes and Steen (1994) were the first to 

study the separation between efficiency and luck in fisheries. Their objective was to test 

“whether the relative performance of individual boats is random or systematic”. They used 

panel data on the seal industry in Norway over several years to obtain time-varying 

efficiency scores and to test whether the series of efficiency scores were stationary. 

 

Kirkley et al. (1995) estimate a stochastic frontier production function with panel data on 

vessels of the sea scallop fishery. As in other fishery models they include a proxy for stock 

size as an explanatory variable. In a follow up paper, Kirkley et al. (1998) use the Battese 

and Coelli (1995) one-stage model on the same data set to allow technical efficiency to 

vary systematically with dummy variables for month and vessel. Both papers conclude 
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that technical inefficiency is more important than pure random events in explaining 

variation in output. 

  

Squires and Kirkley (1999) estimate a production function comparing the fixed effects and 

random effects models using data on the groundfish fishery on the Pacific Coast of the 

United States. In the fixed effects model they cannot reject the null hypothesis that the 

vessel effects are equal, implying that there are no differences in technical efficiency. 

Furthermore, they cannot reject the null hypothesis of no correlation between the inputs 

and the individual effects when choosing a random effects model, but they do not report 

the levels of technical efficiency in this model. 

 

Finally, Grafton et al. (2000) estimate a stochastic frontier production function using 

annual vessel-level data on the British Columbia halibut fishery. They also find that 2
uσ is 

large relative to 2
vσ , so that differences in efficiency are more important than luck.  

 

In conclusion, most of these previous papers have found that differences in technical 

efficiency (skill) are more important than pure randomness (luck) in explaining inter-vessel 

differences in catches.  Interestingly, we will find evidence contrary to this result.  A 

reasonable explanation for this difference is that we use daily data whereas previous 

papers used data over longer time spans.  Presumably luck averages away over time, 

whereas skill persists. 

 

 

4. The data 
 
Our data consist of daily observations for one year (1999) for 11 vessels based in two 

ports located 15 miles apart in Northern Spain for one year (1999). Since vessels do not 

go out fishing every day the data form an unbalanced panel data set. The total number of 

observations is 1404. Vessels are similar in size and follow similar operational 

procedures. Four vessels use bottom nets while the rest use longline fishing.1 The 

vessels’ characteristics are summarized in Table 1. 

                                            
1 Netters lay the nets and return to port. The next day they lift the nets, harvest  the fish, and lay the 
nets again on the same ground or on a different one. Longliners leave port earlier and cast the line 
with live bait, wait for several hours and lift the line before returning to port. 
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Table 1. Descriptive characteristics of the fishing vessels 

 Mean Coef. of 

Variation 

Min Max 

Gross Registered Tons 21.3 0.34 16 32 

Boat length (meters) 13.8 0.07 12.5 15.1 

Engine power (hp) 169 0.14 128 200 

Vessel age (years) 16 0.37 14 26 

 

An important characteristic of this fishery is that fishing trips do not take longer than one 

day. When the vessels arrive in port, all fish are auctioned in a local market, and the 

quantities and prices per vessel are automatically stored in a computer, providing a very 

reliable measure of output. However, an important exception to this statement occurs 

because boats sometimes go out fishing on Saturdays, when the auction market is 

closed. In this case, the fish is stored and it is auctioned on the next Monday. This causes 

some ambiguity in the interpretation of output for Monday observations.  

 

In this fishery there is a lot of by-catch. Even though the fishing gear is specifically 

designed to catch hake, other kinds of fish get caught.2 Table 2 shows some descriptive 

statistics of the output. 

 

Table 2. Descriptive characteristics of catches (kg/day) 

 Mean Coef. of 

Variation 

Min Max 

Hake 79 0.67 0 407 

By-catch 41 2.17 1 1247 

Total 120 0.88 10 1247 

 

By-catch captures account for one third of total catch. The large coefficients of variation 

indicate high variability in yields, especially in the case of by-catch. 

 

                                            
2 During the 1999 fishing season thirty other species were caught. 
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It is potentially of relevance that the fishery is regulated. The European Union sets quotas 

for hake, known as Total Admittable Catch (TAC) and when a particular fishing region 

reaches the TAC, the fishery is closed. However it does not appear that this regulation 

affects fishermen’s behavior prior to the TAC being reached. Cooperative fishing 

arrangements to apportion the TAC do not appear to exist, perhaps because a fishing 

ground is accessible to many boats from many ports.3 

 

We have rather limited data on inputs.  We observe some characteristics of the vessels:  

Gross Registered Tons (GRT) is a measure of the size of the boat.  PORT is a dummy 

variable for base port (equal to one if the base port is Lastres, and equal to zero if the 

base port is Ribadesella).  GEAR is a dummy variable for the type of gear used (equal to 

one if net, and equal to zero if longline).4  We also observed the length of the boat, but we 

did not use this information, since it contained little additional information once GRT is 

known.  It is important to note that in our data all of these vessel characteristics are time 

invariant. 

 

We also know the fishing ground used by most boats each day.  There are some thirty 

different fishing grounds, so that we could use dummy variables for these as time-varying 

inputs.  However, we do not regard the choice of fishing ground as an input in the usual 

sense.  Furthermore, the choice of fishing ground is the main decision made by skippers 

and therefore it ought to be reflected in the technical efficiency measure.  Therefore we 

decided not to account for fishing ground in our model. 

 

We also have some measures of the fishing environment. Weather characteristics are 

measured with two dummy variables: w1 equals one under “good” sea conditions and w2 

equals one under “average” sea conditions. (The omitted category is “adverse” sea 

conditions.)  In addition, we include quarterly dummy variables for the first three quarters 

of the year. The quarterly dummies are expected to pick up the seasonal pattern of the 

fishing stock. Some papers (Kirkley et al., 1995,1998; Grafton et al., 2000) include a proxy 

for stock size. We argue that since all boats have access to the same fishing grounds, the 

effect of variations in stock size can be properly controlled for using dummy variables for 

time. We hope that dummy variables are sufficient, since our data span only one year. 

                                            
3 Some fishing grounds are also closed during spawning season due to local regulations. 
4 All boats carry the maximal length of nets or lines allowed, so there is no further variation in this 

input. 



 8 

That is we are trying to control for seasonal variation in the location and behavior of the 

fish, not for long-term changes in the stock of fish. 

 

We also include a dummy variable for Mondays.  As noted previously, some fish sold on 

Monday may actually have been caught on Saturday, but we do not know when this 

occurs. Including a Monday dummy variable is an attempt to at least partially control for 

this fact. 

 

 

5. A model to separate luck from efficiency 
 
It is clearly the case in our data that some skippers systematically catch larger amounts of 

fish.  That is, some boats catch more fish on average than other boats.  This is true even 

after controlling for inputs and environmental conditions.  These differences in average 

catch are measures of the efficiency of production, and we presume they represent 

differences in the skill of the skippers.  However, there is also a lot of apparently random 

variation in catches, both across boats and over time, which we presume represent luck.  

Our task is to quantify the importance of these two factors. 

 

Our statistical model is a panel data production model of the form: 

iitt

2

1k
ktk

3

1j
jtjiit uvMwQzy −+δ+φ+λ+γ+α= ∑∑

==
   ( 5 ) 

Here subscript “i” indexes vessels and subscript “t” indexes time (days).  Output, y, is the 

natural logarithm of total catch (in kg.).  The vector zi contains the three time-invariant boat 

characteristics:  the logarithm of GRT, and the dummy variables for PORT and GEAR. 

The Qjt are the quarterly dummies; the wkt are the weather dummies; and Mt is the dummy 

for Monday. The random error vit is assumed to have zero mean and constant variance, 

and to be uncorrelated over both i and t. It is intended to capture luck, and its variance, 

σv
2, is a measure of the importance of luck in determining variation in output. Finally, the 

random terms ui are the individual effects, assumed to have constant mean and variance 

and to be uncorrelated over i. They are time-invariant, and differences across boats in the 

ui are intended to capture differences in skill (or efficiency).  The variance of ui, which we 

denote by σu
2, is therefore a measure of the importance of skill  

 

We will consider several variants of this model (fixed and random effects), depending on 

what is assumed about the ui. However, it is clear that the fundamental assumption here 
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is that the individual effects ui are time-invariant.  This corresponds to the assumption that 

the skill of the skipper (i.e., the efficiency of production) is time-invariant. This is in contrast 

to the random error vit representing luck, which shows purely random variation over time. 

These contrasting assumptions about the intertemporal nature of skill and luck are what 

makes it possible to separate them statistically. 

 

 

6. Estimation and results 
 

We first consider the fixed-effects estimation of our model.  In this case we simply treat 

the individual effects ui as unknown parameters, about which we make no assumptions at 

all.  This yields a model in which there are firm-specific intercepts: 

itt

2

1k
ktk

3

1j
jtj

*
iit vMwQy +δ+φ+λ+α= ∑∑

==
    ( 6 ) 

where αi*=α+ziγ-ui. 

 

In this model (that is, under the assumptions just made), it is well known that we cannot 

estimate the coefficients of any time-invariant variables (zi), because these variables 

would be perfectly collinear with the dummy variables for the firms.  Therefore, although 

we can measure several characteristics of the fishing vessels, we cannot include them as 

regressors because they are time invariant. We can estimate the firm-specific intercepts 

(or fixed effects) αi*, and an important issue is how to interpret these. Differences in the αi* 

include not only differences in skipper skill (ui) but also differences in any relevant time-

invariant vessel characteristics (zi).  As a result the variance of the αi* will be larger than 

the variance of the ui and will overstate the importance of skill.  On the other hand, we can 

estimate the variance of the vit, so that we properly measure the importance of luck. 

 

Equation (6) was estimated using the WITHIN estimator, which is the same as using least 

squares with dummy variables included for the firms.5 The results are shown in Table 3. 

                                            
5 The estimations were carried out using LIMDEP v.7.0 (Greene, 1995). 
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Table 3. Estimates of the fixed effects model 

Variable Parameter Coefficient t-ratio 

Vessel 1 α1 3.92 35.4 

Vessel 2 α2 2.96 20.8 

Vessel 3 α3 3.67 30.7 

Vessel 4 α4 2.15 15.5 

Vessel 5 α5 3.20 18.2 

Vessel 6 α6 2.13 18.6 

Vessel 7 α7 2.37 14.3 

Vessel 8 α8 4.28 47.7 

Vessel 9 α9 4.14 50.6 

Vessel 10 α10 4.09 46.9 

Vessel 11 α11 3.76 44.5 

Quarter 1 λ1 0.04 0.64 

Quarter 2 λ2 0.28 3.43 

Quarter 3 λ3 0.06 0.90 

Weather 1 φ1 0.26 2.25 

Weather 2 φ2 0.22 1.93 

Dummy Mondays δ 0.49 8.02 

 R2 39%  

 

The coefficients of the dummy variables for good (w1) and average (w2) weather are 

positive and significant, suggesting that, ceteris paribus, fishermen catch more fish in 

good weather conditions. This is no surprise. Two of the quarterly dummy variables have 

coefficients that are small and statistically insignificant. However, the coefficient of the 

dummy variable for the second quarter is positive and significant, indicating that catches 
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in spring are 36% higher than in the fall.6 The significance of this dummy variable does not 

depend on “fall” being the omitted quarter. Fishing is just better in the spring than in the 

rest of the year. 

  

Clearly the individual (vessel) effects are significantly different from zero.  That is not a 

very interesting hypothesis to test, however.  What is important is whether they are 

different from each other.  An F-test of the restriction that there are no differences 

between the individual effects (α1=α2=…= α11) indicates that the differences between the 

vessel effects are significant. The R2, on the other hand, is 0.39, indicating that 

randomness is also a large component of catches. 

 

The variance of the fixed effects is 0.61 while the error variance is 1.02. Therefore, in this 

model we find that skill is less important than luck in explaining differences in daily 

catches across vessels. This is so even though the variance of the fixed effects overstates 

the variance due to differences in skill (efficiency), due to the fact that the technical 

efficiency index (ui) is confounded with other factors (zi) 

 

We now return to equation (5), which explicitly contains the vessel characteristics zi. The 

issue is how to separate the individual effects (ui) from the vessel characteristics. If the 

effects are not correlated with the regressors,it is well known that we can accomplish this 

with a random effects model. That is, now we impose the assumption that the ui are 

random draws from a distribution with mean zero7 and variance σu
2. We do not need to 

specify the form of this distribution. Then if the ui are uncorrelated with all of the 

regressors and with the errors vit, we estimate the model by generalized least squares 

(GLS). The GLS estimator is consistent and more efficient than the WITHIN (fixed-effects) 

estimator. More significantly, now we can include time-invariant vessel characteristics in 

the regression, so that our estimate of σu
2 reflects skill only and not the effects of zi. 

 

The fundamental assumption for the random effects model is that there is no correlation 

between the regressors and the effects. We can test this hypothesis by means of a 

Hausman test (Hausman, 1978) as suggested by Hausman and Taylor (1981). In our 

                                            
6 The interpretation of the coefficient of a dummy variable, say γ, when the dependent variable is in 
logs is (eγ-1). See Suits (1981).  
7  Any non-zero but constant mean is simply absorbed by the intercept α. 
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case the Hausman test does not reject the null hypothesis of no correlation between the 

effects and the regressors. 8 

 

Table 4 gives the GLS estimates, as suggested by Balestra and Nerlove (1976), for this 

model.  Note that, comparing to Table 3, we no longer have dummy variables for the 

various boats, but we now include the vessel characteristics Gross Registered Tons 

(GRT), PORT and GEAR, as described in section 4. 

 

Table 4. Estimates of the random effects model 

Variable Param. Coefficient t-ratio 

Constant α 1.79 3.25 

Quarter 1 λ1 0.05 0.63 

Quarter 2 λ2 0.28 3.66 

Quarter 3 λ3 0.07 0.94 

Weather 1 φ1 0.26 2.22 

Weather 2 φ2 0.22 1.89 

Monday δ 0.49 7.51 

GRT γ1 0.34 1.64 

PORT γ2 1.15 4.50 

GEAR γ3 0.12 0.51 

 σu
2 0.073  

 σv
2 1.021  

 

As in the fixed-effects model, we find that boats catch more fish in the spring, and when 

the weather conditions are good. The coefficient of GRT is positive and marginally 

significant, indicating that larger vessels catch more fish.  PORT is also quite significant, 

indicating that tradition or other site-specific factors play an important role. However, there 

is no significant difference between netters and longliners. 

                                            
8 Previous studies (Squires and Kirkley, 1999) have also found no correlation between the 
individual effects and the inputs. 
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The most striking result is that in the random effects model the variance of the effects ui is 

very small:  σu
2 = 0.073.  This compares to a value of 0.61 for the variance of the effects in 

the fixed-effects model.  (The error variance σv
2 was very similar in the two models, 1.02 

to two decimal places in both cases.)  That is, in this model the effect of skill relative to 

luck is very, very small.  From the point of view of this model, most of the variation in the 

effects in the fixed-effects model has been explained by differences in vessel 

characteristics, which are now included in the regression portion of the model. 

 

This conclusion hinges on our accepting PORT as a legitimate vessel characteristic, as 

opposed to an indicator of skill.  This is reasonable to the extent that it is exogenously 

determined (say, by place of family residence) and it is relevant for fundamental reasons 

like distance to good fishing grounds, quality of harbor, etc.  On the other hand, if skippers 

in one port are simply more skilled than skippers in another, controlling for port will cause 

us to understate the effects of skill. 

 

The last model we estimate is a stochastic frontier model of the type suggested by Pitt 

and Lee (1981).  This model is a special case of the random effects model, in which we 

make the additional assumptions that the vit are independently and identically distributed 

(iid) as N(0,σv
2); the ui are non-negative and are iid as half-normal (the absolute value of 

N(0,γ2)); and the ui and vit are independent of the regressors and of each other.  

Estimation of this model is by maximum likelihood.9 The results for the stochastic frontier 

model are given in Table 5.  

 

                                            
9 An important detail is that we need to distinguish the variance of ui, which we call σu

2, from γ2, 
which can be thought of as the variance of the normal that is converted into ui by taking the 
absolute value (or, equivalently, by truncating at zero).  In the stochastic frontier literature the 
notation σu

2 is often used for what we call γ2.  The relationship between the two is that σu
2 = γ2(π-

2)/π.  Since (π-2)/π is about 0.36, this is not a minor distinction.  What we report as σu
2 is our 

estimate of the variance of ui, which is comparable to what we have reported for the other models 
in Tables 3 and 4. 



 14 

Table 5. Estimates of the stochastic frontier model 

Variable Param. Coefficient t-ratio 

Constant α 2.80 12.94 

Quarter 1 λ1 0.065 0.78 

Quarter 2 λ2 0.33 4.19 

Quarter 3 λ3 0.10 1.29 

Weather 1 φ1 0.27 2.09 

Weather 2 φ2 0.23 1.88 

Monday δ 0.48 6.88 

GRT γ1 0.29 4.43 

PORT γ2 1.17 16.07 

GEAR γ3 0.022 0.24 

 σu
2 0.43  

 σv
2 0.64  

 

The coefficient estimates are not very different from those in Table 4 and need not be 

discussed separately.  The stochastic frontier model has smaller standard errors for the 

coefficients of the time-invariant vessel characteristics.  However, the most substantial 

difference is in the estimates of the variances of u and v.  We now have σu
2 = 0.43 and σv

2 

= 0.64.  This is a smaller value of σv
2 than for either of the previous models, which is hard 

to explain.  The value of σu
2 is between those reported in Tables 3 and 4 (which were 

widely different).  The ratio of σu
2 to σv

2 is 0.67, which is quite close to the value of 0.60 

from Table 3 but much larger than the value of 0.07 from Table 4.  We still conclude that 

luck is more important than skill, but not by such a wide margin as if we had relied on the 

random effects model without the distributional assumption.  One obvious rationalization 

of these results, of course, is that the random effects model is correct but the distributional 

assumptions are not. 

 

While clearly there are considerable differences across models in the details of our 

results, our basic result is still the same.  Luck is more important than skill (efficiency) in 

explaining catches. 
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7. Concluding remarks 
 
We have estimated panel data production models using daily data for one year on 11 

fishing vessels from the hake fishery in northern Spain. In the empirical application three 

models are estimated: fixed effects, random effects, and a stochastic frontier. The 

estimation shows that luck (noise) seems to be more important than skill (technical 

efficiency) in explaining differences in daily catches. This result differs from the findings of 

most of the empirical literature on fishing efficiency. 

 

We believe that the explanation for this difference in results is that we use daily data, 

whereas the other papers use data at a higher level of temporal aggregation.  We would 

suppose that the relative importance of luck is larger over shorter periods of time. Over 

longer periods of time, skill becomes more important, because luck is transitory but skill 

persists. 

 

We can illustrate this point more explicitly in a simple stochastic frontier model: 

iitit uvy +=  

Here i indexes firms, t indexes time, say in days, and for simplicity we have suppressed 

the regressors.  Our measure of the relative importance of skill and luck is σu
2/σv

2.  Now 

suppose that we aggregate over time by combining T daily observations into one 

aggregated (e.g. monthly) observation, where for simplicity we treat the panel as 

balanced.  Now we would have, for the monthly observation that begins at day t,   
***

it iit
uvy +=  

where 

i
*
i

Tt

ts
is

*
it

Tt

ts
is

*
it Tuu,vv,yy === ∑∑

+

=

+

=

     

It follows that var(ui*) = T2σu
2 and var(vit*) = Tσv

2, so that var(ui*)/var(vit*) = T(σu
2/σv

2).  That 

is, aggregating over T time periods, the importance of skill relative to luck goes up by a 

factor of T. 

 

This simple illustration does not hold literally in our case, most importantly because our 

output is in logarithms, and so the monthly output would not be the sum of the daily 

outputs.  However, the basic point must still be true.  Skill is more important relative to luck 

over longer periods of time, because skill persists while luck averages away. 
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