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Abstract: Some of the recent developments in the efficiency measurement area using 
stochastic frontier models are: A. Estimation of the IO model, B. Latent class models to examine 
technological heterogeneity as well as heterogeneity in economic behavior, C. Estimation of 
stochastic frontier models using LML, D. Non-constant parameters: Random coefficient models 
with and without inefficiency, Markov switching stochastic frontier models, E. Estimation of 
cost/profit system with technical and allocative inefficiency using alternative techniques. We 
consider these as "open problems". In the past, estimation of some of these models was 
considered to be too difficult. Advances have been made in recent years to estimate some of 
these so-called difficult models.  In this paper we will focus on the first three of the above topics. 
There are some papers that deal with issues listed under D and E. Both Bayesian and classical 
approaches are used to address these issues.   
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1. Introduction 
 

In this paper we focus on three issues. First, we discuss issues (mostly econometric) 

related to input-oriented (IO) and output-oriented (OO) measures of technical 

inefficiency and talk about the estimation of production functions with IO technical 

inefficiency. We discuss implications of the IO and OO measures from both the primal 

and dual perspectives. Second, the latent class (finite mixing) modeling approach is 

extended to accommodate behavioral heterogeneity. Specifically we consider profit 

(revenue) maximizing and cost minimizing behaviors with technical inefficiency. In our 

mixing/latent class model first we consider a system approach in which some 

producers maximize profit while others simply minimize cost, and then we use a 

distance function approach and mix the input and output distance functions (in which it 

is assumed, at least implicitly, that some producers maximize revenue while others 

minimize cost). In the distance function approach the behavioral assumptions are not 

explicitly taken into account. The prior probability in favor of profit (revenue) maximizing 

behavior is assumed to depend on some exogenous variables. Third, we consider 

stochastic frontier (SF) models that are estimated using local maximum likelihood 

(LML) method to address the flexibility issue (functional form, heteroskedasticity and 

determinants of technical inefficiency). 
 
 
2. The IO and OO controversy  
 
The technology (with or without inefficiency) can be looked at from either a primal or a 

dual perspective. In a primal setup two measures of technical efficiency are mostly 

used in the efficiency literature. These are: (i) input-oriented (IO) technical inefficiency, 

(ii) output oriented (OO) technical inefficiency.1 There are some basic differences 

between the IO and OO models so far as features of the technology are concerned. 

Although some of these differences and their implications are well known no one has 

estimated a stochastic production frontier model econometrically with IO technical 

                                                
1 Another measure is hyperbolic technical inefficiency that combines both the IO and OO 
measures in a special way (see, e.g., Fare et al. (1985), Cuesta and Zofio (1999), Orea, Roibás 
and Wall (2003)). This measure is not as popular as the other two. 
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inefficiency using cross-sectional data.2 Here we consider estimation of a translog 

production model with IO technical inefficiency. 

 

2.1 The IO and OO Models 

 

Consider a single output production technology where Y is a scalar output and X is a 

vector of inputs. Then the production technology with the IO measure of technical 

inefficiency can be expressed as  

 )( iii XfY Θ⋅= , i = 1, …, n,                  (1) 

where iY  is a scalar output, 1≤Θi  is IO efficiency (a scalar), iX  is the 1×J  vector of 

inputs,  and i indexes firms. The IO technical inefficiency for firm i is defined as 

0ln ≤Θi  and is interpreted as the rate at which all the inputs can be reduced without 

reducing output. On the other hand, the technology with the OO measure of technical 

inefficiency is specified as 

  iii XfY Λ⋅= )(                       (2) 

where 1≤Λ i  represents OO efficiency ( a scalar), and 0ln ≤Λ i  is defined as OO 

technical inefficiency. It shows the percent by which actual output could be increased 

without increasing inputs.  

It is clear from (1) and (2) that if )(⋅f  is homogeneous of degree r then i
r

i Λ=Θ  that 

is independent of X and Y. If homogeneity is not present their relationship will depend 

on the input quantities and the parametric form of )(⋅f .  

 

We now show the IO and OO measures of technical efficiency graphically.  The 

observed production plan (Y, X) is indicated by the point A. The vertical length AB 

measures OO technical inefficiency, while the horizontal distance AC measures IO 

technical inefficiency. Since the former measures percentage loss of output while the 

latter measures percentage increase in input usage in moving to the production frontier 

starting from the inefficient production plan indicated by point A, these two measures 

are, in general, not directly comparable. If the production function is homogeneous then 

                                                
2 On the contrary the OO model has been estimated by many authors using DEA (see, eg, Ray 
(2003) and references cited in there).  
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one measure is a constant multiple of the other, and they are the same if the degree of 

homogeneity is one. 

 

      Y      

          B 

 

                           

                      

             

          0           X 

                                       Figure 1: IO and OO technical inefficiency 

 
In the more general case, they are related in the following manner: 

)()( Θ=Λ⋅ XfXf . Although we consider technologies with a single output, the IO 

and OO inefficiency can be discussed in the context of multiple output technologies as 

well. 

  
2.2 Economic implications of the IO and OO models 
 

Here we ask two questions. First, does it matter whether one uses the IO or the OO 

representation so far as estimation of the technology is concerned? That means, 

whether features of the estimated technology such as elasticities, returns to scale, etc., 

are invariant to the choice of efficiency orientation.  Second, are efficiency rankings of 

firms invariant to the choice of efficiency orientation? That is, does one get the same 

efficiency measures (converted in terms of either output loss or increase in costs) in 

both cases? It is not possible to provide general theoretical answers to these 

questions. These are clearly empirical issues so it is necessary to engage in applied 

research to get a feel for the similarities and differences of the two 

approaches.Answers to these questions depend on the form of the production 

technology. If it is homogeneous then there is no difference between these two models 

econometrically. This is because for a homogeneous function iir Λ=Θ lnln  where r 

is the degree of homogeneity. Thus, rankings of firms with respect to iΛln  and 

iΘln will be exactly the same (one being a constant multiple of the other). Moreover, 

OO 

A 
C 

Y= f (X) 

IO 
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since rXfXf Θ=Λ⋅ )()( , the input elasticities as well as returns to scale measures 

based on these two specifications of the technology will be the same.3  

 

This is, however, not the case if the technology is non-homogenous. In the OO model 

the elasticities and returns to scale will be independent of the technical inefficiency 

because technical efficiency (that is assumed to be independent of inputs) enters 

multiplicatively into the production function. This is not true for the IO model, where 

technical inefficiency enters multiplicatively with the inputs. This will be shown explicitly 

later for a non-homogeneous translog production function. 

 

2.3 Econometric modeling and efficiency measurement 

 

Using the lower case letters to indicate the log of a variable, and assuming that ( ).f  

has a translog form the IO model can be expressed as:  

   
n,1,...,i ,)1(

)1()1()1( 2
2
1

2
1

0

=+′−+
++−Γ′−+′−+=

iJiii

iTTiTJiiJiiJiii

vxT
TTxxxy

ϕθ
ββθθβθβ

    (3) 

where iy  is the log of output, J1  denotes the 1×J  vector of ones, ix  is the 1×J  

vector of inputs in log terms, iT  is the trend/shift variable, 0β , Tβ   and TTβ  are scalar 

parameters, β , ϕ  are 1×J  parameter vectors, Γ  is a JJ×  symmetric matrix 

containing parameters, and vi is the noise term. To make θ  non-negative we defined it 

as θ=Θ− ln .  

We rewrite the IO model above as :  

 ( ) iiiiiiTTiTiiii vxgTxTTxxxy +−′+++Γ′+′+= ),(2
2
1

2
1

0 θϕββββ , ni ,..1= , (4) 

where ),( ii xg θ = ][ 2
2
1

ii Ξ−Ψ− θθ , JJ 11 Γ′=Ψ , and )(1 iiJi Tx ϕβ +Γ+′=Ξ , ni ,..1= . 

Note that if the production function is homogeneous of degree r, then 

01and,1,01 =′=′=Γ ϕβ JJJ r . In such a case the ),( ii xg θ  function becomes a 

constant multiple of θ , (viz., ][ 2
2
1

ii Ξ−Ψ θθ  = irθ− ), and consequently, the IO model 

                                                
3 Alvarez, Arias and Kumbhakar (2003) addressed these issues in a panel data framework with 
time invariant technical inefficiency (using fixed effects models). 
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cannot be distinguished from the OO model. The ),( ii xg θ  function shows the percent 

by which output is lost due to technical inefficiency. For a well-behaved production 

function 0),( ≥ii xg θ  for each i.  

 

The OO model, on the other hand, takes a much simpler form, viz.,  

  ( ) iiiiiTTiTiiii vTxTTxxxy +−′+++Γ′+′+= λϕββββ 2
2
1

2
1

0 , ni ,..1= ,   (5) 

where we defined λ=Λ− ln to make it non-negative.4 The OO model in this form is the 

one introduced by Aigner et al. (1977), Meeusen and van den Broeck (1977) and since 

then it has been used extensively in the efficiency literature. Since the IO model is 

never estimated in a primal framework, especially when θ is random, we now focus our 

attention on it.5 

 

We write (5) more compactly as  

  iiiii vzy +Ξ−Ψ+′= θθα 2
2
1 , ni ,..1= .          (6) 

Both Ψ  and iΞ  are functions of the original parameters, and iΞ  also depends on the 

data ( ix  and iT ).  

Under the assumption that ),0(~ 2σINvi , and iθ  is distributed independently of iv  

with the density function ( )ωθ ;if  where ω  is a parameter, the probability density 

function of iy can be expressed as 

  ( ) ( ) ii
iiiii

i dfzyyf θωθ
σ

θθαπσµ ;
2

)(exp)2(; 2

22
2
1

0

2/12







 Ξ+Ψ−′−−= ∫
∞

− , ni ,..1= , (7) 

where µ  denotes the entire parameter vector.  

 

                                                
4 The above equation gives the IO model (when the production function is homogeneous) by 
labeling ii rθλ = . 
5 Alvarez, Arias and Kumbhakar (2003) estimated an IO primal model in a panel data model 
where technical inefficiency is assumed to be fixed and parametric. 
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We consider a half-normal and an exponential specification for the density ( )ωθ ;if , 

namely, 

  ( ) 





−= −

2

2
2/12

2
exp)2/(;

ω
θπωωθ i

if , 0≥iθ ,         (8) 

and, 

  ( ) ( )iif ωθωωθ −= exp; , 0≥iθ .           (9) 

The likelihood function of the model is then 

  ( ) ( )∏
=

=
n

i
iyfXyL

1

;,; µµ , 

where ( )µ;iyf  has been defined above. Since the integral defining ( )µ;iyf  is not 

available in closed form we cannot find an analytical expression for the likelihood 

function. However, we can approximate the integrals using a simulation as follows. 

Suppose Sssi ,...1,)(, =θ  is a random sample from ( )ωθ ;if . Then it is clear that 

  ( ) ( ) ∑
=

−











 Ξ+Ψ−′−
−≡≈

S

s

isisiii
ii

zy
Syfyf

1
2

2
)(,

2
)(,2

1
1

2
)(

exp;~;
σ

θθα
µµ ,          (10) 

and an approximation of the log-likelihood function is given by  

  ( )∑
=

≈
n

i
iyfL

1
;~loglog µ ,                      (11) 

which can be maximized by numerical optimization procedures to obtain the ML 

estimator. For the distributions we adopted, random number generation is trivial so 

implementing the SML estimator is straightforward.6  

 

Inefficiency estimation is accomplished by considering the distribution of iθ  conditional 

on the data and estimated parameters 

  ( ) ( )ωθ
σ

θθαµθ ~;~2
)~~~(

exp,~| 2

22
2
1

i
iiiii

ii fzyDf 






 Ξ+Ψ−′−
−∝ , ni ,..1= ,             (12) 

                                                
6 Greene (2003) used SML for the OO normal-gamma model. 
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where a tilde denotes the ML estimate, and ],[ iii TxD =  denotes the data. For example, 

when ( )ωθ ~;if  is half-normal we get 

  ( ) 







−

Ξ+Ψ−′−
−∝ 2

2

2

22
2
1

~2~2
)~~(

exp,,~|
ω
θ

σ
θθαµθ iiiiii

i
zyXyf ,  0≥iθ , ni ,..1= ,    (13) 

This is not a known density, and even the normalizing constant cannot be obtained in 

closed form. However, the first two moments and the normalizing constant can be 

obtained by numerical integration, for example, using Simpson's rule.  

 

To make inferences on efficiency, define efficiency as ( )iir θ−= exp  and obtain the 

distribution of ir  and its moments by changing the variable from iθ  to ir . This yields 

  ( ) ( )XyrfrDrf iiiir ,,~|ln,~| 1 µµ −= − , 10 ≤< ir , ni ,..1= .               (14) 

We used Win GAUSS 3.2.38 to perform the computations.7 Numerical optimization is 

performed with a conjugate gradients algorithm using 1000 pseudo-random draws per 

evaluation of each one of the n components of the log-likelihood function. Numerical 

integration for efficiency measurement is implemented, again, using Simpson's rule. 

We define a fixed sequence of ir 's ranging from 0.1 to 1, and use 1,000 points in 

between to approximate the normalizing constant and the first two moments of the 

conditional distribution ( )iir Drf ,~| µ .   

 

The likelihood function for the OO model is given in Aigner, Lovell and Schmidt (1977) 

(hereafter ALS).8 The Maximum likelihood method for estimating the parameters of the 

production function in the OO models are straightforward and have been used 

extensively in the literature starting from ALS.9 Once the parameters are estimated, 

technical inefficiency (λ) is estimated from E( )(| λλ −v ) -- the Jondrow et al. (1982) 

                                                
7  The GAUSS programs are available from the authors upon request. 
8 See also Kumbhakar and Lovell (2000, pp. 74-82) for the log-likelihood functions under both 
half-normal and exponential distributions for the OO technical inefficiency term.  
9 It is not necessary to use the simulated ML method to estimate the parameters of the frontier 
models if the technical inefficiency component is distributed as half-normal, truncated normal or 
exponential along with the normality assumption on the noise component. For other 
distributions, for example, gamma for technical inefficiency and normal for the noise component 
the standard ML method may not be ideal (see Greene (2003) who used the simulated ML 
method to estimate OO technical efficiency in the gamma-normal model). 
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formula. Alternatively, one can estimate technical efficiency from ))(|( λλ −− veE  using 

the Battese-Coelli (1988) formula.  

 

2.4 Application to Spanish dairy farms 

 

The empirical analysis is based on a balanced panel data set of 80 Spanish dairy farms 

for the years 1996 to 1998. These are all small family farms. We consider one output 

(liters of milk) and four variable inputs  (viz., number of cows, kilograms of 

concentrates, hectares of land and labor (measured in man-equivalent units)). Since 

there are only 80 farms in the data in our cross-sectional model we use all 240 

observations without using any panel feature of the data. In this approach each 

observation is treated as a separate farm. However, we used time as an additional 

regressor to capture technical change. Thus, our IO model is the one specified in 

equation (4) in which the x variables are the four inputs, and T is the time trend 

variable. The OO model is given in (5).  

 

Here we mainly focus on estimates of technical efficiency (TE). Note that TE in the OO 

model is 1≤≡Λ −λe , where λ is OO technical inefficiency (that measures output 

shortfall/loss, given inputs). On the other hand TE in the OO model is 1≤≡Θ −θe  

where θ , the IO technical inefficiency, measures excess input-usage (given the output 

level) due to technical inefficiency. We report (in Figure 1a) TE measures from the IO 

model with half-normal and exponential distributions on IO technical inefficiency, θ . It 

can be seen that the TE distributions are quite similar, although the half-normal 

distribution generates a slightly tighter TE distribution. Average TE is found to be 

around 92%.  

 

We noted before that TE in the IO and OO models (i.e., Λ and Θ ) are not the same 

unless the returns to scale is unity (in which case the percentage decrease in inputs 

and output are the same).  To make these measures comparable, we convert the IO 

measure in terms of the OO measure (i.e., a computed OO technical efficiency labeled 

as TE_OO(CO)) using the formula TE_OO(CO) = exp( Txg ,,(θ− )), where ),,( Txg θ is 

defined beneath equation (4). By doing so we can compare it directly with TE_OO 

because both the measures are ratios of actual to frontier output.  The distributions of 

these two efficiency measures (each for half normal and exponential distributions) are 
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plotted in Figure 1b. It can be seen from these figures (kernel density plots) that 

efficiency distributions generated from the IO and OO models (especially with half 

normal distributions) are not the same. Their means, variances, skewness and kurtosis 

are all different.10 

 
2.5 Open questions 

 

• How to decide which specification is right/appropriate for the data at hand?  

In a sense this is not a question that the data can help to resolve because the choice of 

orientation is made by the econometrician. Since the I-O model is heteroskedastic 

while the O-O model is homoskedastic, one may think of econometrically testing for 

heteroscedasticity as a way out. But the heteroskedasticity is of a very special form and 

under the null of homoskedasticity the IO model not only reduces to an IO model but 

the production function also becomes homogeneous.  

 

• Can one generalize the specification to obtain the IO, OO and the in-between 

cases? 

To elaborate this, let’s start from the model that combines both the IO and OO 

technical inefficiencies, viz., 

n,1,...,i ,)1(
)1()1()1( 2

2
1

2
1

0

=+−′−+
++−Γ′−+′−+=

iiJiii

iTTiTJiiJiiJiii

vxT
TTxxxy

λϕθ
ββθθβθβ

       (15) 

and sets values of ),0( ∞∈iθ  then the resulting models will be all OO models. One can 

then estimate all these OO models to obtain the corresponding iλ . This technique will, 

however, not help to determine the relationship between iθ and iλ empirically because 

the estimated technology changes with different values of iθ .  

                                                
10 Orea, Roibás and Wall (2003) used a model selection procedure (Vuong test, J test, and JA 
test) to select the best model in a panel data framework when technical inefficiency is assumed 
to be time-invariant (fixed parameters). 
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2.6  The IO and OO controversy and the Distance function approach 
 

Instead of using a production function approach one can use distance functions to 

estimate technical inefficiency. Two types of distance functions are used for this. 

 

The output distance function is defined by  

( ) ( ){ }Y,XYX,YX, T)/(:0infDO ∈>= ϕϕ   

where the technology is defined by { }YXYX,YX,  producecan:)(=)T( .  

 

The output distance function ranges from 0 < DO(X, Y) ≤ 1. DO(X,Y) is homogeneous of 

degree one in outputs, non−decreasing in outputs  and increasing in inputs. 

 

Using one of the outputs as the numeraire to impose linear homogeneity, the stochastic 

output distance function (in logarithms) can be written as 

 vuYYXDY O ++=− )/,(lnln 11            (16) 

where 0ln ≥−= ODu and v is the stochastic noise component. The argument Y/Y1 = 

(Y2/Y1, …, YM/Y1) when there are M outputs. Thus the above formulation is not different 

(qualitatively) from a stochastic production function model (after multiplying both sides by 

– 1).  The only advantage is that one can accommodate multiple outputs. 

 

The input distance function is defined as  

( ) ( ){ }YXYX/YX, ,T),(:0supDI ∈>= φφ .  

It ranges from 1 ≤ DI(X, Y) ≤ +∞, and is linearly homogeneous of degree one and non-

decreasing in inputs, and increasing in outputs. 

 

Using the linear homogeneity property the stochastic input distance function can be 

expressed as 

 vuYXXDX I +−=− ),/(lnln 11            (17) 

where 0ln ≥= IDu and v is the stochastic noise component. The argument X/X1 = 

(X2/X1, …, XJ/X1) when there are J outputs. By labeling inputs as outputs and vice-versa 
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(and multiplying both sides by –1) the above model can be viewed as a SF model (with a 

change in the sign on the one-sided term u). 

 

Since both the input and output distance functions are similar to the OO SF functions, 

from the estimation point of view there is a clear advantage.  However, the main concern 

is: Can the technology be invariant (theoretically and empirically) to the choice of input 

and output distance functions? Alternatively, how can one decide whether the input or 

the output distance function is appropriate for the data at hand? Since the left hand side 

variable is not the same in the input and output distance functions, the estimated 

technology is likely to differ even if there is constant (or even unitary) returns to scale. 

(Note: regressing Y on X versus X on Y in the standard regression framework).  

 

           Other important issues:  
• Is there any behavioral assumption behind the input/output distance function? 

• What is the relationship between inefficiency in the DI and DO models? How to 

recover one from the other both theoretically and empirically? 

 

The input and output distance functions can be obtained from a multiple-input, multiple-

output production function, F(X, Y) = α , using the same homogeneity restrictions that 

are used with the distance function to obtain the input and output distance functions. 

However, the homogeneity restrictions in the production function do not follow from the 

theory. 

 

2.7 Looking through the dual cost functions 
 
2.7.1 The IO approach 

 
We now examine the IO and OO models when behavioral assumptions are explicitly 

introduced. First, we examine the models when producers minimize cost to produce the 

given level of output(s).  The objective of a producer is to 

 tosubjectMin. Xw′ )( Θ⋅= XfY   

from which conditional input demand functions can be derived. The corresponding cost 

function can then be expressed as  

 Θ== /),(' YwCCXw a , 
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where C(w,Y) is the minimum cost function (cost frontier) and Ca is the actual cost. 

Finally, one can use Shephard’s lemma to obtain ,),(/),( ** jYwXYwXX jj
a
j ∀≥Θ=  

where the superscripts a and * indicate actual and cost minimizing levels of input Xj. 

 

Thus, the IO model implies (i) a neutral shift in the cost function which in turn implies 

that RTS and input elasticities are unchanged due to technical inefficiency, (ii) a equi-

proportional increase (at the rate given by θ ) in the use of all inputs due to technical 

inefficiency, irrespective of the output level and input prices. 

 

Comments: Result (i) is just the opposite of what we obtained in the primal case (see 

Arias and Alvarez, 1998). Result (ii) states that when inefficiency is reduced firms will 

move horizontally to the frontier (as expected by the IO model). 

 

2.7.2 The OO Model: 
 
Here the objective function is written as  

 tosubjectMin. Xw′ Λ⋅= )(XfY   

from which conditional input demand functions can be derived. The corresponding cost 

function can then be expressed as 

 ),,(),()/,(' Λ⋅≡Λ== YwqYwCYwCCXw a ,         (18) 

where as before C(w,Y) is the minimum cost function (cost frontier) and Ca is the actual 

cost. Finally, .1),(/)/,((.) ≥Λ= YwCYwCq  One can then use Shephard’s lemma to 

obtain  

 ,),(}]/(.)}{/),({(.))[,( *** jYwXwqXYwCqYwXX jjjj
a
j ∀≥∂∂+=         (19) 

where the last inequality will hold if the cost function is well behaved. Note that 

jYwXX j
a
j ∀≠ ),(* unless q(.) is a constant. 

 
Thus, the results from the OO model are just the opposite from those of the IO model. 

Here (i) inefficiency shifts the cost function non-neutrally (meaning that q(.) depends on 

output and input prices as well as Λ ; (ii) increases in input use are not equi-

proportional (depends on output and input prices); (iii) the cost shares are not 
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independent of technical inefficiency, (iv) the model is harder to estimate (similar to the 

IO model in the primal case).11  

 
More importantly, the result in (i) is just the opposite of what we reported in the primal 

case. Result (ii) is not what the OO model predicts (increase in output) when 

inefficiency is eliminated. Since output is exogenously given in a cost-minimizing 

framework, input use has to be reduced when inefficiency is eliminated. 

 

Conclusion:  The results from the dual cost function models are just the opposite of 

what the primal models predict. Since the estimated technologies using cost functions 

are different in the IO and OO models, as in the primal case, we do not repeat the 

results based on the production/distance functions results here. 

 

2.8 Looking through the dual profit functions 

 
2.8.1 The IO Model 
 
Here we assume that the objective of a producer is to 

tosubject)'/(Max. Θ⋅Θ−⋅≡′−⋅= XwYpXwYpπ )( Θ⋅= XfY   

from which unconditional input demand and supply functions can be derived. Since the 

above problem reduces to a standard neo-classical profit maximizing problem when X 

is replaced by Θ⋅X and w is replaced by Θ/w , the corresponding profit function can 

be expressed as 

),(),,(),(),/()'/( pwpwhpwpwXwYpa ππππ ≤Θ⋅≡Θ=Θ⋅Θ−⋅= ,      (20) 

where aπ is actual profit, ),( pwπ  is the profit frontier (homogeneous of degree one in 

w and p) and 1),(/),/(),,( ≤Θ=Θ pwpwpwh ππ  is profit inefficiency. Note that the 

),,( Θpwh function depends on w, p and Θ  in general. Application of Hotelling’s lemma 

yields the following expressions for the output supply and input demand functions: 

 

                                                
11 Atkinson and Cornwell (1994) estimated translog cost functions with both input and output 
oriented technical inefficiency using panel data. They assumed technical inefficiency to be fixed 
and time-invariant. See also Orea, Roibás and Wall (2003). 
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),()]/(.))(/),(((.))[,( *** pwYphYpwhpwYY a ≤∂∂+= π , 

,),()]/(.))(/),(((.))[,( *** jpwXwhXpwhpwXX jjjj
a
j ∀≤∂∂−= π         (21) 

where the superscripts a and * indicate actual and optimum levels of output Y and 

inputs Xj. The last inequality in the above equations will hold if the underlying 

production technology is well behaved. 

 

2.8.2 The OO Model 

 
Here the objective function can be written as 

tosubject'/Max. Θ⋅−Λ⋅Λ⋅≡′−⋅= XwYpXwYpπ Λ⋅= )(XfY   

which can be viewed as a standard neo-classical profit maximizing problem when Y is 

replaced by Λ/Y and p is replaced by Λ⋅p , the corresponding profit function can be 

expressed as 

),,(),,(),(),('/ pwpwgpwpwXwYpa ππππ ≤Λ⋅≡Λ⋅=−Λ⋅Λ⋅=       (22) 

where 1),(/),(),,( ≤Λ⋅=Λ pwpwpwg ππ . Similar to the IO model using Hotelling’s 

lemma we get 

),()]/(.))(/),(((.))[,( *** pwYpgYpwgpwYY a ≤∂∂+= π , 

.),()]/(.))(/),(((.))[,( *** jpwXwgXpwgpwXX jjjj
a
j ∀≤∂∂−= π        (23) 

The last inequality in the above equations will hold if the underlying production 

technology is well behaved. 

 

Summary of the basic results: (i) A shift in the profit functions for both the IO and OO 

models is non-neutral. Therefore, estimated elasticities, RTS, etc., are affected by the 

presence of technical inefficiency, no matter what form is used.  (ii) Technical 

inefficiency leads to a decrease in the production of output and decreases in input use 

in both models, however, prediction of the reduction in input use and production of 

output are not the same under both the models.  

 

Conclusions: Even under profit maximization that recognizes endogeneity of both 

inputs and output, it matters which model is used to represent the technology!! (Any 
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intuition??) These results are different from those obtained under the primal models 

and from the cost minimization framework. 

 
Overall conclusion: It matters (both theoretically and empirically) whether one uses 

an input or output oriented measure of technical inefficiency. 

 

 

3. Latent Class Models 

 
3.1 Modeling technological heterogeneity 
 
In modeling production technology we almost always assume that all the producers use 

the same technology. In other words, we don’t allow the possibility that there might be 

more than one technology being used by the producers in the sample. Furthermore, 

the analyst may not know who is using what technology. Recently, a few studies have 

combined the stochastic frontier approach with the latent class structure in order to 

estimate a mixture of several technologies (frontier functions). Greene (2001, 2002) 

proposes a maximum likelihood for a latent class stochastic frontier with more than two 

classes. Caudill (2003) introduces an expectation-maximization (EM) algorithm to 

estimate a mixture of two stochastic cost frontiers with two classes.12 Orea and 

Kumbhakar (2003) estimated a four-class stochastic frontier cost function (translog) 

with time-varying technical inefficiency. 

 

Following the notations of Greene (2001, 2002) we specify the technology for class j as 

jijijjiii uvzxfy |||),,(lnln −+= β          (24) 

where ui|j is a non-negative random term added to the production function to 

accommodate technical inefficiency.  

 

We assume that the noise term for class j follows a normal distribution with mean zero 

and constant variance, 2
vjσ . The inefficiency term ut|j is modeled as a half-normal 

random variable following standard practice in the frontier literature, viz., 

                                                
12 See, in addition, Beard, Caudill and Gropper (1991, 1997) for applications using a non-frontier 
approach. For applications in social sciences, see, Hagenaars, J.A. and McCutcheon (2002). 
Statistical aspects of the mixing models are dicussed in details in Mclachlan and Peel (2000) 
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  0|),0(~| 2 ≥+ jijji uNu ω                   (25) 

i.e., a half-normal distribution with scale parameter jω  for each class.  

 

With these distributional assumptions, the likelihood for firm i, if it belongs to class j, 

can be written as (Kumbhakar and Lovell (2000))  
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jijijil
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)|()|(2)|(            (26) 

where 222
jjj σωσ += , vjjj σωλ /=  and jjiii zxfyji |),,(lnln)|( βε −= . Finally, )(⋅φ  

and )(⋅Φ  are the pdf and cdf of a standard normal variable. 

 

The unconditional likelihood for firm i is obtained as the weighted sum of their j-class 

likelihood functions, where the weights are the prior probabilities of class membership. 

That is, 

1,10,)|()(
1

=≤≤⋅= ∑∑
=

j ijtij

J

j
ijjilil πππ                   (27) 

where  the class probabilities can be parameterized by, for example, a logistic function. 

Finally, the log likelihood function is: 

∑ ∑∑
= == 








⋅==
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i
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j
ij
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i
jililL

1 11
)|(ln)(lnln π                    (28) 

The estimated parameters can be used to compute the conditional posterior class 

probabilites. Using Bayes’ theorem (see Greene (2001, 2002) and Orea and 

Kumbhakar (2003)) the posterior class probabilities can be obtained from 

∑
=

⋅

⋅
=

J

j
ij

ij

jil

jil
ijP

1

)|(

)|(
)|(

π

π
                       (29) 

This expression shows that the posterior class probabilities depend not only on the 

estimated parameters in ijπ , but also on parameters of the production frontier and the 

data. This means that a latent class model classifies the sample into several groups 

even when the ijπ  are fixed parameters (independent of i). 
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In the standard stochastic frontier approach where the frontier function is the same for 

every firm, we estimate inefficiency relative to the frontier for all observations, viz, 

inefficiency from )|( iiuE ε  and efficiency from E[exp(-ui)|εi]. In the present case, we 

estimate as many frontiers as the number of classes. So the question is how to 

measure the efficiency level of an individual firm when there is no unique technology 

against which inefficiency is to be computed. This is solved by using the following 

method,  

∑
=

⋅=
J

j
ii jEFijPEF

1

)(ln)|(ln                                                 (30) 

where P(j|i) is the posterior probability to be in the jth class for a given firm i (defined in 

(29)), and EFi(j) is its efficiency using the technology of class j as the reference 

technology. Note that here we don’t have a single reference technology. It takes into 

account technologies from every class. The efficiency results obtained by using (30) 

would be different from those based on the most likely frontier and using it as the 

reference technology. The magnitude of the difference depends on the relative 

importance of the posterior probability of the most likely cost frontier, the higher the 

posterior probability the smaller the differences.  

 
3.2 Modeling behavioral heterogeneity: Profit Maximization and Cost 
Minimization 
 
Cost minimization and profit maximization are the two most widely used behavioral 

assumptions in the theory of firm. Most often researchers favor using a cost minimizing 

behavior without much justification for it from either theoretical or empirical viewpoints. 

One may formally test whether the producers in the given sample are profit maximizers 

or not, for example, following the methodology developed by Schankerman and Nadiri 

(1986), Based on the test results, one will be using either a cost or a profit function 

formulation. This implictly assumes that all producers in the sample behave in the 

same way. In reality, firms in a particular industry, although using the same technology, 

may differ in terms of their behavior. For example, some producers might find it costly 

to adjust output to the profit maximizing level due to high adjustment costs, while for 

others it might be optimal to maximize profit. In such a case, the estimated technology 

by imposing profit maximization behavior on producers who are not maximizing profit 
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maxizers and vice versa, is likely to be biased. Consequently, estimates of returns to 

scale, elasticities, technical change, etc., will be wrong.  

 

If one knows which producers are maximizing profit and which are not, then one can 

split the sample into two classes. A profit function approach is estimated using the 

sample observations in the first class, and a cost function is used for the producers in 

the second class. This procedure is not efficient because the above approach doesn’t 

take into account the fact that the underlying technology is exactly the same for all 

producers. The other practical problem is that no one knows in advance, which 

producers are profit maximizers and which are not. Consequently, this approach 

cannot be used in practice. 

 

The advantage of the LCM is that it is not necessary to impose a priori criterion to 

identify which producers are in what class. Moreover, we can formally examine whether 

some exogenous factors are responsible for the presence or absence of profit 

maximizing (cost minimizing) behavior by making the probabilities functions of 

exogenous variables. When panel data is available, we do not need to assume that 

producers behave like profit maximizers all the time, so we can accommodate 

switching behavior, and determine when they behaved like profit maximizers and when 

not. 

 
3.2.1 The cost system 
 

First, we consider the cost-share system with technical inefficiency that is represented 

by the following system of equations. 

iiiii uvypCC ++= 1)ln,(lnlnln  

iiii vypSS 211 )ln,(ln +=                                                   

!  

MiiiMiM vypSS += −− )ln,(ln1,1 ,                 (31) 

where iCln  is the log of expenditure, iMi SS ,11 ,...,−  denote the 1−M  cost shares13, pi  is 

the 1×M  vector of input prices, yi is the 1×Q  vector of outputs, and ],...,[1
′= Miii vvv  

                                                
13 One cost share is dropped to avoid the singularity problem. 
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represents the noise terms. The subscript i ( Ni ,...1= ) indicates producers/firms and 

0≥iu  represents technical inefficiency. For the ML method we make the following 

distributional assumptions: ),0(~ ΩMMi INv  where Ω  is the MM ×  covariance 

matrix, and ),0(~ 2ω+Nui  distributed independently of iv . Let 












Ω

′
=Ω−

22

11
1

    

   

φ
φω

, where 

11ω  is a scalar, φ  is 1)1( ×−M , and 22Ω  is an )1()1( −×− MM  matrix. The joint 

density of the endogenous variables ( ],...,,[ln ,11
′= − iMiii SSCZ ) has been presented 

before only for the special case 10 −= Mφ  (Kumbhakar and Lovell, 2000, pages 150 and 

156). Here, we take up the more general case. 

 

The joint density of the cost system in the present case can be written as 
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where  
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!
, Ni ,...1= , 

and iR1  is a scalar (cost function "residual"), iR*  is a 1)1( ×−M  vector of "cost share 

residuals", and Φ  denotes the cumulative distribution function of a standard normal 

variable. The log-likelihood function can be maximized to obtain the ML parameter 

estimates.  

 

It can be shown that the conditional distribution of iu  given Ri is truncated normal, i.e., 

),(~| 2
** σµ iii NRu + . This result can then be used to obtain a firm-specific measure of 

technical inefficiency, for example, the mean of the conditional distribution of ui, 

)/(/)/(~
****** σµσµϕσµ iiiiu Φ+= , where ϕ  denotes the standard normal pdf.  
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3.2.2 The profit system 
 

Now we consider the profit system represented by the following system of equations  

iiiii uvypCC ++= 1)ln,(lnlnln  

iiii vypSS 211 )ln,(ln +=                                                   

!  

MiiiMiM vypSS += −− )ln,(ln1,1 , 

 

( ) ijMiijijiiji vypecyqCy ,)ln,(lnlnlnlnln +++−= , Qj ,...1= , Ni ,...1= ,     (33) 

where the last Q  equations follow from the Q additional conditions, viz., jj yCq ∂∂= /  

( Qj ,...1= ) where qj is the price of output yj  and 
ji

ii
iiji y

ypCypecy
ln

)ln,(lnln)ln,(ln
∂

∂= . 

These conditions (first-order conditions for profit maximization) state that output 

allocation is optimal when output price equals marginal cost.  
 

For the ML method we assume that ),0(~]',...,[ ,1 Σ= ++ QMiQMii INvvv  and 

),0(~ 2ω+Nui , distributed independently of vi. We partition the inverse covariance 

matrix as 
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=Σ−

22

11
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λ
λσ

, where 11σ  is a scalar, λ  is 1)1( ×−+QM , and 22Σ  is 

)1()1( −+×−+ QMQM . We utilize the results for the cost-share system to show that 

the density of endogenous variables ( ],,[ln ′′′=Ξ iiii ySC ) can be written as  

    ( ) ( ) ,)/(
2

expdet)1(22)( **2
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*2/112/12112/)(2/1

ii
iiQM

i J
Q

f
i
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Finally, the last term comes from the Jacobian of the transformation from (u+v1, v2, …, 

vM+Q) to ],,[ln iii ySC ′′ , viz., 
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where ],...,[ 1 ′= Qiii ecyecydiagecy , ]/1,...,/1[ 1
1 ′=−

Qiii ecyecydiagecy , and Q1  is the 1×Q  

unit vector.  

 

The log likelihood function based on the above joint density function can be maximized 

to obtain the ML estimates of all the parameters. The conditional distribution of ui can 

then be used to obtain firm-specific estimates of technical inefficiency.   

 

3.3 The mixing model 
 
Here we assume that every producer is potentially a profit maximizer (with some 

probability). The probability of being a profit maximizer is specified by a logistic function 

that depends on some exogenous variables. This gives us a finite mixture model where 

the density of endogenous variables is given by 

);()1();();( θπθπθ iZiiii Zfff
ii

−+Ξ=Ξ Ξ , Ni ,...1=           (35) 

where iπ  is the probability that the ith firm behaves as if it were maximizing profit. 

Given a set of predetermined variables, iW , we specify iπ  as  
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( )
( )δ
δπ
i

i
i W

W

′+
′

=
exp1

exp
, Ni ,...1= .               (36) 

This parameterization guarantees that iπ  is between zero and one. It also provides a 

direct interpretation of δ .  

 

Based on (7) we can formulate the log-likelihood function 

[ ]∑
=

Ξ
−− −+Ξ=ΞΩΣ

N

i
iZiii ZffWL

ii
1

11 );()1();(ln),;,,,(ln θπθπδθ        (37) 

We can maximize this function to obtain FIML estimates of all parameters.  

 

Straightforward application of Bayes' theorem yields an estimate of the posterior 

probability that the ith firm maximizes profit: 
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where the FIML estimates were substituted for θ  and δ , and ( ) ( )
( )δ
δδπ ~

exp1

~
exp~

i

i
i

W

W

′+
′

≡ , 

Ni ,...1= . These posterior probabilities are firm-specific even when iπ  is a parameter. 

Clearly, the estimated posterior probabilities summarize all the evidence for or against 

profit maximization. Ideally, we would like to have iQ  equal to either zero or one (or 

nearly so) so that the choice in favor or against profit maximization is more or less 

clear. Empirically, we cannot always expect that, and iQ  could be anywhere between 

these limits. In such cases, one could say that a firm is likely to be profit maximizing 

provided 2
1~ >iQ .  

 

3.4 Application to U.S. airlines 
 

To illustrate the technique proposed in the preceding sections, we use an unbalanced 

panel data set14 consisting of annual observations on the domestic operations of 23 US 

airlines over the period 1971-1986. A total of 268 observations are used here. Variable 

                                                
14 For details regarding the data, see Appendix A of Baltagi, Griffin and Vadali (1998).  
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inputs are labor ( L ), materials (M ) and fuel ( F ). Capital ( K ) it treated as a quasi-

fixed factor. To control for firm-heterogeneity, we also include 22 airline dummies in the 

cost function. 

 

The empirical results for the CM, PM, and LCM models that allow for technical 

inefficiency derived from the different models and across the two regimes are 

presented in Figures 3a-3c. These distributions are quite different pointing to the 

direction that behavioral assumptions are critical for inefficiency measurement. We find 

some significant differences in inefficiency in the pre- and post-deregulation period in 

terms of the tail behavior: Before deregulation the probability of relatively high 

inefficiency is comparatively larger so most airlines seemed to perform better in the 

post-deregulation period. The most notable difference in inefficiency distributions is 

between the CM model (Figure 3a) and the PM model (Figure 3b). The former is 

asymmetric to the right implying mean inefficiency close to 5% while the latter is 

symmetric and its mean is close to 1.2%. Another difference is in the tail behavior. 

According to the CM model technical inefficiency is less than 10% almost surely, while 

values in excess of about 1.5% are quite improbable according to the PM model. 

Notably, the distribution derived from the LCM (Figure 3c) is much closer to the CM 

result (Figure 3a) than to the PM result (Figure 3b) despite the fact that most airlines 

are profit maximizers according to the posterior probability criterion. The reason is that 

most airlines still have a non-zero probability to be in the non-profit-maximizing regime 

and this fact must be accounted for in deriving the inefficiency distribution from the 

LCM. 

 

Prior and posterior probabilities in favor of profit maximization are presented in Figure 

4. It is evident that in the pre-deregulation period each airline was equally likely to be a 

profit maximizer versus a non-profit-maximizer while in the post-deregulation period the 

probability of failing to maximize profit drops sharply, and about 80% of the 

observations belong to the PM regime.  

 
3.5 Mixing distance functions 
  
While using distance functions we take it for granted that the analyst knows whether to 

use the input or the output distance function. In doing so, one implicitly assumes that all 

the produces behave exactly the same way (either minimizes cost or maximizes 
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revenue). Here we follow the argument that the use of an input (output) distance 

function means that the producers are cost minimizers (revenue maximizers), although 

these behavioral assumptions are not built into the model explicitly (the way we built in 

the cost minimizing and profit maximizing behaviors in the models discussed in 

Sections 3.1 and 3.2).  

 

Here we depart from the traditional approach that assumes that the analyst knows 

beforehand whether to use the input and output distance functions. We argue that 

some producers might be minimizing cost (that justifies the use of input distance 

function) while others maximize revenue (that justifies the use of output distance 

function). Unfortunately, no information to identify these two groups of producers is 

available. So we propose the use of a mixture of input and output distance functions15, 

meaning that some producers might be minimizing cost while others might be 

maximizing revenue.  

 

The output distance function is specified as  

+++β=− uv),x,y/y(flnyln MM                (39) 

while the input distance function is 

+−+β=− uv),x/x,y(flnxln INN                  (40) 

The determination of the efficiency orientation for each firm is addressed by adopting a 

latent class structure. In this formulation, the likelihood function for a particular firm is 

obtained as the weighted sum of both output-oriented and input-oriented likelihood 

functions, where the weights are the prior probabilities of class membership. That is, 

)(),,()(),,(),,,( IIIIOOOO xygxygxyg δπθδπθδθ ⋅+⋅=           (41) 

where 0≤π j≤1 (j=O,I), and π O+ Iπ =1, θ = (θO,θI), δ = (δO,δI) and the probabilities of 

being in classes  O and I. These class probabilities are parameterized as  

                                                
15 This section is based on by Kumbhakar, Orea, Rodriguez and Tsionas (2003).  
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where q is a vector of firm-specific variables. Under the mantained assumptions, 

maximum likelihood techniques will give asymptotically efficient estimates of all the 

parameters.  

 

The estimated parameters can be used to compute posterior probabilites as: 

IOj
xyg

xyg
xyjP

jjjjj

jjjj ,,
)(),,(

)(),,(
),|( =

⋅∑
⋅

=
δπθ

δπθ
           (43) 

These posterior probabilities can be used to classify firms. That is, if π O> Iπ  for a firm 

then we can include it in the O class and vice versa. Once the classification is done we 

can estimate technical efficiency of the firms in the O class from 

[ ])|exp(ˆ euEETO +−=                  (44) 

 Similarly, technical efficiency of the firms in the I class can be obtained from 

[ ])|exp(/1ˆ euEETI += .                 (45) 

For an application of this model to European railroads see Kumbhakar, Orea, 

Rodriguez and Tsionas (2003). 

 
 
4. Relaxing functional form assumptions (SF model with LML) 

   

In this section we introduce the LML methodology in estimating SF models in such a 

way that many of the limitations of the SF models originally proposed by Aigner et al. 

(1977), Meeusen and van den Broeck (1977), and their extensions in the last two and a 

half decades are relaxed. Removal of all these deficiencies generalizes the SF models 

and makes them comparable to the DEA models. Moreover, we can apply standard 

econometric tools to perform estimation and draw inferences.  

 

To fix ideas, suppose we have a parametric model that specifies the density of an 

observed dependent variable iy  conditional on a vector of observable covariates 
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k
i RXx ⊆∈ , a vector of unknown parameters mR⊆Θ∈θ , and let the density be 

),;( θii xyl . The parametric ML estimator is given by 

∑
=Θ∈

=
n

i
ii xyl

1
),;(ln:maxarg~ θθ

θ
 

The problem with the parametric ML estimator is that it relies heavily on the parametric 

model that can be incorrect if there is uncertainty regarding the functional form of the 

model, the density, etc. A natural way to convert the parametric model to a 

nonparametric one is to make the parameter θ  a function of the covariates ix . Within 

LML this is accomplished as follows. For an arbitrary Xx∈ , the LML estimator solves 

the problem 

)(),;(ln:maxarg)(~
1

xxKxylx iH

n

i
ii −= ∑

=Θ∈
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θ
 

where HK  is a kernel that depends on a matrix bandwidth H . The idea behind LML is 

to choose an anchoring parametric model and maximize a weighted log-likelihood 

function that places more weight to observations near x rather than weight each 

observation equally, as the parametric ML estimator would do.16 By solving the LML 

problem for several points Xx∈ , we can construct the function )(
~
xθ  that is an 

estimator for )(xθ , and effectively we have a fully general way to convert the 

parametric model to a non-parametric approximation to the unknown model.  

 

Suppose we have the following stochastic frontier cost model  

;iiii uvxy ++′= β  ),0(~ 2σINvi , ),(~ 2ωµINui , 0≥iu  for ni ..,,1= , kR∈β       (46) 

where y is log cost and xi is a vector of input prices and outputs17; iv and iu  are the 

noise and inefficiency components, respectively. Furthermore, iv  and iu  are assumed 

to be mutually independent as well as independent of ix .  

 

To make the frontier model more flexible (non-parametric), we adopt the following 

strategy. Consider the usual parametric ML estimator for the normal (v) and truncated 

                                                
16 LML estimation has been proposed by Tibshirani (1984) and has been applied by Gozalo and 
Linton (2000) in the context of non-parametric estimation of discrete response models. 
17 The cost function specification is discussed in details in section 5.2. 
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normal (u) stochastic cost frontier model that solves the following problem (Stevenson, 

1980): 

∑
=Θ∈
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n
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ii xyl

1
),;(ln:maxarg~ θθ

θ
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ωµψ /= , and Φ  denotes the standard normal cumulative distribution function. The 

parameter vector is ],,,[ ψωσβθ =  and the parameter space is RRRRk ×××=Θ ++ . 

Local ML estimation of the corresponding non-parametric model involves the following 

steps. First, we choose a kernel function. A reasonable choice is  
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where m  is the dimensionality of θ , ShH ⋅= , 0>h  is a scalar bandwidth, and S  is 

the sample covariance matrix of ix . Second, we choose a particular point Xx∈ , and 

solve the following problem: 
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A solution to this problem provides the LML parameter estimates )(~),(~),(~ xxx ωσβ  and 

)(~ xψ . Also notice that the weights )( xxK iH −  do not involve unknown parameters (if 

h  is known) so they can be computed in advance and, therefore, the estimator can be 

programmed in any standard econometric software.18  

                                                
18 An alternative, that could be relevant in some applications, is to localize based on a vector of 
exogenous variables iz  instead of the ix 's.  In that case, the LML problem becomes  
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where z are the given values for the vector of exogenous variables. The main feature of this 
formulation is that the β  parameters as well as σ , ω , and ψ  will now be functions of zinstead 
of x. 
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4.1 An application to U.S. commercial banks 
 

The above methodology is applied to analyze cost efficiency of the U.S. commercial 

banks. The commercial banking industry is one of the largest and most important 

sectors of the U.S. economy. The structure of the banking industry has undergone 

rapid changes in the last two decades, mostly due to extensive consolidation. The 

number of commercial banks has declined over time and concentration at the national 

level has increased. The number and size of large banks has also increased. 

Justification of mergers and acquisitions is often provided in terms of economies of 

scale and efficiency. Thus, it is important to ask: Are large banks necessarily more 

efficient? Since the banking industry consists of a large number of small banks and 

assets are highly concentrated in a few very large banks, heteroscedasticity is likely to 

be present in both the noise and inefficiency components.19 Moreover, the production 

technology among banks is likely to differ.20 These problems are avoided in the non-

parametric LML model that makes parameters bank-specific without using any ad hoc 

specification.  

 

4.1.1 Data 
 

The data for this study is taken from the commercial bank and bank holding company 

database managed by the Federal Reserve Bank of Chicago.  It is based on the Report 

of Condition and Income (Call Report) for all U.S. commercial banks that report to the 

Federal Reserve banks and the FDIC. In this paper we used the data for the year 2000 

and selected a sample of 3691 commercial banks.  

 

In the banking literature there is a controversy regarding the choice of inputs and 

outputs. Here we follow the intermediation approach (Kaparakis et al. (1994) in which 

banks are viewed as financial firms transforming various financial and physical 

resources into loans and investments. The output variables are:  installment loans (to 

                                                
19 It is well known that if the inefficiency component is heteroscedastic and one ignores it, both 
parameter estimates and estimated inefficiencies will be inconsistent (see Kumbhakar and 
Lovell (2000, Chapter 3.4)). Consequently, estimates of economies of scale are likely to be 
wrong. 
20 Although, in a parametric setting one can test this using the Chow test for structural change 
(parameter stability) in which banks are grouped under small, medium, large, etc., there is no 
universally accepted criterion for grouping banks and deciding how many groups are to be 
chosen. McAllister and McManus (1993) argued that returns to scale estimates are biased when 
one fits a single cost function for all the banks.  
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individuals for personal/household expenses) (y1), real estate loans (y2), business 

loans (y3), federal funds sold and securities purchased under agreements to resell (y4), 

other assets (assets that cannot be properly included in any other asset items in the 

balance sheet) (y5). The input variables are: labor (x1), capital (x2), purchased funds 

(x3), interest-bearing deposits in total transaction accounts (x4) and interest-bearing 

deposits in total nontransaction accounts (x5).  The input prices are calculated in the 

usual way (cost of each input divided by input quantity). Total cost is then defined as 

the sum of cost of these five inputs. 

 

4.1.2 Results  
 

We estimated the following Cobb-Douglas cost function  
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where as before ),0(~ 2σINvi and ),(~ 2ωµINui , 0≥iu  ni ,..1= , mkR +∈β . Here C 

is total cost (normalized by the price of x3) and the independent variables contain m (5) 

outputs and k (4) normalized input prices.21  

 

The estimates of vσ  and ψ  show large variations while the opposite is true for uσ . 

These large variations in estimated coefficients show why estimating a single set of 

parameters for all banks might not be a good idea.  

 

We measure technical inefficiency using the following procedure. Suppose we localize 

with respect to observation j and denote the resulting LML estimates of the frontier 

parameters by )(jβ , )(jσ , )(jµ , )(jω . Since ),(~ 2ωµNui , 0≥iu  the conditional 

distribution of iu  given the data has mean given by  
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21 The normalization is done to impose linear homogeneity (in input prices) restrictions. 
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where 
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ni ,...1= . Therefore, )(, jim  is the inefficiency measure22 for observation i when we 

localize with respect to observation j. A reasonable inefficiency measure for 

observation i is provided by )(,
1

)(,
*

ji

n

j
jii Wmm ∑

=

=  which is a weighted average of all 

)(, jim  based on the LML weights ( )(, jiW ). Naturally, the dominating element in this 

average will be )(,iim , the inefficiency measure of a particular observation when we 

localize with respect to this observation. This inefficiency estimate is derived 

completely from firm-specific parameter estimates of σµβ ,,  and ω  and can be 

viewed as a non-parametric estimate of inefficiency for the particular observation. The 

firm-specific cost efficiency measures can be obtained from exp( *
im− ). 

 

We report estimates of cost efficiency in Figure 5. Modal efficiency is found to be quite 

high and about half of the banks are found to be operating at an efficiency level of 90% 

or more. To explore this issue further we plot estimates of cost inefficiency against log 

assets in Figure 6. From the scatter plot of banks we find some (weak) evidence to 

support the hypothesis that large banks are more efficient (a weak inverse relationship 

between inefficiency and log assets is observed from the scatter plot). Thus, one could 

argue that the cost advantage from mergers of large banks may not be very high 

(Berger and Humphrey (1992)), especially from an efficiency point of view. 

 

 

5. Conclusions 
 

In this paper we presented three new techniques to estimate technical inefficiency 

using stochastic frontier technique. First, we presented a technique to estimate a non-

homogeneous technology using the IO technical inefficiency. We then discussed the IO 

and OO controversy in the light of distance functions, and the dual cost and profit 

functions. The second part of the paper addressed the latent class modeling approach 

incorporating behavioral heterogeneity. The final part of the paper addressed LML 

method that can solve the functional form issue in parametric stochastic frontier.

                                                
22 This is the well-known Jondrow et al. (1982) estimator. 
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