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Abstract: In this paper we estimate parametric input and output distance functions as 
well as a mixture of input and output distance functions. The main advantage of the 
mixing model is that it lets the data determine the orientation of technical inefficiency, 
which is an open problem in efficiency analysis. Since estimates of technical 
inefficiency from the input and output distance functions are not directly comparable, 
we develop cross-indices that can be used to compute input (output) technical 
inefficiency from the estimates of output (input) distance function. These cross-indices 
are especially useful in the mixture model in which both the input and output distance 
functions are simultaneously estimated. The proposed technique is applied to a panel 
data on European Railways (1970-1994).  
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1. Introduction 
 

Since the publication of papers by Aigner et al. (ALS, 1977) and Meeusen and van den 

Broeck (MB, 1977) stochastic frontier models are widely used in many different areas 

of economics, operations research, marketing, management science, and many other 

fields. The reason for the widespread use of it is that in estimating the technology 

producers are allowed to operate inefficiently, thereby generalizing the neoclassical 

approach that assumes every producer to be fully efficient.  

 

Two measures of technical efficiency are primarily used in the efficiency literature. 

These are, (i) input-oriented (IO) technical efficiency, and (ii) output oriented (OO) 

technical efficiency.1 ALS and MB used the OO approach. If output is endogenous 

(e.g., revenue maximization case) but inputs are exogenous, the proper measure 

would be the OO measure. On the other hand, if inputs are endogenous (e.g., cost 

minimization case) but output is exogenous the appropriate measure of technical 

efficiency is the IO measure. Since the choice of orientation can, in principle, have 

important consequences for efficiency measurement, estimation of both IO and OO 

models and formal model choice becomes necessary. Orea et al. (2003) addressed the 

choice between the IO and OO model from the viewpoint of cost minimizing behavior. 

They chose a single model for all firms whereas in the present approach we let the 

data determine which firm is using what orientation. 

 

Econometric estimation of stochastic production models is problematic in the presence 

of multiple outputs. In such a case the distance function approach is very useful. 

Because of this, econometric estimation of distance functions is becoming popular in 

recent years (see, for instance, Lovell et al., 1994; and Coelli and Perelman, 2000). 

The technique proposed by ALS and MB can be used to estimate both the input and 

output distance functions. Furthermore, no price information is necessary to estimate 

the distance functions. Since price information is often hard to come by or is not 

considered reliable and/or sufficiently precise, applied researchers are inclining more 

and more to the distance function approach. 

 

In the standard distance function approach the researcher chooses between the input 

and the output-oriented approaches and estimates the distance function of his/her 

                                                
1 See Fare and Lovell (1978) for an earlier discussion on these issues.  
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choice. Often both input and output distance functions are estimated and both sets of 

results are presented. This creates a big problem to the reader, who wants to know 

which results to take seriously. The results are expected to be different (unless the 

technology exhibits constant returns to scale) because they have different 

interpretations, and are based on two different technologies. (Note: In a distance 

function approach the technology associated with the input distance function is not the 

same (even theoretically) as the one associated with output distance function.)  

 

In this paper we propose to estimate a mixture/latent class model (LCM) involving the 

output and input distance functions in the context of multi-input and multi-output 

production technology. First, we estimate the input and output distance functions 

separately. From these distance functions we estimate input- and output-oriented 

technical inefficiencies. Since estimates of technical inefficiency from the input and 

output distance functions are not directly comparable, we develop cross-indices that 

can be used to compute input (output) technical inefficiency from the estimates of 

output (input) distance function. Then we estimate the model in which the input and 

output distance functions are mixed. We justify this approach on the ground that for 

some producers the input distance function might be appropriate while for other the 

output distance function is appropriate. This is especially true when one associates 

input distance function with cost minimizing behavior and output distance function with 

revenue maximizing behavior. Thus the sample firms/producers may be classified into 

two groups depending on whether the input or the output distance function is 

appropriate for them (i.e., whether the producers minimize cost or maximize revenue). 

Since there is no a priori knowledge about which firms minimize cost (maximize 

revenue), we use the LCM that assumes that each firm has a non-zero probability to be 

in both groups. These prior probabilities can either be a constant or a function of 

covariates that are firm/time-specific. These covariates are assumed to explain the 

orientation. Finally, we compute (posterior) probability of group membership to 

determine whether the firm finally belongs to the IO or OO group. This is a natural 

approach, when one doesn’t have precise information to determine whether the IO or 

OO approach is more appropriate for a specific firm. An advantage of this is that the 

input (output) distance function may not be appropriate for a firm throughout the entire 

sample period. Since the orientation might change over time and we do not have 

information about it, it becomes important to use data-based information to figure out 

the appropriate model. 
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Since the group membership is probabilistic, the estimates of technical inefficiencies 

are also probabilistic. To get a single measure one can use a weighted measure where 

weights are membership probabilities. This is possible if one uses mixing models with 

either input or output distance function. By doing so the composite measure will be 

either input or output technical inefficiency. However, if one mixes the technologies 

specified by the input and output distance functions (which are different unless the 

returns to scale is unity), the estimated inefficiencies are not in the same metric. We 

avoid this problem by first converting the input (output) inefficiencies into output (input) 

inefficiencies and then constructing an index for input (output) technical inefficiency. 

 

This approach is different from the model-selection criterion used by Orea et al. (2003) 

primarily because in the present approach we do not have to classify firms into one or 

the other group. If so desired, we can accomplish this task by considering the posterior 

probabilities of group membership that can be computed after estimating the model. 

However, efficiency measures can be computed without knowing which firm is in what 

regime. From this point of view, we take model selection (orientation choice) 

uncertainty formally into account, and propose technical efficiency measures that are 

robust to this uncertainty. 

 

The rest of the paper is organized as follows. The models are presented in section 2. 

The data are described in section 3. The empirical results are discussed in in section 4. 

The final section offers a summary of the paper and some concluding remarks. 

 

 

2. Output, Input and Mixing Models 
 

Let the technology be represented by a stochastic distance function that can be 

expressed in general terms as: 

)uvexp(),x,y(f1 +⋅β=     (1) 

or, in logs, 

uv),x,y(fln0 ++β=      (2) 
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where y is a vector of outputs, x is a vector of inputs, v is a two-sided error term 

satisfying the classical assumptions, u is an one-sided random variable representing 

technical  inefficiency; and β is a vector of technological parameters.  

 

The use of the distance function requires the fulfillment of some restrictions. First, the 

inefficiency term u will be non-negative if the distance function is output oriented (i.e. 

u=u+), whereas it will be non-positive if the distance function is input oriented (i.e. u=-

u+). Second, the orientation imposes homogeneity restrictions on outputs or inputs. In 

particular, if the distance function is output-oriented (hereafter, Output Model), the 

deterministic function in (1) and (2) must be homogeneous of degree one in outputs. 

Linearly homogeneity in outputs implies that f(x,µ·y)=µ·f(x,y), µ>0. Setting µ=1/yM, this 

property the output model can be expressed as: 

  +++β=− uv),x,y/y(flnyln MM     (3) 

Given appropriate distributional assumptions for v and u, the parameters of this 

stochastic output-oriented distance function can be estimated using the maximum 

likelihood procedure. Following ALS we assume that v are iid N(0,σv
2), and distributed 

independently of u+ which is assumed to be iid |N(0,σu
2)|. We denote the density 

function for a particular observation (y, x) drawn from the output-oriented model by 

gO(y,x,θO), where θO is the vector of parameters associated with the output-oriented 

model.  

 

The predicted value of the output distance function, DO=exp(-u+), is not directly 

observable because u is a part of the composed error term, e=v+u+. Predictions may, 

however, be obtained using the Jondrow et al. (1982) formula. Notice that the output 

distance function is the inverse of the output-oriented Farrell (1957) measure of technical 

efficiency. This measure lies between 1 and +∞, and the higher measure, lower is the 

efficiency. However, to be consistent with most of the parametric efficiency studies, we will 

use the value of the output distance function directly as a measure of efficiency that lies 

between zero and one. That is: 

[ ]e|uEû,)ûexp(ET̂O +++ −=−=   (4) 

This index is a “natural” index since it has the same orientation (i.e. output) as the 

estimated output-oriented distance function (3). An input-oriented efficiency index can 

be also obtained from the estimated output distance function. We call this index a 
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“cross-index” since it has the opposite orientation in comparison with the original 

distance function. The cross-indices are obtained in a way that is similar to Orea et al. 

(2003) who used it in a cost framework. In particular, the cross input efficiency index is 

obtained by solving the following problem for each observation: 

0)ˆ;ax,yy(flnyln.t.s
amin

*
M

**
M =β⋅+

    (5) 

where the output quantities with asterisk are adjusted by random noise using the 

estimated noise in the output model, that is 

M,...,1j,v̂ylnyln j
*
j =+=      (6) 

The cross input efficiency index is then calculated as the minimum contraction of the 

input vector that makes the firm efficient, given its adjusted output vector. In other 

words, we try to evaluate the input (cost) savings that an efficient firm could achieve 

with the same output vector of an inefficient firm, given the technology estimated using 

the output model. Since estimated output distance function is, by construction, 

increasing in inputs, the resulting efficiency index (5) will take values equal or less than 

one. 

 

The intuition behind (5) and (6) is illustrated in Figure 1 for the two output case. 

Assume we observe the output vector B. This observation is generated by the  

technology (point E), inefficiency (movement from E to A) and random noise 

(movement from A to B). In order to get any efficiency measure we have to eliminate 

the effect of random noise. Hence, in the first stage, output quantities are adjusted 

using (6). The movement from B to A shows this adjustment. In the second stage, we 

try to shift, by contracting the input vector; the production frontier up to it passes 

through A, making the firm to be efficient.  

 

If, on the other hand, the distance function (1) is input-oriented (hereafter, Input Model), 

f(x,y) must be homogeneous of degree one in inputs, that is, f(y,µ·x)=µ·f(x,y), µ>0. 

Setting µ=1/xN, we get the following representation of the input distance function: 

+−+β=− uv),x/x,y(flnxln INN     (7) 

The primary difference between (7) and (3) is that the non-negative error term will now 

be subtracted from the equation rather than added. Assuming again that the noise term 
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is normal distributed and the inefficiency term follows a half-normal distribution2, the 

density function of a particular observation (y, x) of the input-oriented model can be 

derived. We denote it as gI(y,x,θI), where θI is the vector of parameters associated with 

the input-oriented model.  

 

Once the parameters in equation (7) are estimated, the value of the input-oriented 

distance function would be predicted as E[u+|e], where e=v-u+. Since this value will be 

greater than or equal to one, we propose using its inverse as a measure of technical 

efficiency, which is equivalent to the input-oriented technical efficiency measure 

introduced by Farrell (1957). That is: 

[ ]e|uEû,)ûexp(/1ET̂I +++ ==   (8) 

Like the output efficiency index (4), the index in (8) is a “natural” index since it has the 

same orientation (i.e., input) as the estimated input-oriented distance function (7). The 

cross output-oriented efficiency index can also be obtained from (7). In this case, we 

first adjust the input vector for the random noise using the estimated value of v, i.e.,  

K,...,1k,v̂xlnxln k
*
k =+=     (9) 

As illustrated in Figure 2, the cross output efficiency index is then calculated as the 

minimum output contraction that is feasible, given the adjusted firm’s input usage. In 

other words, we try to evaluate the extra output that an efficient firm could achieve with 

the extra inputs used by an inefficient firm, given the technology estimated from the 

input model. That is, we solve the following problem for each observation: 

0)ˆ;xx,b/y(flnxln.t.s
bmin

I
*
N

**
N =β+

    (10) 

Next, a mixture of both input and output oriented frontiers can be estimated using a 

stochastic frontier latent class model (hereafter, Mixing Model). This model is based on 

embedding the stochastic frontier approach into a latent class structure so that the 

technologies and the probability of using in the input (output) inefficiency model are 

estimated simultaneously.3 This implies that all the observations in the sample are 

associated with a nonzero probability of being both output (revenue) maximizing firms 

and input (cost) minimizing firms. 

                                                
2  Other distributions for the one-sided error term can be introduced without changing the 
essentials of the present approach. 
3 See Greene (2002) for a survey of latent class models.  
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The determination of the efficiency orientation for each firm is addressed by adopting a 

latent class structure. In this formulation, the density function for a particular 

observation (y, x) is obtained as the weighted sum of both output-oriented and input-

oriented density functions, where the weights are the probabilities of being output and 

input efficient. That is, 

)(P),x,y(g)(P),x,y(g),,x,y(g IIIIOOOO δ⋅θ+δ⋅θ=δθ    (11) 

where 0≤Pj≤1 (j=O,I), and PO+PI=1, θ=(θO,θI), δ=(δO,δI) and the probabilities of being 

output and input efficient are parameterized as a multinomial logit model, 

I,Oj,
)q'exp(

)q'exp(
)(P

jj

j
jj =

δ∑
δ

=δ     (12) 

where q is a vector of variables. Under the mantained assumptions, maximum 

likelihood techniques will give asymptotically efficient estimates of all the parameters.4  

 

Using Bayes' theorem the estimated parameters can be used to compute posterior 

probabilites as: 

I,Oj,
)(P),x,y(g

)(P),x,y(g
)x,y|j(P

jjjjj

jjjj =
δ⋅θ∑

δ⋅θ
=    (13) 

These posterior probabilities can be used to classify firms. That is, if 

P(j=O|y,x)>P(j=I|y,x) for a firm then we can include it in the Output-Model and vice 

versa. Once the classification is done we can estimate technical efficiency of the firms 

in the Output- Model from (4). Similarly, technical efficiency of firms belonging to the 

Input- Model can be obtained from (8).  

 

However, in the Mixing Model, there are other ways of measuring efficiency of a firm. 

The Mixing Model proposes that a firm may be, with some probability, an revenue-

maximizing firm or a cost-minimizing firm. Since for each firm, both objectives 

(orientations) apply with some probability, we can calculate mixtures of efficiency 

indices that merge (natural and cross) efficiency indices from both output and input 

distance functions.  
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In particular, we can use two mixtures of technical efficiency indices. The first one 

combines two output-oriented efficiency indices, viz. the natural output index obtained 

from the output distance function part of the Mixing Model, and the cross output 

efficiency index obtained from input distance function part. That is:  

)x,y|Ij(P)x,y|Oj(P ET̂COET̂OET̂MO == ⋅=       (14) 

where COTE denotes a cross output-oriented efficiency index. The second mixture 

index combines two input-oriented efficiency indices, viz. the natural input index 

obtained from the input distance function part of the Mixing Model, and the cross input 

efficiency index obtained from output distance function part. That is:  

)x,y|Ij(P)x,y|Oj(P ET̂IET̂CIET̂MI == ⋅=        (15) 

where CITE denotes a cross output-oriented efficiency index.5 The results obtained 

from using (14) and (15) would be, in general, different from those based on output or 

input distance functions alone. This is illustrated in Figure 3 for the simple one-output-

one-input case. In this case, the output oriented mixture index can be written as:6 

IO PP

'y
y

*y
yET̂MO 





⋅





=             (16) 

where y* and y’ are the maximum output that can be achieved using the input vector x 

and taking the production frontier associated with the output and input oriented 

distance functions respectively as the reference technology. This index can be 

rewritten as: 

)P,x(F
y

)x(F)x(F
yET̂MO

O
P1

I
P

O
OO

==
−

      (17) 

                                                                                                                                          
4 A necessary condition for identifying δ, the parameters of the latent class probabilities, is that 
the sample must be generated from a non-constant returns to scale technology. In this 
particular case, the frontier parameters in (3) and (7) are the same (i.e. θO =θI ) and the first 
derivative of the likelihood (11) with respect to δ is always equal to zero.  
5 A third mixture index take into account both directions of firm's performance and combines the 
two natural efficiency indices associated to both output and input distance function parts of the 
Mixing Model. That is:  

)x,y|Ij(P)x,y|Oj(P ET̂IET̂OET̂M == ⋅=   
This index, that can be viewed as a directional-type or hyperbolic-type index, has some 
interpretation problems since it implies both output expansions and input reductions.  
6 Similar comments deserve the input oriented mixture index, MITE. 
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The denominator in (17) can be interpreted as the expected technology of a firm with 

output class probability PO. This means that, given the estimated posterior class 

probabilities, the reference technology used for calculating a mixture of efficiency 

indices is specific for each firm, unlike in OTE and ITE where the production frontier is 

the same for all the firms. 

 

 

3. Sample and Data  
 

The Output, Input and Mixing models introduced in Section 2 are estimated using data 

from the European Railways during the period 1970 to 1994.7 This industry has 

historically been thought, in most European countries, as a natural monopoly requiring 

unitary ownership at the network level and either public control or ownership. Public 

control over rail industry is justified by the idea that this industry is considered as an 

integrative mechanism able to overcome geographical barriers in certain areas, aid in 

the economic development of undeveloped zones, and even as a guarantee of 

minimum transport services for a particular segment of the population. Since 

government (and regulators) encouraged spreading railways services, the European 

rail industry had rapid growth during the mid 2oth century.   

 

However, in the 80s a substantial fall in the European rail activity (specially in freight 

transportation) started that apparently stabilized during mid 1990s and improved since 

1995. This reduction can be attributed to both exogenous causes (e.g. the rapid 

development of alternative modes of transport, especially by road) and endogenous 

causes (e.g., regulation) that restrict the industry’s adaptation to changing conditions of 

its economic environment (Campos and Cantos, 1999). Because of a declining market 

share and worsening financial performance of railways, in 1984 the European 

Commission proposed using decentralised methods of management by sectors or 

business units, separating accounts and clearing targets to increase profitability or 

                                                
7 This application can be viewed as an extension of the "classical" distance function paper 
written by Coelli and Perelman (2000) using data from 1988-1993. 
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reduce the scale of losses.8 These measures were mainly input oriented. For instance, 

management contract in 1984-1986 in Spain had an agreement to close 882 km of 

lines and to reduce the workforce by 15,000 persons in four years. 

 

In 1991, the Directive 91/440 presented by the European Commission advocated a 

system of competitive access to the infrastructure, based on the principle of vertical 

disintegration between infrastructures and operations. This approach is explained by 

the fact that infrastructure costs are largely sunk and infrastructure provision exhibits 

natural monopoly characteristics.9 Next, various Directives were presented by the 

European Commission (1994, 1995, 1996, 1998). Finally, Directive 12/2001 required to 

separate accounting for passenger and freight transport services and the White Paper, 

2001 (Commission of the European Communities) established that full competition 

across Europe will take place by 2008.10  

 

The Mixing Model proposed in Section 2 is suitable for this data set since firms (or 

regulators) have changed their strategies from maximizing market share in the 70s and 

early 80s to reducing costs at the end of 80s and in the 90s.This suggests that both 

orientations have played an important role in the European railroad industry and, 

therefore, a model should take both orientations into account.  

 

The data used in this paper are taken from the reports published by the Union 

Internationale des Chemins de Fer (UIC) and covers the period 1970-1994 for the 

railways of 17 countries of the European Union: BR (U.K); CFF (Switzerland); CFL 

(Luxembourg); CH (Greece); CIE (Ireland); CP (Portugal); DB (Germany); DSB 

(Denmark); FS (Italy); NS (Holland); NSB (Norway); OBB (Austria); RENFE (Spain); SJ 

(Sweden); SNCB/NMBS (Belgium); SNCF (France) and VR (Finland).  

                                                
8 This approach was adopted in Britain form the early 1980s to 1994, where the five business 
sector were given their own directors, separated accounts and clear targets to increase 
profitability/reduce the scale of losses. Costs were allocated to the business sector on the basis 
that each sector was responsible for the costs of assets (including infrastructure) and staff. 
Following the British experience, many European Railways, such as Spain, The Netherlands 
and Germany have reorganized on a business sector basis (OECD, 1998).  
9 The most radical experience in the process of vertical separation is The British railways which 
after strong improvements in the later 1980s began to deteriorate in the early 1990s. The 
infrastructure was place in the hands of a new company, which was privatised in 1996. Less 
extreme experiences are Germany and Netherlands (for details see Cantos et al., 2002 and 
OECD, 1998).  
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We have considered two outputs: freight-tonnage per kilometer (y1) and passengers 

per kilometer (y2). Three inputs have been considered: Energy (x1), Labour (x2), and 

Capital (x3). For the energy variable, motor equipment energy consumption has been 

used, in thousand million kilocalories. We use observations until 1994 because data 

after 1994 are not directly comparable due to changes in accounting procedures. 

Labour is measured using the number of employees. For capital measurement we 

follow Coelli and Perelman (2000) and consider rolling stock, which is measured by the 

sum of available freight wagons and coach transport capacities in tonnes and seats, 

respectively. The sample means of all variables are presented in Table 1 for each of 

the 17 companies over the period 1970-1994.  

 

 

4. Empirical results 
 

The parameter estimates for the Output, Input and Mixing Model are presented in Table 2. 

All variables have been mean-corrected prior to estimation. That is, each output and 

input variable has been divided by its geometric mean. In this way, the first order 

coefficients can be interpreted as distance elasticities evaluated at the sample means. 

While in the output distance function the linear homogeneity is imposed using the 

output y2 as a numeraire, in the input distance function it is imposed using x3 as a 

numeraire. Since all the elasticities possess the expected signs at the geometric mean, 

the estimated distance functions satisfy the property of monotonicity, i.e. the output 

distance functions are non-decreasing in outputs and decreasing in inputs, and the input 

distance functions are non-decreasing in inputs and decreasing in outputs.  

 

The mean log-likelihood value in the Mixing Model is twice that obtained in other 

models. This suggests that the Mixing Model is a significant improvement over the 

traditional Output and Input models. Indeed, unlike the Mixing Model, the traditional 

models impose a common orientation for all firms and over time. In our application this 

restriction seems to be quite restrictive, as shown in Table 3. This table provides 

information to allocate each observation into two classes: i) Output-Model, which 

includes those observations where PO>PI; and ii) Input-Model, which includes those 

                                                                                                                                          
10 As Claes et al. (2003) point out, all of these directives are designed to liberalize Europe’s rail 
systems, but they do not mandate specific means to achieve liberalization. Each member 
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observations where PO<PI. The information contained in Table 2 shows that half of the 

sample consists of output maximizing firms and, the other half consists of input 

minimizing firms. On the other hand, the efficiency orientation has changed over time, 

especially in the cases of U.K, Greece, Ireland and Belgium. 

 

Following Färe and Primont (1995), the scale elasticity in an output distance function can 

be calculated as the negative of the sum of the input elasticities. The sum of first order 

input coefficients in the Output Model is equal to 1.045, indicating slight increasing 

returns to scale, as found in many other empirical analyses of railways. The same 

results hold for the Input Model. In this model, the scale elasticity can be calculated as 

the inverse of the negative sum of the output elasticities. The sum of the first-order output 

coefficients in the Input model (i.e. –0.913) is less than one in absolute value, indicating 

again the presence of increasing returns to scale. Similar comments apply to the scale 

elasticity estimated from the input distance function part of the Mixing Model. However, 

at the sample mean, we cannot reject constant returns to scale using the output 

distance function part. 

 

Technical change can be calculated using the derivative of the distance function (in 

logs) with respect to time trend. Table 4 reports the annual rates of technical change 

calculated from the Output, Input and Mixing Models. The results in this table show, in 

general, positive technical change throughout the period. All the models indicate, 

however, the existence of technical “regress” during the 1970s. This result seems to 

corroborate the apparently worsening performance of railways up to 1984 when the 

European Commission’s policy changed. The positive rates of technical change in the 

latter 1980s and early 1990s suggest that the new course of the European policy 

produced an overall improvement in the railway industry. 

 

The estimated parameters can be used to obtain output-based, input-based and 

mixtures of technical efficiency indices. A summary of the technical efficiency indices is 

presented in Table 5 and the results are also presented in Figure 4. In general, we obtain 

average technical efficiency over 80 percent, as in previous railways studies. Moreover, 

the output-oriented indices are higher than the input oriented indices; except for the 

mixture indices that yield similar average values. As expected, the efficiency levels rise 

as the efficiency orientation is allowed to vary over firms and over time, like in the 

                                                                                                                                          
country must decide how it will comply with the directives.   
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Mixing Model. This suggests that when orientation is restricted a priori to be input- or 

output- based, the estimated efficiency levels are likely to be biased downward (due to 

model misspecification).  

 

We now examine the behavior of technical efficiency over time. All measures, graphed 

in Figure 4, show an increase in technical efficiency levels of European railways during 

the 1970s and 1980s, and a decrease in the early 1990s (except for the Output-Model). 

Note that, while the increase in efficiency matches in time with negative or moderate 

rates of technical change, the efficiency deterioration takes place during the period 

characterized by strong technical progress.  

 

Productivity growth can be measured from the estimated distance functions by 

combining the effect of technical change (i.e., shifts in the distance funtion over time) 

and changes in technical efficiency into a Malmquist productivity index. Figure 5 

provides the temporal path of the Malmquist index of productivity. The plots for the 

Output and Input models are quite similar, but are quite different from the one obtained 

using the Mixing Model. Figure 5 shows that productivity growth estimates seem to be 

quite sensitive to restricting the efficiency orientation among firms and/or over time.  

 

Finally, we examine the temporal behavior of the class probabilities and the coefficients 

of the logit probability functions. The yearly average class probabilities are depicted in 

Figure 6. Both the prior and posterior probabilities for Input Model are, in general, 

higher than those in the Output-Model, especially during the 1970s. The relative 

importance of both orientations has changed drastically over time, as indicated by the 

significance of the coefficients of the probability function. In fact, the output orientation 

during the 1980s is almost as important as the input orientation. This Figure also 

suggests that the policy advocated by the European Commission since 1984 allowed 

rail companies to have more control on their inputs (compared with the control on their 

outputs), increasing the input orientation approach in the latter 1980s and early 1990s. 

 
 

5. Conclusions 
 

Traditional Output and Input models impose a common orientation for all firms and over 

time. We show using European railway data that this restriction seems to be quite 
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restrictive. In particular, productivity growth estimates seem to be quite sensitive to 

imposing a common orientation and the estimated efficiency levels are likely to be 

downward biased. Collectivelly, these results highlight the importance of estimating 

less restrictive models, such as a Mixing Model that combines both output and input 

distance functions. 
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Table 1. Descriptive Statistics 
 

Variable Mean Std. Dev. Minimum Maximum 
y1 13778 18642 310 76424 
y2 14356 16762 207 64256 
x1 133708126 166327003 27000 755328000 
x2 82573 97281 3289 405713 
x3 2381012 3420845 70564 12493852 
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Table 2. Parameter estimates 
 

 Mixing Model Output Model Input Model 

Parameters Estimates Est./s.e. Estimates Est./s.e. Estimates Est./s.e. 

ln(y1/y2) 0.561 55.738 0.460 22.056 - - 
lnx1 -0.321 -31.341 -0.161 -10.904 - - 
lnx2 -0.478 -25.591 -0.449 -12.674 - - 
lnx3 -0.199 -10.557 -0.436 -10.828 - - 
0.5·ln(y1/y2)2 -0.032 -0.474 0.113 1.646 - - 
0.5·ln(x1)2 -0.141 -26.137 -0.060 -7.821 - - 
0.5·ln(x2)2 -0.327 -2.183 0.817 4.110 - - 
0.5·ln(x3)2 -0.635 -4.678 0.294 1.972 - - 
ln(y1/y2)·lnx1 0.073 6.247 0.021 2.047 - - 
ln(y1/y2)·lnx2 -0.028 -0.468 0.451 5.157 - - 
ln(y1/y2)·lnx2 -0.062 -1.079 -0.406 -5.156 - - 
lnx1·lnx2 0.018 0.976 0.034 2.195 - - 
lnx1·lnx3 0.164 12.466 0.053 3.428 - - 
lnx2·lnx3 0.365 2.708 -0.508 -2.993 - - 
t 0.013 3.400 0.015 2.407 - - 
0.5·t2 -0.001 -4.415 -0.002 -4.520 - - 
Intercept 0.308 9.744 -0.213 -3.624 - - 
Sigma 0.065 6.964 0.289 14.429 - - 
Lambda 2.497 1.606 2.844 3.656 - - 
lny1 -0.443 -18.629 - - -0.439 -24.334 
lny2 -0.464 -21.120 - - -0.475 -25.304 
ln(x1/x3) 0.100 8.499 - - 0.131 12.221 
ln(x2/x3) 0.379 9.221 - - 0.442 14.062 
0.5·ln(y1)2 -0.266 -3.422 - - -0.183 -2.475 
0.5·ln(y2)2 -0.106 -1.479 - - 0.044 0.661 
0.5·ln(x1/x3)2 0.037 5.389 - - 0.055 7.938 
0.5·ln(x2/x3)2 -0.082 -0.477 - - -0.271 -1.835 
lny1·lny2 0.085 1.284 - - -0.020 -0.314 
lny1·ln(x1/x3) -0.003 -0.253 - - -0.003 -0.236 
lny1·ln(x2/x3) -0.348 -3.626 - - -0.462 -5.236 
lny2·ln(x1/x3) -0.001 -0.102 - - -0.008 -0.707 
lny2·ln(x2/x3) 0.256 3.959 - - 0.284 4.408 
ln(x1/x3)·ln(x2/x3) 0.004 0.311 - - 0.009 0.695 
t -0.009 -1.472 - - -0.017 -3.043 
0.5·t2 0.002 4.000 - - 0.002 5.126 
Intercept 0.273 6.438 - - 0.239 5.321 
Sigma 0.231 13.412 - - 0.303 20.527 
Lambda 5.510 2.514 - - 5.491 4.063 

Probabilities       

Intercept -1.462 -2.745 - - - - 
t 0.164 1.895 - - - - 
0.5·t2 -0.010 -1.629 - - - - 
Mean log-likelihood:  0.644544  0.279167  0.338808 
Number of cases: 405  405  405 
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Table 3. Most probable orientation 

 

 BR CFF CFL CH CIE CP DB DSB FS NS NSB OBB RENFE SJ SNCB SNCF VR 

1970 - I I - I I I - O I I O I I I I I 
1971 - I O - I I O - O I I O I O I I I 
1972 - O I I I I O - O I I O I I I I I 
1973 I O I I I I O - O O I O I I I I I 
1974 O O I I I I O - O O O O I I I I I 
1975 O I I I I I O - O I O O I I O I I 
1976 O I O I I I O - O I O O I I O I I 
1977 O O I I I I O I O I I O I I O I I 
1978 O O O O I I O I O I O O I I O I I 
1979 O O O O O I O O O O O I I I O I I 
1980 O I O O I I O I O O O O I I O I I 
1981 O I O O I I O I O O O O I I O I I 
1982 O O O I I I O I O I I O I I O I I 
1983 I O O I I I O I O I I O I I O I I 
1984 I O O O O I O I O I O O I I O I I 
1985 I I O O O I O I O I O O I I O I I 
1986 I O O O I O O I O I O O I I O I I 
1987 I O I O I O O I O I O O I I O I I 
1988 I O O O I I O I O I O O I I O I I 
1989 I O O O O O O I O I O O I I O I I 
1990 I O O O O O I I O I O O I I O I I 
1991 - O O - O O I I O I - O I I O I I 
1992 O O O I O I O I O I - O I I I I I 
1993 O O O I O I O I O I - O O I O I I 
1994 O I O I I I I - O - - O I I O I I 

Note: I=Input orientation; O=Output orientation 
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Table 4. Rates of Technical Change (%) 
 

Mixing Model Year Output Part Input Part Output Model Input Model 

1971 -1.07 -0.53 -1.13 -1.32 
1972 -0.95 -0.36 -0.93 -1.12 
1973 -0.83 -0.19 -0.73 -0.92 
1974 -0.71 -0.02 -0.53 -0.72 
1975 -0.59 0.15 -0.33 -0.52 
1976 -0.47 0.32 -0.13 -0.32 
1977 -0.35 0.49 0.07 -0.12 
1978 -0.23 0.66 0.27 0.08 
1979 -0.11 0.83 0.47 0.28 
1980 0.01 1.00 0.67 0.48 
1981 0.13 1.17 0.87 0.68 
1982 0.25 1.34 1.07 0.88 
1983 0.37 1.51 1.27 1.08 
1984 0.49 1.68 1.47 1.28 
1985 0.61 1.85 1.67 1.48 
1986 0.73 2.02 1.87 1.68 
1987 0.85 2.19 2.07 1.88 
1988 0.97 2.36 2.27 2.08 
1989 1.09 2.53 2.47 2.28 
1990 1.21 2.70 2.67 2.48 
1991 1.33 2.87 2.87 2.68 
1992 1.45 3.04 3.07 2.88 
1993 1.57 3.21 3.27 3.08 
1994 1.69 3.38 3.47 3.28 

Average 0.31 1.425 1.17 0.98 
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Table 5. Average efficiency indices 
 

Mixing Model Output 
Model 

Input 
Model Output 

Class 
Input 
Class Mixture of indices Year 

OTE ITE OTE ITE MOTE MITE 

1970 78.8 74.2 96.5 82.5 81.5 83.8 
1971 76.1 70.4 95.5 78.8 80.5 82.9 
1972 78.5 73.6 94.6 81.0 80.9 83.0 
1973 80.8 76.0 96.7 80.8 82.8 84.5 
1974 82.2 77.8 97.5 83.9 85.6 87.7 
1975 80.5 76.4 95.1 85.0 85.2 86.9 
1976 79.9 75.2 95.2 82.9 85.2 87.2 
1977 80.4 76.5 93.7 85.5 85.2 87.2 
1978 81.2 77.0 95.0 86.2 87.4 88.9 
1979 82.5 78.5 97.0 83.6 89.5 90.6 
1980 84.2 80.8 97.0 87.5 89.8 90.9 
1981 83.5 80.6 95.6 86.0 89.6 90.6 
1982 81.2 78.1 94.0 86.6 87.3 88.9 
1983 81.4 78.8 92.2 85.4 86.2 87.4 
1984 83.0 81.1 95.2 88.0 90.6 91.0 
1985 83.7 82.2 96.3 87.9 90.9 91.2 
1986 81.7 79.4 95.0 86.6 89.0 89.7 
1987 81.5 79.6 94.5 87.7 89.1 89.9 
1988 82.5 81.1 95.3 90.7 91.0 91.8 
1989 83.1 81.3 96.9 89.3 91.6 92.1 
1990 82.0 79.5 95.2 85.2 88.8 89.7 
1991 81.9 80.3 97.2 84.8 89.6 89.8 
1992 82.5 79.2 95.5 81.0 84.5 86.3 
1993 80.0 76.5 93.8 84.7 85.6 87.7 
1994 81.0 78.5 96.3 83.3 84.8 87.2 

Sample 81.4 78.2 95.5 84.9 87.0 88.4 
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Figure 1. Cross input efficiency index 
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Figure 2. Cross Output efficiency index 
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Figure 3. Output, input and mixtures of efficiency indices 
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Figure 4. Technical Efficiency Indices 
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Figure 5. Productivity Growth 
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Figure 6. Output and Input Class Probabilities 


