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1. Introduction 
 

In fisheries economics it is quite common to include a measure of fish stock as 

an argument of the production function. The idea is that the more fish exists the 

higher the catch will be. Therefore it seems logical to include an estimate of 

stock as an environmental factor in the production function. Given that this 

information is not available in many cases, researches use stock proxies. This 

approach raises some interesting modelling issues. 

 

In this paper we compare two alternative proxies for fish stock within the  primal 

parametric framework of production analysis. The first proxy is the ‘catch per 

unit effort’ (CPUE) which estimates stock in a given period as the average catch 

of all (or some) boats in that period. The second proxy uses seasonal dummy 

variables to account for temporal variation in the stock. The main finding of the 

paper is that the proxy that estimates stock based on average catch is shown to 

be biased, while the seasonal dummies allow for unbiased estimation of the 

production function parameters. 

 

The paper is organized as follows. Section 2 discusses the general role of stock 

in a production function. Section 3 studies two different proxies for fish stock. 

Section 4 performs Monte Carlo analysis which allows to asses the extent of the 

biases. Section 5 contains a discussion of the implications of the paper for 

empirical analysis. Section 6 contains some conclusions. 

 

 

2. The Role of Stock in Fishing Production Functions  
 

The analytical framework is based on a simple production model where fishing 

output of boat i at time t (yit) is a function of variable inputs (Zit) and fish stock 

(St), which is assumed to be common to all boats. Additionally, catches depend 

on luck and other stochastic effects (uit). Therefore, the fishing production 

function can be written as: 

ittitit u)S,Z(fy +=      (1) 
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If the model is linear, we have: 

ittitit uSZy +β+α+µ=     (2) 

It is assumed that luck is uncorrelated with stock and with inputs, i.e., 

Cov(St,uit)=Cov(Zit,uit)=0. The correlation of stock and inputs is an empirical 

issue. If the inputs are time invariant, as it is the case with boat characteristics 

(length, engine power, …), then Zit=Zi, and by construction, Cov(Zi,St)=01. On 

the other hand, if Zit changes over time, then it can be correlated with St, as it 

would be the case if producers choose inputs depending on the stock level (e.g. 

bait,…). 

 

If there are data on fish stock, then St should be included as an explanatory 

variable.2 Since stock is not known in most cases, the simplest way to deal with 

this problem is to model stock as a random variable uncorrelated with inputs. In 

this case, the model (2) becomes: 

ittitititit uSvwherevZy +β=+α+µ=    (3) 

If the objective is to estimate the effect of boat characteristics on output, 

ordinary least squares applied to equation (3) will yield an unbiased estimate of 

α if Cov(Zit,St)=0. Otherwise, failing to control for stock can lead to bias.  

 

However, if there is interest in estimating the effect of stock on catches (β), the 

researcher has to use some kind of proxy for stock in the production function. In 

general, there are two cases. If boats fish in the same area, then a variation in 

fish stock will affect all fishermen equally. In this case, the problem calls for a 

stock measure common to all producers. Therefore, the effects of changes in 

fishing stock are similar to those of technical change, since an increase in the 

stock allows all fishers to catch more fish at any level of input use. On the other 

hand, if boats fish on different grounds, the stock measure should take this 

                                            
1 A similar argument can be made with potentially time-varying inputs that in practice are almost 
fixed over time (net length, crue size, …). 
2 Only a few papers include a measure of fish stock obtained as an independent estimate from 
external sources. See, for example, Kirkley et al. (1995, 1998), Grafton et al.(2000) and Pascoe 
et al. (2001). 
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factor into account and be boat-specific. In the next section we study two 

proxies for fish stock considering that stock is common to all producers. 

 

 

3. Proxies for Fish Stock 
 

The point is how to include biomass stock in the production function when data 

are not available for it. In previous papers, two main proxies for fish stock have 

been used in empirical work. One is average catches in a given period, what is 

called ‘catch per unit of effort’ (CPUE). The other is to use time dummies to 

account for temporal variations of the stock.  

 

a) Catch per unit of effort 

In this approach, the stock in a given period is estimated as the average catch 

of all (or some) boats in that period. That is, 

N

y
Ŝ i

it

t

∑
=       (4) 

For example, Eggert (2001) calculated a stock proxy as “the overall average 

landing value per unit effort on a monthly basis”. Pascoe and Coglan (2002) 

used a stock index calculated as the geometric mean of the “value of catch per 

hour fished for the boats that operated in the same month in the same area 

using the same gear”. 

 

The rational for this proxy is based in the traditional specification of a production 

function in fisheries economics, where catch (y) is a function of fishing effort (E) 

and stock (S). That is: 

qESy =       (5) 

where q is the coefficient of catchability. Since q is usually considered constant, 

it is easy to see that catch per unit effort (y/E) is proportional to the stock. 

 

We will now study the implications of this proxy in the context of the production 

function. Using equation (2) the stock index in (4) becomes: 
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tttt uSZŜ +β+α+µ=     (6) 

where ut is the average luck of all boats in period t. It should be noticed that ut 

is not necessarily zero, since in a given period of time, it is not likely that the 

random components of all boats cancel out. However, taking expectations over 

time, the mean value should be zero, i.e., E[ ut ]=0. 

 

In equation (6) one can solve for βSt and substitute this value in equation (2): 

)uu(Ŝ)ZZ(y titttitit −++−α=     (7) 

This is the expression of the production function implied by the functional 

relationship between the stock index and the true stock given in (6). Equation 

(7) can now be compared to the estimated production function, which  is : 

ittitit vŜ'Z''y +β+α+µ=     ( 8 ) 

Comparing these last two equations it is easy to see that the estimated β’ 

should be close to 1. This is because the construction of the stock index based 

on catches implies that any variation in the stock will be captured. This is a very 

important underlying assumption. 

 

The same result is obtained if a Cobb-Douglas production function is estimated 

using the geometric mean of catches as a proxy for stock. The geometric mean 

of catches is: 

N
Ntitt y...yS~ =       (9) 

Taking logs, the temporal average of the log of catches is obtained: 

t
i

itt ylnyln
N
1S~ln == ∑     (10) 

Summing over i and dividing by N in equation (2) written in logs, yields: 

tttt uSlnZlnyln +β+α+µ=     (11) 

Solving for βlnSt and substituting back: 

)uu(S~ln)ZlnZ(lnyln titttitit −++−α=    (12) 
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It can be seen that if a model in logs is estimated using the geometric mean of 

catches as a proxy for stock, one will get a coefficient close to one for this 

variable. 

 

Also, on econometric grounds, introducing a proxy of fish stock based on 

average catches can sometimes lead to endogeneity problems. This problem 

resembles the most general question of explaining individual behavior by the 

group average. Manski (1995; ch. 7) analyzes the specification and estimation 

problems of this approach. 

 

b) Time dummies  

This approach has been used in several papers. For example, Coglan et al. 

(1998) or Campbell and Hand (1998).3 If stock is common to all boats, one can 

write: 

ittitit uZy +γ+α+µ=      (13) 

where γt are time effects, i.e. the coefficients of the seasonal dummy variables. 

Note that this formulation implies that there is one excluded category and the 

coefficients of the dummies have to be interpreted as the differential effect on 

output with respect to the omitted category.4 If the panel data set is short in the 

time direction, the time dummies will probably pick up only the effect of stock 

changes, otherwise they will also pick up pure neutral technical change. 

 

This model can be estimated by subtracting temporal means. 

tttt uZy +γ+α+µ=      (14) 

This is equivalent to the “within” transformation for panel data, but with the roles 

of i and t reversed. Thus, 

)uu()ZZ(yy tittittit −+−α=−     (15) 

                                            
3 In a similar vein, Salvanes and Steen (1994) use a time trend to control for variations in fish 
stock. 
4 Another possibility is to specify the model without a general constant and include as many 
dummies as seasonal categories. That is, ittitit uγZαy ++=  
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Equation (15), where we have removed anything that varies only over t (not 

over i), such as S, basically states that the difference in catches for boat i in 

period t from average catch in that period will be due to the difference in boat 

characteristics with respect to their mean. Ordinary least squares applied to 

equation (15) will yield unbiased estimates of α. 

 

The time effects can be recovered using the following expression: 

tttt uZy −α−=γ      (16) 

Therefore, since E[ ut ]=0, a consistent estimator of  the time effects will be: 

ttt Zˆyˆ α−=γ       (17) 

Now we proceed to compare the two estimators for fish stock: catch per unit 

effort ( tŜ ) or time dummies ( tγ̂ ). The difference between the two estimators of 

fish stock can be seen calculating their respective expected values. The 

expected value of tŜ in equation (6) is: 

ttt SZ)Ŝ(E β+α+µ=      (18) 

This implies that tŜ (CPUE) is a biased estimator of St, since what it is fished on 

average depends on the average fishing effort ( tZ ). 

 

On the other hand, the expected value of tγ̂  in equation (17) is: 

)ˆ(EZ)y(E)ˆ(E ttt α−=γ      (19) 

Since, tt yŜ = , substituting equation (18) into equation (19) yields: 

tt S)ˆ(E β+µ=γ      (20) 

Therefore, the expected value of the estimated time effects ( tγ̂ ) equals the 

effect of stock on output (βSt) plus the effect of the true (unknown) constant. 

This is not a problem since the estimated constant ( tµ̂ ) incorporates the effect 

of the omitted seasonal dummy. For this reason, the effect of stock on output 

(βSt) is calculated as the difference between the estimated effect and the 
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estimated constant. Therefore, the time effects can be considered unbiased 

estimators of the effects of fish stock on output. 

 

 

4. Empirical application 
 
In this section we will show the empirical implications of the theoretical results 

obtained above. Two are the main issues to be analysed. One, is the 

importance of the estimation biases that arise using CPUE as a measure of fish 

stock. The other is to check the consistency of time dummies as proxies for 

stock. However, the exact results of section 3 will be difficult to reproduce in 

most data sets due to problems caused by multicollinearity between inputs and 

the stock proxy, and also to the presence of noise. For this reason, we have 

decided to use a simulated data set.5  

 

We construct a panel data set considering a situation with 50 boats and 12 time 

periods which are assumed to be months. Therefore, there are 600 

observations.6 We estimate both the linear and the Cobb-Douglas production 

models. That is, the equations to be estimated are: 

ittitit

ittitit

uSlnZlnyln
uSZy

+β+α+µ=
+β+α+µ=

    (21) 

The random term u is generated from a N(0,1). Since we estimate the models 

using ordinary least squares, it should be noted that the variance of u does not 

affect the estimated parameters (only the R2). The population parameters take 

the following values in the simulation: µ=1, α=0.2, β=0.8. Effort is generated 

from a uniform distribution (0,1) in order to assure that it is always positive. The 

stock is generated with seasonal variation, assuming that it is highest in 

summer and lowest in winter. Therefore, the stock for month t, denoted by St, 

will be St=1 for t=1-3, St=1.5 for t=4-6, St=1.75 for t=7-9 and St=1.25 for t=10-

                                            
5 Other papers that use artificial data sets in fisheries are Pascoe and Robinson (1996), Lee and 
Holland (2000), or Herrero and Pascoe (2004). 
6 The results are not very sensitive to the number of boats. We have performed the empirical 
analysis for N=10, 50, and 100 and the results do not differ much. 
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12.7 Finally, the output (catch) is calculated using the production functions in 

(21).8 

 

We estimate each production model using the true stock (St), CPUE ( tŜ ) and 

seasonal dummies ( tγ ). In order to infer the sampling distribution of the 

estimators we perform a Monte Carlo analysis estimating the model 1000 times. 

In each new estimation, the random term u, the output and, therefore, CPUE 

are generated but the values of stock and effort are fixed. We first estimate both 

production models without correlation between effort and stock. Then, we allow 

for different degrees of correlation between both variables. 

 

a) Inputs and stock are uncorrelated9 

The results of the Monte Carlo exercise are summarized in Table 1, where we 

show the means of the estimated coefficients using the “true” stock and CPUE 

for both the linear and the Cobb-Douglas production functions. The results 

illustrate some interesting points. As expected, in both models the use of the 

true stock allows to recover all the technology parameters. Also, as predicted by 

the theoretical discussion in section 3, the estimated coefficient for CPUE is 

equal to one.  Both models are able to recover the coefficient of effort. A 

“strange” result is that the use of CPUE also results in a biased estimate of the 

constant term. The reason is that CPUE incorporates the effect of effort on 

catches. In the linear case, comparing equations (7) and (8) it is clear that the 

estimated constant when using CPUE is equivalent to tZα− . Since the mean of 

effort is 0.50 and α=0.2, we have that 10.0Z*2.0 t −=− , which is the estimated 

constant. Similarly, in the Cobb-Douglas case, it can be seen in equation (12) 

                                            
7 We also allowed for some random variability in the stock. In this case the stock for month t 
was generated as a random draw from an N(mt,0.5), where mt=1if t=1-3, mt=1.5 for t=4-6, 
mt=1.75 for t=7-9 and mt=1.25 for t=10-12. The results are not much different from the ones 
obtained using a deterministic stock and are not presented here. 
8 Even though the data has the structure of a balanced panel, the independence of the draws 
implies that we are treating it as a “pooled” model. That is, there is independence across boats 
and over time. The boat effect is likely to be important for empirical analysis with real data. 
However, we believe that it is not relevant for the issues discussed in the paper. 
9 The lack of correlation in this case is driven by the independence of the drawings for both 
variables. In fact, the variables are not orthogonal, although the correlation (-0.02) is not 
statistically different from zero. 
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that the estimated constant will be tZlnˆ α−=µ , which is 0.201. Therefore, the 

predictions of the theoretical model hold when using empirical data. 

 
Table 1. Estimates of the production function using stock proxies 

 

 Stock proxy Constant Stock Effort 

True Stock 1.00 0.80 0.20 Linear model 
CPUE -0.10 1.00 0.19 

True Stock 1.00 0.80 0.20 Cobb-Douglas model 
CPUE 0.20 1.00 0.19 

   Means of 1000 replications 

 
We now estimate the two models using seasonal dummy variables, leaving the 

winter dummy out (months 1-3). The results can be seen in Table 2. The 

coefficient of effort is again recovered with precision by both models.  

 
Table 2. Estimates of the linear model with time dummies 

 

 Constant Spring Summer Fall Effort 

Linear model 1.80 0.39 0.60 0.20 0.19 

Cobb-Douglas model 1.01 0.33 0.45 0.18 0.20 
   Means of 1000 replications 

 

However, the interpretation of the estimated coefficients for the dummy 

variables is not direct. We are interested in checking whether the dummy 

variables capture the effect of stock on output. In the linear model this effect is 

given by βSt. Therefore, the true effects in the four seasons will be: 0.8x1=0.8 

for winter, 0.8x1.5=1.2 for spring, 0.8x1.75=1.4 for summer, and 0.8x1.25=1.0 

for fall. Now, from equation (20) we see that the estimated time effects in levels 

are confounded with the constant. Since the coefficients of dummy variables in 

linear models show the differential effect with respect to the omitted category, 

the calculated effects of stock in each season with respect to the effect in winter 

are given by 

 Wjj SSˆ β−β=γ      (22) 
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where Sw is the stock in winter and j denotes seasons (j=spring, summer and 

fall). Table 3 shows that the estimated time effects are almost identical to the 

true stock effects, measured with respect to the effect on output of winter stock. 

Note that the effect of winter cannot be recovered in this setting since it is 

confounded with the constant.10 

 

Table 3. Calculated seasonal effects of stock on output (with respect to winter) 

 Effect Spring Summer Fall 

True: βSj-βSW 1.2 - 0.8 =  0.4 1.4 – 0.8 = 0.6 1.0 – 0.8 = 0.2                    

Linear model 
Calculated: tγ̂  0.39 0.6 0.2 

True: βlnSj-βlnSW 0.32 – 0 = 0.32 0.44 – 0 = 0.44 0.17 – 0 = 0.17                

Cobb-Douglas 
Calculated: tγ̂  0.33 0.45 0.18 

 

In the Cobb-Douglas case, the stock effect is given by βlnSt. Therefore, the true 

effects of each season will be: 0.8xln1=0 for winter, 0.8xln1.5=0.32 for spring, 

0.8xln1.75=0.44 for summer, and 0.8xln1.25=0.17 for fall. Again, the effect of 

winter is confounded with the estimated constant and is not retrievable. The 

estimated effect of each season is given by:  

Wjj SlnSlnˆ β−β=γ      (23) 

In Table 3 it is easy to check that the estimated values and the true effects are 

very close.11 

 

b) Inputs and stock are correlated 

We now impose correlation between effort and stock. In particular, the assumed 

relationship between the two is the following: 

                                            
10 Since in the simulation we know the true value of the constant (µ=1), we could also recover 
the effect of stock for winter subtracting the theoretical constant from the estimated constant 
(1.80), which yields the theoretical value of 0.80. 
11 Since the variables are in logs the interpretation of the time effects in the Cobb-Douglas 
model is not straightforward. Suits (1983) shows that the interpretation of the coefficient of a 
dummy variable in this model is the percentage difference in output with respect to the omitted 

category. This value can be calculated as: 1e jγ̂ − . 
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ittit SZ ε+θ=  

The correlation between Z and S is given by: 

z

s)S,Z(Corr
σ
σθ=  

where σs and σz are the standard deviations of S and Z respectively. 
 

Three cases were considered: low (0.20), medium (0.50), and high (0.80) 

correlation. The results of the estimation of the linear and Cobb-Douglas models 

using the true stock and CPUE can be seen in Table 4. 

 
Table 4. Estimates of the production models with stock proxies when inputs are correlated 

 Stock proxy Constant Stock Effort 

Corr(Z,S) = 0.20 

True Stock 1.00 0.80 0.20 Linear model 
CPUE -0.03 0.98 0.20 

True Stock 1.00 0.81 0.20 Cobb-Douglas model 
CPUE 0.27 0.93 0.19 

Corr(Z,S) = 0.50 

True Stock 1.00 0.80 0.19 Linear model 
CPUE -0.01 0.95 0.17 

True Stock 1.00 0.79 0.20 Cobb-Douglas model 
CPUE 0.18 0.90 0.18 

Corr(Z,S) = 0.80 

True Stock 1.00 0.79 0.20 Linear model 
CPUE 0.03 0.91 0.15 

True Stock 0.99 0.80 0.20 Cobb-Douglas model 
CPUE 0.08 0.92 0.13 

   Means of 1000 replications 
 

The estimates in Table 4 show that correlation does not affect the estimation 

when the true stock is used. Both the linear and the Cobb-Douglas models are 

able to track with precision the theoretical estimates. However, when using CPUE, 

the estimates of all coefficients in both functional forms are biased and the biases 



 13 

increase with the level of correlation. Since with real data it is always the case that 

inputs are correlated, it is not surprising that the empirical papers that have used 

CPUE have not estimated a value of 1 for the coefficient of this variable. 

 

In Table 5 we present the estimates of both models when using time-dummies as 

proxies for stock under the three degrees of correlation. In this case the estimated 

coefficients for all the variables (constant, time dummies, and effort) are very 

similar to those obtained when there is no correlation between effort and stock 

(see Table 2). 

 
Table 5. Estimates of the production model with time dummies when inputs are correlated 

 Constant Spring Summer Fall Effort 

Corr(Z,S) = 0.20 

Linear model 1.79 0.39 0.59 0.19 0.20 

Cobb-Douglas model 1.00 0.32 0.45 0.18 0.20 

Corr(Z,S) = 0.50 

Linear model 1.81 0.39 0.60 0.19 0.18 

Cobb-Douglas model 1.01 0.32 0.44 0.17 0.20 

Corr(Z,S) = 0.80 

Linear model 1.79 0.39 0.59 0.20 0.20 

Cobb-Douglas model 1.00 0.33 0.44 0.18 0.19 
  Means of 1000 replications 
 

Therefore, our simulation exercise shows that when there is no correlation 

between the inputs and the stock, the CPUE is a biased measure of stock and 

its estimate is equal to one, although it is possible to obtain a consistent 

estimate of the parameter associated with effort. When inputs are correlated 

with the stock, the use of CPUE generates biased estimates of all coefficients. 
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5. Discussion 
 
Some papers in the fishing literature have been critical with the use of CPUE as 

a measure of biomass stock. For example, Richards and Schnute (1986) argue 

that the proportionality rule may be oversimplistic since the catchability 

coefficient may depend on some factors, such as fishing ground, or the 

behavior of fish and fishermen. Sharma and Leung (1998) refer to the use of 

CPUE in econometric work: “CPUE figures are commonly used as indicators of 

stock abundance. However, because of its dependence on other inputs (crew 

size, fuel, and gear type) … CPUE is not suitable to include as an input variable 

in production function analyses”. 

 

The previous sections contribute to show that CPUE is a biased measure of fish 

stock and that results in biased estimates of the coefficients of the production 

function. Therefore, in the framework of this paper (single species, one year of 

data) the use of time dummies is preferable to CPUE. However, the empirical 

application of seasonal dummy variables is not without problems. First of all, 

one has to choose the periodicity of the dummies. In many cases, the 

observations in the data sets belong to the fishing trip (which may not be the 

same for all boats) or may be aggregated at the monthly level. With respect to 

the case of trip level data, the empirical evidence shows that it is not necessary 

to include as many dummies as trip periods. In most cases, seasonal dummies 

(monthly at the most) are enough. Pascoe and Coglan (2002) point out that an 

additional problem may arise if the data set comprises several years. In this 

case, if the seasonal pattern of the fish stock is not the same over years, then 

the seasonal dummy variables have to be interacted with year dummies and the 

number of interactions needed could be substantial.12 

 

One alternative, which is equivalent to the use of time dummies, is to model 

stock as a flexible function of time. For example, Orea, Alvarez and Morrison 

(2003) use a cubic function of time to model the seasonal pattern of stock in the 

                                            
12 One referee pointed out  that a similar problem arises in multi-species fisheries since the 
stock of different species may show different temporal patterns of variation.  
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framework of an output-oriented distance function. The advantage of this 

approach is that fewer parameters need to be estimated and the time trends 

can be interacted with other inputs in an easier way than time dummies. Orea et 

al. interact the parameters of a cubic polynomial time curve with output and 

gear variables.  

 

Another important issue relates to the functional form of the production function. 

The paper has shown that if the production function is linear or Cobb-Douglas, 

then the coefficient of CPUE will be one if there is no correlation between stock 

and other explanatory variables. However, many papers use more flexible 

production functions, such as the translog (for example, Pascoe and Coglan, 

2002; Sharma and Leung, 1998). The analytics of this problem for the translog 

production function are more complicated than in the linear and Cobb-Douglas 

functions and it does not seem possible to get such an exact result as in the 

other two cases (coefficient of CPUE equal to 1). Still, even though there is no 

exact result, it is clear that CPUE is a biased measure of stock. The nature of 

the bias does not depend on the functional form but on the way it is calculated. 

 

The use of CPUE or time dummies is not the only way to account for stock in 

fishing production models. There are alternative ways to deal with the problem 

of controlling for unmeasured fish stock. For example, Pascoe and Herrero 

(2004) use Data Envelopment Analysis to estimate an index of stock 

abundance. Their measure is in fact a “stock effect” rather than a stock index. 

That is, it is an indicator of how much the changes in stock have affected the 

catch of each of the boats. This method was used by Herrero and Pascoe 

(2003) to normalise the dependent variable (catch) of a fishing production 

function instead of including it as an additional input. 

 

 

6. Conclusions 
 

This paper compares two alternative proxies for fish stock and studies their role 

in the framework of a production function. The theoretical analysis shows that 

time dummy variables are a better proxy for stock than average catch. In the 
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empirical section we show that the predictions of the theoretical model are 

correct. That is, the coefficient of CPUE is shown to be equal to one in both 

linear and Cobb-Douglas models. The conclusion of the paper is that it is better 

to use time dummy variables as proxies for the unknown fish stock. 
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