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1. Introduction 
 

Parametric efficiency analysis requires the specification of a functional form and 

orientation towards the frontier for the efficiency index. One alternative for this is to 

model technical efficiency as a parameter and the other is based on assumptions on 

the statistical structure of the inefficiency elements. Although both approaches are 

related, this paper mainly discusses the first one because its focus is on the 

relationship between identifiable efficiency parameters and functional structure. As is 

argued below, the differences between the meanings of ‘efficiency’ and ‘productivity’ 

are, to a great extent, conventional. For simplicity, together with its importance in 

parametric production analysis as in Good, Nadiri and Sickles (1997), only the one-

output multiple input-production function is analyzed. Moreover, the approach here is 

deterministic, except for a few comments on applications. 

 

The analysis of efficiency as an unknown variable has previously been presented in a 

different way. Griliches (1957) argued that since firms may have different quantities of 

unobserved ‘managerial ability’, the exclusion of this variable from the analysis can 

produce biased estimates of the parameters of the model if any of the included 

explanatory variables is correlated with managerial ability. This ‘managerial ability’, 

which can be read ‘efficiency parameter’, is considered an omitted variable. Recently, 

Alvarez and Arias (2003) have used the idea in connection with more modern tools in 

efficiency analysis. They use an example to illustrate how increasing output with a fixed 

level of managerial ability can lead to an increase in observed economic inefficiency, 

and explore the role of managerial ability and output in an empirical translog cost 

model, focusing on the elasticity of size in milk production.  

 

The present paper differs in approach because efficiency is analyzed in a similar way 

to that which characterizes technical change. There is more than mere similarity in the 

formulations of technical change and efficiency production functions. Solow (1957:312) 

notes that he is "... using the phrase 'technical change' as a shorthand expression for 

any kind of shift in the production function. Thus slowdowns, speedups, improvements 

in education of the labor force, and all sorts of things appear as 'technical change'." 

However, the ‘shift’ of the production frontier is the basis of efficiency analysis! Thus, 

the parametric modeling of efficiency is closely related to the widely used approach to 
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technical change, with technology as a parameter of the production function, 

formulating the named technical change production function. The technology 

parameters enter the production function in a specific way. As an example, Solow 

assumes that technical progress is Hicks-neutral and that the production function is 

linear homogeneous. The same approach is followed in the efficiency production 

function, with efficiency as a parameter. Output-oriented and input-oriented efficiency 

are two ways of modeling neutral (homothetic) efficiency changes. 

 

Sato (1980, 1981) has studied in depth the problems of identifying technical change 

production functions and scale economies using Lie´s theory of transformation groups. 

It is argued here that the analysis can also be applied to the efficiency production 

functions. The problem is non-trivial because technical change (efficiency) and scale 

economies are not directly observable in applied production economics. The problem 

of non-identification of technical change and scale parameters occurs as a result of a 

general structure of transformation groups that Sato defines as "holothetic" production 

functions. 

 

The economies of scale are related to the functional structure. Constant returns to 

scale mean the production function is linear homogeneous. The variable economies of 

scale emerge in many ways. They may generate a homogeneous but non-linear 

production function (constantscale elasticity). The may generate a homothetic 

production function with variable scale elasticity. They may even generate a non-

homothetic production function. There is a question related to variable returns to scale 

in addition to the problem of identification of efficiency and scale economies: Are the 

structure characteristics of the estimated technologies (mainly substitution rates) 

invariant to the ways technical efficiency is oriented? Alvarez, Arias and Kumbhakar 

(2003) and Kumbhakar and Tsionas (2003) have addressed recently this question. 

 

Some specific problems in parametric efficiency analysis concerning scale are 

addressed using the concept of ‘efficiency production function’ and the tools of group 

transformation theory. This paper focuses on the relationship between the functional 

structure and invariance, or at least equivalence results, concerning the magnitude and 

orientation of the efficiency parameter and scale. The presentation uses the results in 

Sato (1980, 1981) extensively while keeping the mathematics at the minimum. The 

only requirement is the analysis of the fulfillment by the ‘efficiency production function’ 
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of the properties needed for the application of the group transformation theorems in 

Sato, concerning ‘technical change production functions’. 

 

The paper is organized as follows. Section 2 presents the efficiency production function 

and summarizes some results concerning scale and the orientation of efficiency 

indexes under homotheticity. In section 3, the concept of the ‘holothetic’ production 

function in Sato (1980) is presented with the main properties concerning technical 

change and transformation groups then those directly useful for efficiency analysis are 

explained. Section 4 is devoted to discussing some theoretical and empirical problems 

in the recent efficiency literature using the results previously presented. Finally, in 

section 5, some conclusions and suggestions close the paper.  
 
 
2. The homogeneous efficiency production function 
Assume that there are several inputs x and one output y that is subject to the following 

neoclassical production function, smooth (differentiable as pleased) and with the other 

usual regularity conditions, without imposing homotheticity: 

y = f(x, t)       (1) 

where t is an index of the state of the technology. 

 

The expression (1) is the ‘technical change production function’. It is essential, in this 

form, to specify the way in which technology enters the production function. The usual 

procedure has been to formulate certain hypotheses concerning the way in which 

technical progress has affected certain important variables that are derived from the 

production function, for example in Hicks-neutrality. 

 

This paper presents the ‘efficiency production function’, which can be formulated in an 

analogous way as: 

y= f(x, E)       (2) 

where E denotes an efficiency or ‘management ability’ parameter. 

 

The application of the ‘efficiency production function’ begins by presenting the output-

orientation of efficiency. The output-oriented parameter of technical efficiency 



 5 

represents the ratio of observed output to potential output. It was first explicitly 

employed by Timmer (1971), although a log version of the inverse of the output-

oriented parameter of technical efficiency, which can be estimated using linear or 

quadratic programs, appears in Aigner and Chu (1968). The output-oriented technical 

efficiency index can be defined as the proportion inwhich a firm can increase output 

from a given quantity of inputs. This index can be represented as: 









∈




= T

Θ
y,ΘminEO x      (3) 

where T represents the technology set and EO ≤ 1. In the simple (one output) efficiency 

production function the parametric formulation is easy. The production function with 

output- 

oriented technical efficiency index is: 

y = EO·f(x)       (4) 

Note that the idea of the efficiency production function is implicit in the specification of 

inefficient technologies. Moreover, observe that an upward shift (‘super-efficiency’ or 

‘technical progress’) can be considered, simply taking a value of EO greater than one. 

The effect of output-oriented inefficiency is a downward shift of the production function 

at the efficient level, keeping the isoquant map invariant. 

 

The consequence of the output transformation is the conservation of the isoquant map, 

except in the numerical value of the isoquants. This property is called invariance, and it 

is the main characteristic to be observed in the analysis that follows. A family of curves 

f(x) = K is said to be invariant under a group if every transformation of the group 

transforms each curve into a curve in the family. 

 

Only the output value for the efficiency frontier and the efficiency parameter are needed 

to formalize the structure of the output transformation. The output oriented 

transformation from y=f(x) to y’ is defined by: 

TOE: y’= EO·y        [ y=f(x)]      (5) 
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In order to apply the theory of transformation groups, the efficiency transformation TOE 

must satisfy the three Lie Group properties presented in Eisenhart (1933) and Sato 

(1980, 1981): 

 

(A) Composition: The result of the successive performance of two transformations TE 

and TF is the same as that of the single transformation TE·F. 

 

(B) Inverse: The value E of the transformation TE determines the transformation 

inverse to that obtained by using the value E-1 

 

(C) Identity The value E0 = 1 gives the identical transformation. 

 

When the transformation considered satisfies the Assumptions A, B, and C, then the 

type of efficiency transformation TE is said to possess the Lie group properties. It is 

clear that TOE  satisfies properties A, B and C. Moreover, TOE is a specific one-variable 

application of a well-known class of transformations named uniform magnification, 

perspective, dilatation or homothetic transformations (Eisenhart, 1933:42), resulting in 

a mere re-scaling of the output levels. Thus, we can present the following invariance 

Lemma: 

 
Lemma 1. The structure of the technology is invariant to the output oriented efficiency 

transformation.  

 

A consequence of the previous lemma is the fundamental role of the input-related 

transformations identifying changes in the isoquant maps. Sato (1981: 21) asks what 

types of exogenous change will leave a given isoquant map (or factor price frontier) 

unaltered or invariant. He does not consider the possibility of the output transformation, 

although it is an even more direct re-labeling of the isoquant map. It is very interesting 

because he addresses the possibility of the explanation of higher output than expected 

due to technical change (‘output oriented’, in efficiency parlance) or to factor 

accumulation and scale economies(‘input transformations’). It is remarkable that he 

explicitly formulates the problem to be analyzed in the following form: “Assume that 

when exogenous technical progress is introduced, it will not change the form of the 

production function f, but it will change the output level by affecting the way in which 
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the factor inputs are combined.” (Sato, 1981: 22). In fact, Sato develops an input 

approach using only the functions xi=xi (x,t). 

 

It emerges that Sato identifies the output orientation and the input orientation. He is 

omitting the intermediate step presented here. However, from the property ‘if a set of 

transformations form a group, the transforms of these transformations form a group’ 

[Eisenhart (1933: 18)], the lemma of invariance under output oriented transformations 

says that the output transformation does belong to the same group of the resulting 

input transformations. Hence, the conclusions by Sato presented in the next section 

are right, because they follow directly resulting in the invariance property of the output 

transformation, and the possibility of an input transformation unidentifiable from an 

output transformation. When the consequence of a particular input transformation 

results in the same family (invariance) is the input transformation equivalent to the 

output transformation. 

 

In this paper, only the homothetic input transformation underlying input-oriented 

efficiency (and also graph hyperbolic efficiency) measurement is considered. An 

efficiency production function that assumes that a firm producing a given level of output 

may be using more inputs than the minimum necessary leads to the input-oriented 

measure of technical efficiency. The input-oriented measure of technical efficiency can 

be defined as the maximum equi-proportional reduction in all inputs that still permits 

production of a given quantity of output. That is: 

( ){ }Ty,ΘΘminEI ∈= x      (6) 

where EI is the input-oriented index of technical efficiency (EI ≤ 1). The input-based 

measure of efficiency is introduced in Farrell (1957) under constant returns to scale. 

Färe and Lovell (1978) first distinguished between input-oriented and output-oriented 

indexes of technical efficiency and showed that they are equivalent under constant 

returns to scale. Kopp (1981) extends the conceptual interpretation of the input-

oriented measure by Farrell to more general returns to scale functional forms. 

 

Other possibilities arise for the index direction choices. An example is the hyperbolic 

measure introduced in Färe, Grosskopf and Lovell (1985) that simultaneously assumes 
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the proportionate contraction of inputs and expansion of outputs. The hyperbolic index 

is commonly defined as: 









∈




= T

Θ
y,ΘΘminEH x       (7) 

where EH is the hyperbolic index of technical efficiency. 

 

The efficiency production function with input-oriented technical efficiency parameter is 

formulated as: 

y = f(EI⋅x)       (8) 

while the production function with hyperbolic-oriented technical efficiency index is: 

y = EH⋅f(EH⋅x)          (9) 

Next, assuming that the production function f(x) is homogeneous of degree k and 

imagine a proportional increase λ in input quantities resulting in a new output y’. The 

efficiencyparameters (EO , EI, EH ) and the degree of returns to scale k are unknown. 

With output-oriented technical efficiency index, the transformation results in: 

y' = EO⋅f(λ⋅x) = EO⋅λk⋅f(x) = A⋅f(x)     (10) 

With input-oriented technical efficiency index, the same scale transformation is: 

y' = f(EI⋅λ⋅x) = (EI⋅λ)k⋅f(x) = (EI) k⋅λk⋅f(x) = A⋅f(x)    (11) 

Finally, with hyperbolic orientation, the transformation is: 

y' = EH⋅f(EI⋅λ⋅x) = EH⋅ (EH⋅λ)k⋅f(x) = (EH)1+k⋅λk⋅f(x) = A⋅f(x)    (12) 

Then, the equivalence 

EO = (EI) k = (EH)1+k       (13) 

Atkinson and Cornwell (1994: 247), Greene (1997), and Kumbhakar and Tsionas 

(2003), using the dual cost function, remark on the equality EO = (EI)k . However, they 

do not consider that, in fact, the parameters EO, EI and k are not identified. To quote 

Greene (1997:113) "…the production function is homogeneous, the effect of the 
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economies of scale can be removed by rescaling the estimated disturbance." If the 

production function is homogeneous, then the efficiency measure and the scale 

elasticity cannot be identified1. The output-oriented measure is not identified because 

the only parameter identified is A (=EO⋅λk). Constant returns to scale or linear 

homogeneity mean k = 1. Using the above equations: 

EO = EI = (EH )2      (14) 

The first equality is the well-known result of equality of the input-oriented and the 

output-oriented efficiency measures under constant returns to scale (Färe and Lovell, 

1978). The second equality suggests that it seems better to give the same value to the 

hyperbolic measure when input-oriented and output-oriented measures do coincide. 

Thus, a ‘new’ definition of graph hyperbolic measures emerges as: 









∈




= T

Θ
y,ΘΘminE 2*H x       (15) 

However, the efficiency path is the same for EH in (7) and EH* in (15), because it is a 

mere transformation of the parameter. The issue of measurement is tackled more 

directly in Millán (2003). 

 

Turning back to variable returns to scale, under constant elasticity of scale k the 

parameters (EO, EI, EH or EH* ) and k are not identified in (10)-(12). They are not 

‘essential parameters’ (Eisenhart, Sato). Only parameter A can be identified from a 

particular series of observations of inputs and output if the production function is 

homogeneous. The above results can be extended to homothetic production functions, 

those that can be represented by an increasing transformation of a linear 

homogeneous production function (the transformation results in the same parameter 

A). Homothetic functions are more easily studied using the dual. 

 

One area of application of the duality theory initiated in Shephard (1953) is 

homotheticity, because it results in a multiplicatively separable structure of the cost 

                                                 
1 After giving an interpretetation of input-oriented efficiency valid in terms of cost reduction for 
non-homothetic production functions and presenting other efficiency indices, Kopp (1981) 
illustrates by an example the different measures proposed. He uses a Cobb-Douglas with 
increasing returns to scale. Rather obviously in his text, this function was not estimated. The 
problem that emerges from the analysis here is how the degree of returns to scale can be 
estimated. In fact, any arbitrary degree of returns to scale could be imposed. 
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function. Shephard (1953) defines the homothetic neoclassical production function to 

be of the form H(f(x)) where f(x) has the properties of a production function 

homogeneous of degree one, and H(·) is any positive, strictly increasing (continuous) 

function with H(0)=0. C(y,r) being the neoclassical cost function, the homothetic 

neoclassical cost function takes the form:  

C(y,r) = H-1(y)⋅u(r)      (16) 

where u(r) is the homogeneous function of degree one in the input price vector r 
indexing the level of prices for the unitary cost function. 

 

The efficiency cost function C(y,r,E) is related to the efficiency production function 

y=f(x,E). There are alternative explanations of cost efficiency, as mentioned in Greene 

(1997:113). The output-oriented efficiency cost function associated with the 

specification of the efficiency production function in (4) can be expressed as: 

C(y,r,EO) = minx {r'⋅x| y = EO⋅f(x)}  =  C(y/EO,r)    (17) 

In an analogous way, the input-oriented efficiency cost function can be expressed as, 

using the primal in (8): 

C(y,r,EI) = minx {r'⋅x | y = f(EI⋅x)}  =  C(y,r)/EI    (18) 

The production function y = f(x) being homothetic, the output-oriented efficiency 

homothetic cost function is: 

C(y,r,EO) = H-1⋅(y/EO )⋅u(r) = H-1(y)⋅u(r)/H(EO)    (19) 

Analogously, the input-oriented efficiency homothetic cost function is: 

C(y,r,EI) = H-1(y)⋅u(r)/EI      (20) 

Note that H(·) or H-1(·) are not generally known, and thus cannot be identified from EO 

or EI  in (19) and (20). Moreover, when prices are given as is often assumed in cross-

sectionanalysis, C=C(y,E), and the situation is the same that under homotheticity2. 

Under constant returns to scale H(·) = 1, and the equality of EO and EI is obtained. 

 

                                                 
2 It is the usual case when the average cost frontier is estimated, as in Alvarez and Arias (2003). 
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The more obvious ‘new’ conclusion based on the above results is that neutral efficiency 

can be identified from scale effects only when the production is non-homothetic. Until 

now, the result has been presented as a correspondence between input-oriented or 

output-oriented measures under homotheticity. Some questions about the 

generalization of the previous results arise naturally. These are whether there are 

alternative ways of describing efficiency under homogeneity of the production function, 

or if there is any functional structure concerning returns to scale that can be separately 

identified from any alternative specification of the efficiency parameter. 

 

 
3. Holothetic production functions 
 
Sato (1980, 1981) analyzes in depth the relationships between scale and technical 

change forms using Sophus Lie’s theory of transformation groups. Until now, the 

presentation has highlighted the analogy between efficiency production function and 

technical change production function. In fact, if the efficiency transformation satisfies 

the required properties for a transformation group, then the proof for the technical 

progress production function in Sato’s work is valid for the efficiency production 

functions. This type of efficiency may be referred to as a Lie type of efficiency or 

holothetic efficiency. Holothetic means complete-transforming, and hence no new 

name is needed. 

 

In the analysis of the technical change production function by Sato, the operation is 

addition (+), the inverse being (–t) and identity t0 = 0. A similar procedure is possible 

with the efficiency production function, taking into account that the most common 

functional forms  (Cobb-Douglas and translog) are in logarithmic form. Taking 

logarithms in E in the transformation TE gives a new transformation with (+, -E, 0) 

instead of (⋅, E-1, 1). However, the presentation in levels seems more natural. The input 

oriented transformation is defined by: 

TIE: xi' = EI⋅xi         [ y=f(x')]     (21) 

It is clear that TIE satisfies the Lie Group properties A-C of composition, inverse and 

identity. The transformation in (21) belongs to the class of homothetic transformations 

or dilatations. Thus, the concepts and results from Sato concerning technical change 
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production functions can be applied to efficiency production functions with input-

orientation. 

 

Perhaps the assumptions A, B and C are too restrictive for any kind of efficiency in 

practice. It is reasonable to think of inefficiencies, such as congestion, which do not 

satisfy these restrictions. However, there are two important issues here. The first one is 

that when inefficiencies arise in the non-regular region of a production frontier, as in 

congestion, the design of a production function without optimal properties is the 

particular issue to be explained. The second one is that each regular efficiency 

production function satisfying the Lie Group properties possesses the holothetic 

property compatible with at least one type of efficiency having these restrictions. The 

most important result is holotheticity lemma: 

 
Fundamental Lemma of Holotheticity: ‘A family of input-oriented efficiency 

production functions is holothetic under a given type of efficiency (technical progress) if 

and only if it is invariant under a group.’ 

 

Thus, one can always derive at least one type of efficiency change possessing these 

properties for at least a particular type of production function. Hence, starting with any 

given family of production functions, one can always derive at least one type of 

efficiency change possessing these properties. This result is very important because it 

opens the possibility of studyingdifferent forms of efficiency or ‘managerial ability’ in the 

production function in addition to the measurement of ray-inefficiency. However, this 

issue is not tackled in this paper because a detailed presentation of the infinitesimal 

transformation, a main tool in Lie's theory, is essential in a full presentation of the 

'efficiency production function’, but is not needed for the analysis of scale problems. 

 

When the impact of efficiency change on the production function is transformed into a 

scale effect, the production function is said to be holothetic under a given type of 

efficiency change. Holotheticity of the input oriented efficiency production function is 

the confusion of the isoquants under alternative combinations of inputs and input 

oriented efficiency, thus resulting in the same projections in the isoquant map. Thus, to 

avoid the identification problem, a production function that is non-holothetic under a 

given type of efficiency change must be used. The invariance is clearly recognized in 

the fact that the production function after efficiency change is always a function of the 
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frontier production function. However, this is exactly the condition of the invariance of a 

family of curves under a group. 

 

Note that input transformations under holotheticity are equivalent to output-oriented 

efficiency transformations. Given the results in the previous section, we can think of 

holotheticity of input oriented efficiency transformations and input homotheticity. This is 

just the result in Sato for Hicks-neutral (ray neutral in the taxonomy by Chambers and 

Färe (1994)) technical change3. Hence the following lemma. 

 
Lemma 2. Radial (homothetic) efficiency transformations cannot be distinguished from 

scale effects when the production function is input-homothetic. 

 

The non-identification result of homothetic technologies and radial transformations is 

only a particular case of more general holotheticity results. Given that the graph 

efficiency transformation is the composition of the input transformation and the output 

transformation, and given the invariance of the isoquant map in the output oriented 

component, we present the following lemma, that also applies to non-homothetic 

production functions: 

 
Lemma 3. The graph efficiency production function belongs to the family of the input 

oriented production functions. 

 

Summarizing our analysis, and following Sato (1980), given the properties of 

composition, inverse and identity, three basic theorems concerning holothetic 

technologies are presented without demonstration -only technical change is substituted 

for efficiency. 

 
Existence and unity: If the efficiency production functions given by the transformation 

TE satisfy the Lie group properties then there is one and only one holothetic technology 

under TE. 

 

                                                 
3 It is remarkable how Chambers and Färe apply tools from the efficiency literature to technical 
change issues, while this paper applies tools and results used for the analysis of technical 
change to efficiency characterization. 
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Possibility Theorem of Estimation of Efficiency: The effect of efficiency TE and the 

scale effect are independently identifiable if and only if the production function is not 

holothetic under a given type of efficiency TE. 

 
Existence of a Lie Type of Efficiency: Given an isoquant map, there is at least one 

Lie type of efficiency production function under which the production function is 

holothetic. 

 

 
4. Applications 
 
It is remarkable that, in practice, many econometric models are identified under 

unidentification conditions in this paper. Thus, it is interesting to show that the problem 

considered in this paper is relevant in practice, and that it is not a mere theoretical 

nicety. Note that, in this paper, there is no assumption of the error structure or 

additional structure ofefficiency, which serve in practice as the identification tool. The 

estimation is possible by putting some separately identifiable structure into the 

characteristics of the efficiency. Calem (1990) analyzes how estimation of a Cobb-

Douglas with variable returns to scale with technical change is possible depending on 

the stochastic structure of the input evolution. However, a practical problem could 

occur because of poorly identified models. As an example, there are many estimations 

of Cobb-Douglas with a constant rate of technical change (time trend) and the usual 

assumptions of the disturbances in linear regression. Autocorrelation problems are very 

common, probably due to the untenable assumption of constant growth rates. Calem 

(1990) also notes how false estimates of technical progress and returns to scale could 

be obtained when other aspects of the technology are mis-specified. As an example, 

he shows that a translog specification would measure a decline in economies of scale 

as a slowdown in the rate of technical change when the Zellner and Revankar (1969) 

functional form is the true stochastic technology. 

 

A detailed analysis of the analysis of identification in stochastic frontier models is 

beyond the scope of this paper. Although recognizing the existence of conflicting 

results, Kumbhakar and Lovell (2000:107) conclude that different estimation methods 

are "likely to generate similar efficiency rankings, particularly at the top and at the 

bottom of the distribution, where managerial interest is concentrated." However, a 
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simple numerical example will show that large changes in efficiency rankings, due to 

the scale-efficiency trade-off, appears in deterministic frontier models depending on the 

assumptions of the distribution of inefficiency. Aigner and Chu (1968) propose two 

methods of estimation of parametric production frontiers depending on minimization of 

the sum of the residuals or the minimization of the sum of the square of the residuals 

with respect to the efficient frontier. Both methods imply output oriented efficiency 

measures, and have been given some stochastic structure, such as log-likelihood of 

exponential or half-normal distributions in Schmidt (1976), although Greene (1980; 

1997:94) has emphasized that the procedures violate the conditions for maximum 

likelihood estimations. The residual (-ui) is the estimate of the logarithm of the 

parameter EO
i. 

 

Table 1a in the Appendix presents four observations that can be considered as the 

result of a ‘true’ technology y=x, or log(y)=log(x), with some inefficient firms4. It is clear 

that such a small and arbitrary sample and the failure of the statistical foundation of the 

estimation methods do not allow for valid statistical inferences. However, it is an easy 

example of the possibility of scale and efficiency trade-offs, involving changing 

efficiency rankings. A Cobb-Douglas production frontier is estimated using linear and 

quadratic programs. The estimations are detailed in Tables 1b and 1c. If the one-side 

sum of residuals (-ui =log(EO
i)) is minimized by solving the linear program the estimated 

frontier is: 

log(y) = -0.25 + 1.25 log(x)      (22) 

There are increasing returns to scale (k=1.25) and, in addition to A, the smaller firm B 

is efficient. When the estimation method is the minimization of the sum of the square of 

the residuals the frontier is: 

log(y) = 0.056 + 0.944 log(x)     (23) 

                                                 
4 Note that this is, in fact, the frontier supporting observation A, estimated using DEA under 
constant returns to scale. Two comments are worth making here. 1 This is not to say that DEA 
is the relevant way of approaching this problem; as an example, only C is inefficient under 
variable returns to scale, increasing until A, and decreasing afterwards. 2 The analysis in this 
paper requires differentiability of the production function, hence its results have no direct 
translation to DEA models. 
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Now, the only efficient firm is A and there are decreasing returns to scale. The 

efficiency of the smaller firms B and C is lower and the efficiency of the larger firm D is 

higher than under the linear programming method. 

 

The scale-efficiency trade-off is clear in the sum of the parameter related to the log-

level of the efficiency frontier and the scale elasticity: (-0.25+1.25) = (0.056+0.944)=1. 

It is remarkable how some distributional assumptions about efficiency are instrumental 

in the estimation of scale and particular efficiencies. The problem is that there is not a 

theory of inefficiency to guide the choice of a particular estimation method. There is a 

plethora of empirical models in the literature and very limited work on selection 

models5. 

 

Given the potential relevance of the problem analyzed, there are some immediate 

practical consequences of the above theorems. 

 

1. The solution to the indeterminacy over the role of returns to scale and efficiency is 

not to specify non-homothetic production with non-radial efficiency measures (say, 

Russell-like measures or one-parameter asymmetric efficiency measures). Thus, it is 

not clear that more general production functions are needed to separate non-neutral 

efficiency effects. The homogeneous Cobb-Douglas, without restrictions on the degree 

of returns to scale, is a valid functional form for non-neutral efficiency effects. 

 

2. A perhaps surprising by-result is related to the figures used for illustration of 

alternative efficiency transformation, because the one-input one-output case is a 

collapse of the homotheticity property of the radial expansion path (the input axe). The 

graphs presented in the literature to explain the difference between output-oriented and 

input-oriented (and graph efficiency) measures are very useful for illustrating the idea, 

but, in practice, the situations depicted in them cannot be identified separately. 

 

3. The hyperbolic efficiency measure introduced in Färe, Grosskopf and Lovell (1985), 

that simultaneously assumes the proportionate contraction of inputs and expansion of 

                                                 
5 Greene (1997:88) remarks on "...a tendency … to equate estimation technique with a model.". 
It is worth noting that when distributional assumptions underlying estimation techniques have 
such deep implications for the economic structure, the consideration of different models is 
perhaps justified. On the other hand, more theoretical and, more important, empirical work is 
needed to test the distributional assumptions in stochastic frontier models, following Lee (1983) 
and Schmidt and Lin (1984). 
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outputs, belongs to the family of the input-oriented transformations. The isoquant map 

under the hyperbolic transformation is the same shape as the input oriented 

component. This means that identification of hyperbolic efficiency transformations and 

input oriented transformations is, at least, problematic. It is remarkable that the original 

graph efficiency measure is the square root of a revised definition presented here, in 

accordance with the structure of input and output changes. 

 

4. Alvarez, Arias and Kumbhakar (2003), on the production function, based on Atkinson 

and Cornwell (1994) on the cost function, compare the effects of input- and output-

oriented efficiencies, and ask whether the input-oriented and output-oriented 

technologies differ. Alvarez, Arias and Kumbhakar (2003) analyze empirically whether 

the features of the estimated production technology depend on the choice of the 

orientation of the technical efficiency measure. The answer is positive unless the 

technology is homothetic. The output-oriented efficiency production function f(x,EO ) 

and the input oriented efficiency production function f(x,EI) do not belong to the same 

transformation group under non-homothetic technologies. It implies that both 

technologies differ in the shape of the isoquant maps. In principle, this fact allows for 

an econometric approach to the problem of choice of orientation as a problem of 

testing non-nested models. However, the consideration about distributional 

assumptions above remains. 

 

5. The results can be extended to cover both efficiency and technical change 

production functions. Hicks neutral technical change, neutral efficiency and homothetic 

production functions are holothetic. This means that compositions of any of them 

cannot be identified separately. A more complete analysis of the conditions for 

separate identification of technical change and efficiency is needed, applying the tools 

in this paper to the issues in Chapter 8 of Kumbhakar and Lovell (2001). The difficulties 

of discriminating among models of efficiency and technical change has been reported 

in the literature, as in Kumbhakar, Heshmati and Hjalmarsson (1997). The theoretical 

analysis could help the empirical practice.  
 
5. Conclusions 
 
This paper introduces the concept of ‘efficiency production function’, based on both the 

‘managerial production function’ (Griliches, 1957) and the ‘technical change production 
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function’ (Sato, 1981). The efficiency production function is useful in the 

characterization of the identification of scale and efficiency effects, using the theory of 

transformation groups. 

 

In order to identify both the scale and the efficiency effects empirically, one must know 

what type of efficiency characterization is completely separable from the scale effect. 

When the impact of efficiency on the production function is transformed into a scale 

effect, the production function is said to be holothetic under a given type of efficiency 

change. Thus, to avoid the problem a production function being non-holothetic under a 

given type of efficiency transformation is required. As a by-result, it is shown that the 

graph efficiency transformation belongs to the class of input-oriented efficiency 

transformations in the multiple input simple production function. 

 

On the other hand, when non-neutral efficiency production functions are considered, a 

homothetic or even a homogeneous production function (such as Cobb-Douglas) can 

be used. On the contrary, more complicated non-homothetic production functions can 

be holothetic under non-neutral efficiency. Non-neutrality of efficiency can be 

formulated in the parameters (Russell measures, as an example) or in a stochastic 

structure. 

 

The above results are deterministic. When a stochastic structure is introduced, the new 

parameters, such as means and variances, could allow for identification of different 

production structures. However, examples from the empirical literature suggest that, in 

practice, identification and model selection can be problematic. The joint analysis of 

functional structure and distributional assumptions is worth further research. 
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Appendix: Table 1. Example 
 
1a. Data 
Firm  Output: y  Input: x  log(y)   log(x) 
A  2.7183  2.7183  1.00   1.00 

B  2.1170  2.2255  0.75   0.80 

C  2.3396  2.4596  0.85   0.90 

D  3.0042  3.3201  1.10   1.20 

 
1b. Linear program 

min Σi ui     [ui =a+b⋅log(xi)-log(yi)] 

s.t. a+b⋅log(xi)³log(yi)    I = A, B, C, D 

 

Estimated (log)efficiency production function 

log(yi) = -0.25 + 1.25 log(xi) - ui 
 

Estimated  Residual  Frontier  Efficiency 
Firm      log(y)        u   Output y’        EO 
A      1.0000    0.0000    2.7183     1.0000 

B      0.7500    0.0000    2.1170     1.0000 

C      0.8750    0.0250    2.3989     0.9753 

D      1.2500    0.1500    3.4903     0.8607 

 
1c. Quadratic program 

min Σi (ui)2      [ui=a+b⋅log(xi)-log(yi)] 

s.t. a+b⋅log(xi)³log(yi)     i=A, B, C, D 

 

Estimated (log)efficiency production function 

log(yi) = 0.0556 + 0.9444 log(xi) - ui 
 

Estimated  Residual  Frontier  Efficiency 
Firm   log(y)   u   Output y’  EO 
A   1.0000  0.0000  2.7183  1.0000 

B   0.8111  0.0611  2.2504  0.9407 

C   0.9056  0.0556  2.4733  0.9460 

D   1.1889  0.0889  3.2834  0.9150 


