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disturbances. 
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1. Introduction 
 
This paper explores the role of endogeneity in the estimation of multi-output 

technologies. Some examples of multi-output technologies are agricultural and 

livestock products in farming or passengers and freight in transportation. Additionally, 

sometimes environmental damage is modeled as the result of a multi-output production 

process where pollutants are considered one output of a multi-output technology (Färe 

et al. 1996). 

 

Empirical analysts have dealt frequently with multi-output technologies by aggregating 

multiple outputs into a single output. An alternative is the use of a multi-output cost 

function. Coelli and Perelman (2001) discuss the problems of both approaches. In the 

former case, the aggregation of multiple outputs into a single output can cause well 

known problems. In the latter case, the dual approach requires the availability of input 

prices plus the assumption of cost minimization. 

 

The distance function is a primal representation of a multi-ouput technology that avoids 

both problems. Additionally, it naturally integrates a radial measure of technical 

efficiency involving all outputs in the production process. In fact, the distance function 

provides a convenient representation of radial efficiency measured as the inverse of 

distance between the observations and the frontier of the technology (Kumbhakar and 

Lovell, 2000). The homogeneity of degree one in output of the output oriented distance 

function1 allows the factoring out of an output for any functional form. This property 

seems to be highly valued in empirical work because a dependent variable (the output 

which has been factored out) can be written as a function of ratios of outputs and 

inputs, which allows to estimate distance functions using standard econometric 

methods (see, for example: Lovell et al., 1994; Coelli and Perelman, 2000).  

 

Two paths have been followed in previous research to deal with the potential 

endogeneity  of output ratios. For example, Sickles et al. (1996), Cuesta and Orea 

(1998), Rodriguez Alvarez (2000) and Atkinson et al. (2003) use instrumental variables 

to correct the endogeneity problem mentioned above. A different approach is followed 

by Coelli and Perelman (2001) which argue that the endogeneity problem does not 

                                                 
1 We will restrict our analysis to the output oriented distance function.  
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appear under reasonable behavioral assumptions. Particularly, the ratios of outputs are 

exogenous variables if the random disturbances affecting production processes change 

all outputs in the same proportion. However, this seems an odd requirement in many 

production processes. For example, in marine fisheries, for given inputs, weather, tides 

and streams affect not only in different proportions but in different directions catches of 

different species. Therefore, if random disturbances make outputs change in different 

proportions, it is necessary to deal with a ratio of endogenous variables. Consistent 

estimation of the parameters of the technology requires finding instruments for ratios of 

endogenous variables which can be a difficult task. 

 

The transformation function is a feasible alternative to estimate multi-output 

technologies (Mundlak, 1963; Diewert, 1973: Hall, 1973). Under some regularity 

conditions, the transformation function might be specified with one output on the left 

hand side of the equation and other outputs and inputs on the right hand side. This 

specification can be estimates by least squares or maximum likelihood (Weningen and 

Strand, 2003). In this case, only instruments for output quantities are required. The 

transformation function, however, is not used in empirical work measuring efficiency 

because the error term in the equation is only related to the output selected as a 

dependent variable, which in turn, implies that efficiency measures are only related to 

this output (Orea et al. 2003). To solve this limitation we propose a specification of a 

transformation function that includes an efficiency index related to all outputs. This 

specification of the model can be estimated with panel data using a fixed effect 

estimator in a way like the one used in the works of Atkinson and Cornwell (1994) or 

Orea et al. (2004). 

 

There are two contributions in the present paper. First, by carefully distinguishing 

between planned and observed output we clarify the problems of endogeneity in the 

estimation of multioutput technologies. Precisely, we are able to characterize the 

unlikely conditions under which distance functions can be estimated by plain least 

squares. In any other circumstances, instrumental variables are required for consistent 

estimation. Second, we develop a transformation function which incorporates a global 

efficiency term and we use Monte Carlo simulation in order to compare the relative 

performance of both primal approaches to the technology: transformation and distance 

functions. Particularly, we analyze the role played by different degrees of correlation 

among output disturbances. We find that under different degrees of correlation 
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between outputs the techniques used to correct endogeneity problems are more 

effective in the transformation function than in the distance function, so the 

transformation function dominates the distance function on empirical performance. 

 

The structure of the paper is the following. In Section 2, we discuss the estimation of 

multi-output technologies using, alternatively, the distance and transformation function. 

In Section 3, we describe a Monte-Carlo experiment that shows the empirical 

performance of the two alternative representations of technology. In Section 4, we 

present the results of the Monte-Carlo experiment. Finally, some concluding comments 

are included in Section 5. 

 

 

2. Estimation of multi-output technologies 
 
In this section, we analyze the estimation of multi-output technologies using, 

alternatively, the distance and the transformation function. We limit our analysis to the 

one-input two-output case since it is the simplest one that contains the empirical 

difficulties mentioned in the previous section. 

 

In the empirical estimation of single output production processes inputs are the basic 

explanatory variables. Very often, endogeneity is written-off by arguing that observed 

inputs were chosen ex–ante and are not affected by random noise (Zellner et al., 

1966). In multi-output production processes things are a bit more complicated. Now, 

some of the outputs (or ratios of outputs) are explanatory variables and it is harder to 

argue that observed outputs are chosen ex–ante. 

 

In this section, we explicitly distinguish between planned production (unobserved) and 

actual production (observed). This distinction proves to be essential to analyze the 

problems that arise in the estimation of multi-output technologies. It is worth noting that 

planned production, and input endowments, could be chosen ex-ante. Therefore, it is 

reasonable to assume that they are independent of ex-post random shocks. On the 

other hand, observed outputs are possibly affected by contemporaneous random 

shocks. We claim that inclusion of the planned (unobserved) output as explanatory 

variable in the empirical representation of multi-output technology can avoid biases due 

to endogeneity. However, since planned output has to be approximated by observed 
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output we will likely be facing a problem of error in variables akin to endogeneity. We 

will develop these ideas carefully in the next two subsections. 

 

2.1. The distance function 
Shephard (1953) proposes the distance function as a primal representation of multi-

output technologies. The output oriented distance function can be written as2:  

 ( )
* *

* * 1 2
1 2, , min  |  , can be produced with y yD x y y xθ

θ θ
   =   
   

 (1) 

where x denotes quantity of input, *
1y and *

2y are the planned quantities of two outputs 

that can be produced with input x and θ  ( 0 1θ≤ ≤ ) is an output oriented index of 

technical efficiency.  

 

The distance function is homogeneous of degree one in outputs (Coelli et al.,1998). 

Therefore, dividing both outputs by *
1y  we have that: 

 
* *

*2 2
1* * *

1 1 1

,1, ln ln ,1, lny yD x y D x
y y y
θ θ

   
= ⇒ = − +   

   
 (2) 

The primal representation of a multi-output technology in (2) has two convenient 

properties. First, the linearity on the logarithm of technical efficiency greatly simplifies 

the estimation. In fact, this is the standard specification in the literature on output-

oriented technical efficiency. Second, one of the outputs can be factored out easily 

which facilitates the use of standard econometric techniques (e.g. least squares or 

maximum likelihood). 

 

In the estimation of distance functions planned output is usually substituted by 

observed output in equation (2), and a random term 1v  is added. 

 2
1 1

1

ln ln ,1, lnyy D x v
y

θ
 

= − + + 
 

 (3) 

                                                 
2 Alternatively, the input oriented distance function can be written as: 

( ) ( ){ }1 2 1 2, , min | ,  can be produced with D x y y y y xθ θ= . 
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This approach raises difficult issues about the correlation between the ratio of observed 

outputs and the random disturbance 1v . Some authors have pointed out to the 

endogeneity of the output ratio and propose the use of instrumental variables (Sickles 

et al., 1996; Cuesta and Orea, 1998; Rodriguez, 2000; and Atkinson et al., 2003). 

Other authors claim that under reasonable behavioral assumptions the ratio of outputs 

is an exogenous variable (Coelli and Perelman, 2001). 

 

We claim that a careful analysis of the substitution of observed by planned output in 

equation (2) can shed some light into the nature of the problem and the solution. In an 

empirical setting, it is reasonable to assume that outputs are affected by variables not 

under the control of the producer. We deal with this issue by distinguishing between 

observed production ( )21, yy  and planned production ( )*
2

*
1 , yy  and assuming the 

differences between observed and planned production can be modeled as a 

multiplicative random disturbance. In this case, the relation between the planned and 

observed output can be written as: 

 
1

2

*
1 1

*
2 2

v

v

y y e
y y e

=

=
 (4) 

where the random disturbances 1v and 2v are assumed to be distributed as a multivariate 

random variable with the following characteristics: 

 ( )
2

1 1 12
2

2 12 2

0,    
v

N
v

σ σ
σ σ

  
Ω Ω =   

   
!  (5) 

Substituting (4) in (2) we have that: 

 
2

1

2
1 1

1

ln ln ,1, ln
v

v
y ey D x v
y e

θ
−

−

 
= − + + 

 
 (6) 

In general, the random disturbances inside the distance function can not be factored-

out. Therefore, a careful substitution of planned by observed output does not leads to 

the empirical specification in expression (3). 

 

As an alternative, we analyze the case in which the substitution of planned by observed 

output is done only for the factored-out output: 
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*
2

1 1*
1

ln ln ,1, lnyy D x v
y

θ
 

= − + + 
 

 (7) 

The main feature of expression (7) is the use of the ratio of planned outputs as 

explanatory variable versus the ratio of observed outputs in expression (3). This 

difference has important empirical consequences. For once, it is not difficult to argue 

that planned output is independent of the random disturbances. In fact, that is the case 

in  models that assume that firms maximize an expected objective function (e.g. 

expected profit) instead of the actual objective function. In this case, planned output is 

not stochastic and there is not an endogeneity problem in expression (7) (Marshak and 

Andrews, 1944; Hoch, 1958; Zellner et al., 1966; Coelli, 2000).  However, since the 

ratio of planned outputs is unobserved it is necessary to face the difficult task of getting 

a good proxy.   

 

A natural candidate is the ratio of observed outputs. From expression (4), we have that: 

 
2

2 1

1

* *
2 2 2

* *
1 1 1

v
v v

v
y y e y e
y y e y

−= =  (8) 

Therefore, the ratio of observed outputs is not correlated with the error term in equation 

(7) when the covariance between ( )12 vv −  and ( )1v  is null. This condition implies: 

 ( ) ( ) ( ) ( )
( )
2 1

2 1 1 2 1 1
1

,
, , 0 1

C v v
C v v v C v v V v

V v
− = − = ⇒ =  (9) 

In turn, expression (9) implies that: 

 2 1  where v vα α= + ∈ ℜ  (10) 

Finally, the requirement of zero expectation for the random disturbances of observed 

output ( 1v and 2v ) implies that 0=α .  

 

Therefore, the ratio of observed outputs is a good measure of the ratio of planned 

outputs only if the random disturbances that affect each output are equal (alternatively, 

if random shocks affect all outputs in the same proportion). Otherwise, we need to rely 

on a procedure akin to instrumental variables. We need to find a set of random 
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variables (z) uncorrelated with the random disturbances v1 and v2. Taking natural 

logarithms and expectations with respect to z in expression (8) we have that: 

 [ ]
* *

1 1 1
1 2* *

2 2 2

ln | ln | lny y yz v v z
y y y

      
Ε = + Ε − =      

      
 (11) 

The log of the ratio of planned output equals the expected value of observed output 

with respect to the variables z. The best predictor of this expectation is the fitted value 

of least squares of 1

2

ln y
y

 
 
 

 on z. Therefore, the fitted value of the ratio of actual 

outputs is used instead of the ratio of planned outputs in the estimation of equation (7) 

(Greene, 1993; chapters 9 and 20). 

 

In summary, our setting for the estimation of a distance function splits the endogeneity 

problem in two parts. First, we consider the endogeneity of the planned output. 

Secondly, we recognize that planned output is an unobserved variable that leads, in 

many instances, to a problem of error in variables that requires an econometric 

approach similar to instrumental variables.  

 

2.2. The transformation function  
The multi-output technology can be represented by the following transformation 

function: 

 ( )* *
1 2, , 0F x y y =  (12) 

where x denotes quantity of input, *
1y  and *

2y  are the maximum quantities of two 

outputs that can be produce with input x and F is a transformation function with the 

usual properties (Chambers, 1988). If the function in (12) is continuously differentiable 

and has nonzero first derivatives with respect to 1y  the transformation function may be 

specified as follows using the implicit function theorem: 

 ( )* *
1 2,y f x y=  (13) 

Felthoven and Paul (2004) argue that, in empirical applications, this specification 

avoids endogeneity problems: “The outputs in this function are specified in levels, 
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whereas distance functions estimated by stochastic production frontier methods are 

typically specified in terms of output ratios (in order to impose homogeneity). 

Estimating the transformation function thus avoids possible econometric endogeneity 

problems associated with having the dependent variable (the numeraire output) also 

appear in arguments of the function (the denominators of the output ratios), which may 

be correlated with the error term and violate standard independence assumptions.” 

 

Using expression (4) and taking natural logs in (13), the transformation function to be 

estimated can be written as: 

 ( )*
1 2 1ln ln ,y f x y v= +  (14) 

The firm production plan ( )* *
1 2, ,x y y is uncorrelated with the disturbance 1v  if the firm 

maximizes expected profit. Therefore, strictly speaking there is no problem of 

endogeneity in (14). However, the planned output *
2y  is unobservable and using 

observed  output ( )2*
2 2

vy y e=  as a proxy to estimate (14) involves a problem of error in 

variables3. Again, it is necessary to use instrumental variables for consistent 

estimation. 

 

The transformation function is not used frequently in empirical analysis when technical 

efficiency is involved. The reason being that including a simple additive efficiency term 

in equation (14) implies that the efficiency measure refers only to the output set as 

dependent variable. However, a multi-output output oriented index of technical 

efficiency can be included in the specification of a transformation function treating 

efficiency as a fixed effect (Atkinson and Cornwell, 1994; Orea et al., 2004): 

 
*

1 2
1ln ln ,y yf x v

θ θ
   = +     

 (15) 

where θ is an output oriented index of technical efficiency. Moving the logarithm of TE 

to the right hand side yields: 

                                                 
3 See Greene (1993), chapter 9. 
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*
2

1 1ln ln , lnyy f x vθ
θ

 
= + + 

 
 (16) 

The model in (16) can be estimated with panel data assuming that efficiency is a time 

invariant individual effect. 

 

Our rationale to propose the estimation of the transformation function in (16) is that in 

many empirical applications output prices, which are correlated with output levels, are 

frequently available and they are natural instrumental variables. However, finding a set 

of variables correlated to output ratios is more difficult. At best, it can be done through 

output price ratios, but correlation between output ratios and output prices can be 

weaker than correlation between output levels and prices so output prices seem to be a 

better instrumental variable for output levels than price ratios for output ratios. 

Therefore, it is natural to expect that an empirical representation of the technology 

where the variables are the output levels (transformation function) produces estimates 

closer to the true technology and efficiency levels than those representations of the 

technology where the variables are the output ratios.  

 

Additionally, in applications with at least one undesirable output (Färe et al., 1996), it 

can be difficult to find a instrumental variables correlated with the undesirable output. 

However, using a transformation function allows to use the undesirable output as 

dependent variable, eliminating the need of an instrumental variable for it. 

 

In summary, in this section we have discussed the properties of two alternative feasible 

empirical representations of multi-output technologies. We have found that the 

estimation of the transformation function requires of instrumental variables for outputs. 

On the other hand, unless the random disturbances are equal for all outputs, the 

estimation of the distance function requires instrumental variables for ratios of outputs. 

In the following two sections, we explore the estimation of both the distance and the 

transformation function.  
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3. Monte Carlo experiment 
 
The starting point of data generation is the following distance function for planned 

output ( )* *
1 2,y y : 

 

( )

* *
* 2 2
1 1 2 3 4* *

1 1

* *
23 3

5 6 7* *
1 1

ln ln ln ln ln

ln ln ln ln ln

it it
it

it it

it it
i

it it

y yy c c x c c x
y y

y yc c x c x D
y y

   
− = + + +   

   
   

+ + + −   
   

 (17) 

where i denotes firms (i = 1, ... ,5), t denotes time period (t = 1, ... ,100). The total 

number of observations is 500.  The alternative representation for the distance function 

in (17) is the following transformation function:  

 
( )

( )
( )

* *
* 1 2 3 2 4 2
1

3 5 4 6

2* *
5 3 6 3 7

3 5 4 6

ln ln ln lnln
1 ln

ln ln ln ln ln
1 ln

it it it it
it

it it it

c c x c y c x yy
c c c c x

c y c x y c x
c c c c x

θ

+ + +
= −

− − − +

+ + +
−

− − − +

 (18) 

This function is obtained by factoring out *
1ln ity in expression (17).  

The distributions of the independent variables are: 

 [ ] ( ) ( )* *
2 3ln ~ 0,2 ln ~ 0,1 ln ~ 0,1it itx U y N y N  (19) 

The value of the parameters are shown in Table 1. 

 

Table 1. Parameter values for the simulation 
Parameter Name Parameter Value Parameter Name Parameter value 

1ln D  -0.4 c1 -2 

2ln D  -0.3 c2 -1 

3ln D  -0.2 c3 0.35 

4ln D  -0.1 c4 -0.1 

5ln D  0 c5 0.15 

  c6 -0.15 

  c7 -0.5 
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Finally, values of *
1ln ity are generated using expression (18). 

 

The values of observed output ( )1 2,y y  (2500 repetitions) are generated using 

expression (4) and the following random disturbances for observed output: 

 

1. Observed output disturbances are perfectly correlated standard normal random 

variables 

 ( )
1

2

3

1 1 1
0,    1 1 1

1 1 1

v
v N
v

   
   ∼ Ω Ω =   
      

 (20) 

2. Observed output disturbances are independently distributed standard normal 

random variables 

 ( )
1

2

3

1 0 0
0,    0 1 0

0 0 1

v
v N
v

   
   Ω Ω =   
      

!  (21) 

3. Observed output disturbances are correlated standard normal variables 

 ( )
1

2

3

1 1 1
~ 0,   1 1 1

1 1 1

v
v N
v

− −   
   Ω Ω = −   
   −   

 (22) 

Finally, we generate a set of instrumental variables for observed output defined as:  

 

( )
( )
( )

*
1 1 1 1

*
2 2 2 2

*
3 3 3 3

ln ln     0,1

ln ln    0,1

ln ln     0,1

it

it

it

Z y u u N

Z y u u N

Z y u u N

= + ∼

= + ∼

= + ∼

 (23) 

Since the random variables (u1, u2, u3) in (23) are generated independently from the 

random disturbances of the distance function (v1, v2, v3), then each instrumental 

variable is correlated with the corresponding planned output but not with the random 

disturbances of the transformation function in (18). 
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4. Results 
 

We estimate the distance function in (17) and the transformation function in (18) 

alternatively by:  

a. OLS 

b. Using the set of Instrumental Variables 1(IV1): lnZ2 and lnZ3. 

c. Using the set of Instrumental Variables 2 (IV2): the logarithms of the ratio of outputs 

(lnZ2- lnZ1) and (lnZ3- lnZ1). 

  

The parameters of the distance and transformation functions are estimated for the 

2500 samples of observed output. The means and standard deviations (with respect to 

the true value) of the estimated parameters are shown in Tables 2, 3 and 4. Table 2 

shows the results of the three different estimation approaches when random output 

shocks are perfectly correlated. The estimation of the transformation function by 

instrumental variables gives good results. The case of identical output random shocks 

is well suited for the distance function because, in this case, the ratio of outputs are 

exogenous variables. As a result, the estimation of the distance function by ordinary 

least squares provides consistent estimates of the parameters. Finally, the estimation 

of the distance function with instrumental variables for the output and for the ratio of 

outputs gives poorer results than plain least squares. 

 

The transformation function produces nine out of eleven parameters estimates closer 

to the true parameter value than the distance function with the set of instrumental 

variables IV1. Additionally the transformation function produces ten out of eleven 

parameters estimates closer to the true parameter value than the distance function with 

the set of instrumental variables IV2. Comparing the estimates of the distance function 

with both sets of instrumental variables we find that the set of instrumental variables IV1 

produces six out of eleven parameters estimates closer to the true value than the 

instrumental variable set IV2. 

 

An important result is that the standard deviations of estimated parameters are always 

smaller in the estimation of the transformation function than in the estimation of 

distance function using both sets of instrumental variables. 
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Table 2. Random shocks are perfectly correlated  

Parameter True Transformation 
Function 

(IV) 

Distance 
Function 

(OLS) 

Distance 
Function  

(IV1) 

Distance 
Function  

(IV2) 

lnD1 -0.4 -0,3883 

(0,108) 

-0,4012 

(0,144) 

-0,4047 

(0,148) 

-0,4222 

(0,147) 

lnD2 -0.3 -0,3182 

(0,109) 

-0,3029 

(0,146) 

-0,3212 

(0,149) 

-0,3422 

(0,148) 

lnD3 -0.2 -0,2277 

(0,108) 

-0,2009 

(0,141) 

-0,2059 

(0,144) 

-0,2161 

(0,143) 

lnD4 -0.1 -0,0993 

(0,107) 

-0,1009 

(0,145) 

-0,1044 

(0,144) 

-0,1074 

(0,144) 

c1 -2 -1,9624 

(0,281) 

-2,0046 

(0,314) 

-1,4360 

(0,575) 

-1,8016 

(0,485) 

c2 -1 -1,0478 

(0,321) 

-0,9907 

(0,371) 

-1,1022 

(0,441) 

-1,1102 

(0,428) 

c3 0.35 0,3559 

(0,071) 

0,3498 

(0,070) 

0,4623 

(0,101) 

0,4204 

(0,111) 

c4 -0.1 -0,1026 

(0,070) 

-0,0989 

(0,062) 

-0,1936 

(0,087) 

-0,1384 

(0,096) 

c5 0.15 0,1607 

(0,080) 

0,1505 

(0,082) 

0,2450 

(0,134) 

0,1665 

(0,154) 

c6 -0.15 -0,1809 

(0,085) 

-0,1510 

(0,074) 

-0,2371 

(0,112) 

-0,2227 

(0,131) 

c7 -0.5 -0,5652 

(0,166) 

-0,5038 

(0,175) 

-0,8176 

(0,222) 

-0,6950 

(0,202) 

 

Table 3 shows the results of the three different estimation techniques when random 

output shocks are independent. The estimation of the transformation function by 

instrumental variables gives good results. However, in this case, ordinary least squares 

is not a reasonable procedure to estimate the distance function since the ratios of 

outputs used as explanatory variables are not exogenous. Finally, instrumental 

variables for output applied to the distance function provide reasonable results in this 

case.  
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The transformation function produces six out of the eleven parameters closer to the 

true value than in the distance function with IV1. The transformation function produces 

eight out of the eleven parameters closer to the true value than in the distance function 

with IV2. The distance function with IV2 gives seven parameters closer to the true value 

than distance function with IV1. Again, the transformation function with instrumental 

variables produces smaller standard errors of the parameter estimates than the 

distance function with instruments. 

 

Table 3: Random shocks are independent 

Parameter True Transformation 
Function 

(IV) 

Distance 
Function 

(OLS) 

Distance 
Function  

(IV1) 

Distance 
Function  

(IV2) 

lnD1 -0.4 -0,4321 

(0,109) 

-0,2465 

(0,088) 

-0,4141 

(0,123) 

-0,4347 

(0,129) 

lnD2 -0.3 -0,3238 

(0,107) 

-0,1403 

(0,087) 

-0,2894 

(0,119) 

-0,3102 

(0,125) 

lnD3 -0.2 -0,2681 

(0,108) 

-0,0677 

(0,086) 

-0,2207 

(0,124) 

-0,2492 

(0,130) 

lnD4 -0.1 -0,1356 

(0,104) 

0,0041 

(0,086) 

-0,1070 

(0,114) 

-0,1269 

(0,122) 

c1 -2 -2,0184 

(0,264) 

-1,6597 

(0,151) 

-1,5296 

(0,524) 

-1,9025 

(0,442) 

c2 -1 -1,0057 

(0,313) 

-0,2819 

(0,206) 

-1,0014 

(0,431) 

-1,0429 

(0,416) 

c3 0.35 0,3493 

(0,061) 

0,3197 

(0,030) 

0,4482 

(0,084) 

0,4121 

(0,096) 

c4 -0.1 -0,1004 

(0,067) 

-0,0224 

(0,029) 

-0,1861 

(0,080) 

-0,1401 

(0,092) 

c5 0.15 0,1516 

(0,078) 

0,2487 

(0,033) 

0,2243 

(0,127) 

0,1399 

(0,150) 

c6 -0.15 -0,1586 

(0,089) 

-0,0223 

(0,031) 

-0,2053 

(0,114) 

-0,1873 

(0,134) 

c7 -0.5 -0,5329 

(0,164) 

-0,2167 

(0,101) 

-0,7935 

(0,231) 

-0,6676 

(0,219) 
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Table 4 shows the result of the different estimation approaches when there is a 

substantial correlation between the random output shocks. In this case, both the output 

used as explanatory variable in the transformation function and the ratio of outputs 

used in the distance function are endogenous variables. As expected, ordinary least 

squares does not provide reasonable estimates in the transformation function or the 

distance function. In turn, the transformation function with instrumental variables 

provides consistent estimates of the parameters. In the case of the distance function 

the use of instrumental variables allows consistency in the estimation. 

 

Table 4: Correlated random shocks  

Parameter True Transformation 
Function 

(IV) 

Distance 
Function 

(OLS) 

Distance 
Function  

(IV1) 

Distance 
Function  

(IV2) 

lnD1 -0.4 -0,4026 

(0,105) 

-0,3244 

(0,012) 

-0,4129 

(0,075) 

-0,4375 

(0,089) 

lnD2 -0.3 -0,2931 

(0,105) 

-0,2354 

(0,012) 

-0,3103 

(0,071) 

-0,3242 

(0,086) 

lnD3 -0.2 -0,2094 

(0,106) 

-0,1151 

(0,012) 

-0,2012 

(0,072) 

-0,2171 

(0,086) 

lnD4 -0.1 -0,0821 

(0,104) 

-0,0954 

(0,012) 

-0,1063 

(0,064) 

-0,1073 

(0,080) 

c1 -2 -1,9902 

(0,250) 

-1,9866 

(0,019) 

-1,6175 

(0,499) 

-1,9737 

(0,452) 

c2 -1 -1,0254 

(0,331) 

-0,3512 

(0,030) 

-0,9752 

(0,459) 

-1,0049 

(0,448) 

c3 0.35 0,3559 

(0,053) 

0,3439 

(0,004) 

0,4496 

(0,074) 

0,4173 

(0,085) 

c4 -0.1 -0,1090 

(0,067) 

-0,0278 

(0,005) 

-0,1866 

(0,080) 

-0,1460 

(0,089) 

c5 0.15 0,1415 

(0,074) 

0,1422 

(0,005) 

0,1950 

(0,121) 

0,1143 

(0,147) 

c6 -0.15 -0,1506 

(0,091) 

0,0013 

(0,007) 

-0,1801 

(0,114) 

-0,1625 

(0,133) 

c7 -0.5 -0,5308 

(0,167) 

-0,1819 

(0,016) 

-0,7524 

(0,229) 

-0,6380 

(0,213) 
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Again, we can observe that the transformation function produces parameter estimates 

closer to the true value than distance function with IV1. Eight out of the eleven 

parameters are closer to the true value in the former case. We can also observe that 

nine of the parameters are closer to the true value in the transformation function 

estimation than in the distance function estimation with IV2. As in the previous case, we 

observe that seven parameters are closer to the true value in the estimation of distance 

function with IV2 than in the estimation with IV1. 

 

The results in Table 4 show that the standard errors of the parameters related to 

efficiency are smaller in the distance functions with both sets of instrumental variables 

than in the transformation function. However, the set of parameters common to all firms 

have a smaller standard error in the estimation of the transformation function. 

 
5. Conclusions 
 
In this paper, we have analyzed the role of endogeneity in the estimation of multi-

output technologies. Our analysis starts by considering two sources of endogeneity. 

One of them is given by possible correlations between random shocks and the 

production plan of the firm. In this sense, classical results in the literature establish that 

if the firm maximizes expected profits the production plan is not correlated with random 

shocks and no endogeneity problem arises. The second source of endogeneity is 

related to the fact that the production plan is unobservable and, therefore, actual 

production, which incorporates random shocks, is used for the empirical analysis. 

 

Our analysis shows that this second source of endogeneity affects differently the two 

empirical representations of a multi-output techonology considered: the distance 

function and the transformation function. Basically, endogeneity is not an issue in the 

estimation of distance functions if random disturbances affect all outputs in the same 

proportion. On the other hand, endogeneity is not a problem in the estimation of the 

transformation function if random disturbances of outputs are not correlated. However, 

if random disturbances of outputs have an arbitrary degree of correlation, endogeneity 

problems arises in both empirical models: the distance function and the transformation 

function. 
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Finally, we explore by Monte-Carlo simulation the role of correlation among output 

disturbances in the relative performance of the proposed empirical models. In order to 

do this, we develop a specification of the transformation function in which technical 

efficiency is related to all outputs in the production set. Instrumental variables used in 

simulation to correct endogeneity problems are designed to be correlated with output 

levels, assuming that the natural instrumental variables in empirical work, output prices, 

are correlated with output levels rather than with output ratios. 

 

The main results of the Monte-Carlo simulation are the following:  

 

a) The best performance of the distance function corresponds to the estimation 

that uses instrumental variables for all outputs (including the output factored 

out). 

b) The transformation function performs better than the distance function in 

estimating technology and efficiency when output random disturbances are 

arbitrarily correlated. 

 

These results suggest that, independently of the empirical tool used, instrumental 

variables are necessary when the random disturbances of outputs are arbitrarily 

correlated. On the other hand, the estimations obtained with the proposed 

transformation function are more precise than those obtained using a distance function. 

At least, if instrumental variables are expected to be correlated with output levels rather 

than with output ratios. 
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