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1. Introduction 

 

In this paper, we are interested in a stochastic frontier model in which observable 

characteristics of the firms affect their levels of technical inefficiency.  To be more precise, 

let u ≥ 0 be the one-sided error reflecting technical inefficiency, and let z be a set of 

variables that affect u. Then we can write u as u(z,δ) to reflect its dependence on z and 

some parameters δ. Various models in the existing literature specify the distribution of 

u(z,δ). We will be interested in models that satisfy the scaling property, which says that 

u(z,δ) can be written as a scaling function h(z, δ) times a random variable u* that does not 

depend on z. This property implies that changes in z affect the scale but not the shape of 

u(z,δ). 

 

We discuss scaling in the context of the stochastic frontier model but it is also of relevance 

in the semiparametric (DEA) context. There is a large literature attempting to relate DEA 

efficiency scores to “environmental variables” z.  Simar and Wilson (2003) give a survey of 

this literature, and they introduce a data generating process in which the (population) 

output efficiency is random and depends in a parametric way on some variables z.  Their 

assumption about the way efficiency scores depend on z corresponds to the KGMHLBC 

model discussed below. They could instead have assumed a scaling model. 

 

Some (but not all) of the models in the literature have the scaling property.  However, there 

is really no previous systematic treatment of scaling as a unifying principle.  (The article 

that comes closest is Simar, Lovell and van den Eeckaut (1994).)  In this paper, we 

provide a comprehensive treatment of the scaling property, and a review of the relevant 

literature. We identify models in the literature that do and do not have this property, and we 

propose a specific model that may be empirically useful.  We discuss the practical 

advantages of models with the scaling property.  We also show how to test the scaling 

hypothesis, and other interesting hypotheses, in the context of the model of Wang (2002). 

 

The paper also makes the following important observation, which is known in the 

econometric literature but appears to have been missed in the production frontier 

literature. Maximum likelihood estimates of models that assume independence of technical 
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efficiency over time (such as our model, and most models that deal with determinants of 

inefficiency) remain consistent even if the independence assumption is false. However, the 

estimated variances of the parameters using the usual formulas that assume 

independence are incorrect. We show in this paper how they can be corrected in a simple 

way.  his affects tests for scaling, as well as any other inference based on the estimated 

coefficients.   

 

The plan of the paper is as follows. In section 2, we present our basic framework.  In 

section 3, we review some of the existing literature and we identify models that do and do 

not have the scaling property. In section 4, we discuss the practical advantages of models 

with this property. We also discuss corrections for non-independence when the MLE is 

based on an incorrect assumption of independence.  In section 5, we discuss tests of the 

hypothesis that the scaling property holds, and of other interesting hypotheses that allow 

us to distinguish between various competing models.  In section 6, we give two empirical 

examples involving Spanish banks and Indian farms.  Finally, our concluding remarks are 

in section 7. 

 

 

2. The scaling property 

 

Our basic setup and notation follows Wang and Schmidt (2002). We suppose that we have 

panel data, in which firms are indexed by i = 1,…,N and time is indexed by t = 1,…,T. Let 

yit be log output; let xit be a vector of variables that affect the position of the frontier; and let 

zit be a vector of variables that affect the magnitude of technical inefficiency. Generally the 

xit are inputs and the zit are either functions of inputs or measures of the environment in 

which the firm operates. The xit and zit can overlap. Because the zit (like the xit) are treated 

as “fixed,” they cannot be functions of yit. 

 

Let yit* ≥ yit be the unobserved frontier. The linear stochastic frontier model asserts that, 

conditional on xit and zit, yit* is distributed as N(xit'β, σv
2). Then we can write the frontier as: 

yit* = xit'β + vit                                                                                 (1) 
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where vit is distributed as N(0,σv
2) and is independent of xit and zit. Finally, the model 

asserts that (conditional on xit, zit and yit*) the actual output level yit equals yit* minus a one-

sided error whose distribution depends only on zit. Therefore we can write the model as: 

  yit = xit'β + vit - uit(zit,δ)   ,   uit(zit,δ) ≥ 0                              (2) 

Here uit and vit are independent of each other and of xit, and in addition vit is independent 

of zit. We will say that the model has the scaling property if:  

  uit(zit,δ) = h(zit,δ)•uit*                                                 (3) 

 

where h(zit,δ) ≥ 0, and where uit* ≥ 0 has a distribution that does not depend on zit. We will 

call h(zit,δ) the scaling function and uit* the basic random variable, while the distribution of 

uit* will be called the basic distribution.  

 

The essential feature of the scaling property is the fact that changes in zit change the scale 

but not the shape of the distribution of uit. This is so because the shape is determined by 

the basic distribution, which does not depend on zit, whereas the scaling function h(zit,δ) 

determines the scale. More precisely, suppose that u* has density f(u*), and that u = h•u* 

where h is treated as a constant. Then the density of u equals (1/h)f(u/h). The sense in 

which this has the same shape as f(u*) is that, with proper rescaling of the axes, the 

graphs of the two densities would be identical. 

 

The scaling property can be viewed as a purely statistical matter, but it can also be given 

the following economic interpretation, which we find attractive. The basic random variable 

uit* can be seen as the firm's base efficiency level which captures things like the manager’s 

natural skills, which we view as random. How well these natural skills are exploited to 

manage the firm efficiently depends on other variables zit, which might include the 

manager’s education or experience, or measures of the environment in which the firm 

operates, for example. So the ultimate level of efficiency depends on uit* and also on some 

function of zit, h(zit,δ). The scaling property then corresponds to a multiplicative 

decomposition of uit(zit,δ) into these two logically independent parts.  
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An alternative that has sometimes been proposed (Huang and Liu (1994), Battese and 

Coelli (1995), Simar and Wilson (2003)) is an additive decomposition of the form uit(zit,δ) = 

h(zit,δ) + τit. However, this can never actually be a decomposition into independent parts, 

because uit(zit,δ) ≥ 0 requires τit ≥ -h(zit,δ). 

 

 

3. Review of the literature 

 

In the stochastic frontier literature, the first models with the scaling property appear to be 

models that were designed to allow time-varying inefficiency, as opposed to the effects of 

firm characteristics on inefficiency.  Kumbhakar (1990) and Battese and Coelli (1992) 

suggested models of the form uit = h(t,δ)·ui*.  These models fit our framework above, as a 

special case corresponding to zit = t and uit* = ui* for all t.  

 

An example of a model that has the scaling property is the scaled half-normal model, or 

RSCFG model, of Reifschneider and Stevenson (1991), Caudill and Ford (1993) and 

Caudill, Ford and Gropper (1995). In this model it is assumed that uit is distributed as N(0, 

σit
2)+, where σit(zit,θ) depends in a specific way on zit and some parameters θ. (Here and 

throughout the paper, superscript “+” indicates truncation of a random variable or 

distribution from the left at zero.) The RSCFG model has the scaling property because it is 

equivalent to say that the distribution of uit is N[0, σ(zit,θ)2]+, or to say that uit is distributed 

as σ(zit,θ)•N(0,1)+. The above papers make different suggestions for the function σ(zit,θ). 

Caudill, Ford and Gropper specify σit = σu• h(zit,γ) with the exponential scaling function 

h(zit,γ) = exp(zit′γ), a choice that we will also use in this paper. So θ consists of σu and γ.  

 

A detail that is important is that we need to be careful to specify only one constant. Here 

we have chosen to separate the constant (in this case, the standard deviation σu) rather 

than to incorporate it into the function h(zit,γ). In the case of the exponential scaling 

function, this means that zit does not contain an intercept. It would be equivalent to omit 

the constant σu and to introduce an intercept into zit 
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Other distributions would also lead naturally to models with the scaling property. For 

example, if the uit are exponentially distributed, with parameter λ(zit,θ), the model has the 

scaling property because an exponential distribution with parameter λ is the same as λ 

times an exponential distribution with parameter equal to one. This model has been 

considered by Simar, Lovell and van den Eeckaut (1994). 

 

A well known and popular model that does not have the scaling property is the KGMHLBC 

model of Kumbhakar, Ghosh and McGuckin (1991), Huang and Liu (1994), and Battese 

and Coelli (1995). (This model has also recently been suggested for the parameterization 

of the output inefficiency measure in DEA, by Simar and Wilson (2003).) This is a 

truncated normal model in which the mean of the pre-truncation normal depends on zit and 

some parameters θ. That is, uit is distributed as N(µit, σu
2)+ where µit = µ(zit,θ). Since the 

degree of truncation varies with µit, the shape of the distribution changes when zit changes. 

All three of the papers listed above suggest a linear specification of µit: µit = α + zit′δ. Our 

implementation of the model (reported later) will have µit = µ•exp(zit′δ), with µ unrestricted 

(i.e., it can be positive or negative). 

 

An alternative but equivalent presentation of the KGMHLBC model, followed by Huang and 

Liu (1994), Battese and Coelli (1995) and Simar and Wilson (2003), is to write uit = µit + τit, 

where τit is N(0, στ
2) truncated from the left at –µit. As argued in Section 2, this 

decomposition is not into logically independent parts because we must have τit ≥ -µit. In 

other words, the failure of scaling in this model is not just a result of a focus on a 

multiplicative decomposition. 

 

In the RSCFG model, the expectation of uit is monotonic in zit so long as the specification 

for σit is monotonic in zit. Similarly, in the KGMHLBC model, the expectation of uit is 

monotonic in zit (though the relationship is complicated) so long as the specification of µit is 

monotonic in zit. Wang (2002) proposes a model in which the relationship of the 

expectation of uit to zit could be non-monotonic. He does this by assuming that the 

distribution of uit is N(µit, σit
2)+, where both µit and σit depend on zit and parameters. 

Specifically, he assumes that µit = zit′δ and σit
2 = exp(zit′γ) where zit contains intercept. Our 
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implementation of this model will have µit = µ·exp(zit′δ) and σu·exp(zit′γ). In either case, this 

model does not generally have the scaling property. 

 

In Wang’s model the zit have two different coefficients. One set (δ) is for the mean and the 

other (γ) is for the variance of the pre-truncation normal. In the RSCFG model and the 

KGMHLBC model, the zit have only one set of coefficients. If one wishes to restrict 

attention to models in which each of the zit have only a single set of coefficients, scaling 

models may be attractive. In particular, a reasonable competitor to the RSCFG and 

KGMHLBC models would be the scaled Stevenson model, which is simply the scaled 

version of the truncated normal model of Stevenson (1980). In this model the distribution 

of uit would be h(zit,δ)•N(µ,σu
2)+. Therefore the mean and standard deviation of the pre-

truncation normal both depend on zit: µit = µ•h(zit, δ) and σit = σu•h(zit,δ). However, the 

degree of truncation depends on µit/σit = µ/σu, which does not depend on zit. Our 

implementation of this model will use the exponential scaling function h(zit,δ) = exp(zit′δ). 

This model is the assumed data generating process in the simulations of Wang and 

Schmidt (2002), and it is discussed by Simar, Lovell and van den Eeckaut (1994). 

 

There are not many general discussions of scaling. The earliest is apparently Simar, Lovell 

and van den Eeckaut (1994). (See also the extensive summary of this article in 

Kumbhakar and Lovell (2000, section 7.3).) They consider several different basic 

distributions, and they also discuss nonlinear least squares estimation without any 

distributional assumption. Wang and Schmidt (2002) also discuss scaling as a general 

principle upon which to base models, and they list some advantages of the scaling 

property, which we will discuss further in the next section. 

 

 

4. Advantages of the scaling property 

 

So far as we are aware, no theory indicates that the scaling property should hold, and it is 

ultimately an empirical question whether or not models with this property are useful. 

However, the scaling property has some features that we find attractive, and which we will 

now discuss. 
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1. The defining feature of models with the scaling property is that firms differ in their mean 

efficiencies, but not in the shape of the distribution of inefficiency. We find this intuitively 

appealing (though, of course, others may not).  

 

2. The question of whether the effects of the zit on efficiency are monotonic can be 

handled easily by the choice of scaling function. If one wishes to impose monotonicity, 

simply use a monotonic scaling function, such as the exponential scaling function 

exp(zit′δ). If not, use a non-monotonic scaling function. 

 

3. As noted by Simar, Lovell and van den Eeckaut (1994) and Wang and Schmidt (2002), 

at least some portions of the model can be estimated by non-linear least squares (NLLS), 

without making a distributional assumption on the basic random variable uit*. More 

specifically, if we define µ* = E(uit*), then taking expectations in (2) yields: 

  E(yit | xit, zit) = xit′β – µ*·h(zit,δ)                                    (4) 

We can then obtain consistent estimates of the parameters in (4) by NLLS. If we define 

σu*
2 = var(uit*), then we can also note that 

  Var(yit | xit, zit) = σv
2 + σu*

2 ·h(zit,δ)2                                (5) 

so that the error in the regression indicated by (4) is heteroskedastic. Therefore 

generalized NLLS would be needed to obtain estimates that are efficient (in the class of 

estimates that do not impose distributional assumptions).  

 

4. As noted by Wang and Schmidt (2002), the interpretation of δ does not depend on the 

distribution of inefficiency, and simple scaling functions yield simple expressions for the 

effect of the zit on mean efficiency. For example, if we use the exponential scaling function, 

so that uit = exp(zit′δ)•uit*, then δ = ∂ln(uit)/∂zit, and the coefficients δ are just the derivatives 

of log inefficiency with respect to the zit. By contrast, in the KGMHLBC model or Wang’s 

model the expression for the effect of zit on uit or E(uit) is complicated, and depends on 

features of the truncated normal distribution. See, e.g., Wang (2002, p. 244). 
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5. An important but currently unsolved technical question is how to allow correlation over 

time in the inefficiencies uit. The Battese-Coelli (1995) and Wang (2002) models assume 

that the uit are independent (conditional on the zit) over time. This is widely recognized as 

an unrealistic assumption, but it is not clear how to relax it. However, under scaling we 

have the possibility of the following alternative model:  

  uit = h(zit,δ)•ui*                                                   (6) 

where ui* is time-invariant. This model is a slight generalization of the models of 

Kumbhakar (1990) and Battese and Coelli (1992).  

  

A related point that seems not to be recognized in the stochastic frontier literature is that 

maximum likelihood estimates based on the assumption of independent observations are 

consistent even if the observations are not independent, so long as the (marginal) 

distribution of each observation is correctly specified. Thus, for example, estimates of the 

Battese-Coelli (1995) model will be consistent even if the uit* are not independent over 

time, so long as the model is otherwise correctly specified. However, the estimated 

variances (or standard errors) of the estimated parameters, calculated under the 

assumption of independence, will not be correct if independence does not hold. It is 

possible to calculate asymptotically valid “corrected” estimated variances that allow for 

non-independence of unspecified form. These points are known in the econometric 

literature. For example, see Hayashi (2000), section 8.7. Some details are given in the 

Appendix. 

 

6. Suppose we wish to test the adequacy of the half-normal model against the alternative 

of a truncated normal with non-zero mean (Stevenson (1980)). There are some technical 

difficulties in this problem that can be avoided under scaling. This point is developed 

further in the next section of the paper. 

 

 

5. Testing scaling and other interesting properties  

In this section, we will discuss tests of the scaling hypothesis, as well as some other 

hypotheses of interest. We assume that uit is distributed as N(µit, σit
2)+, where µit = 
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µ•exp(zit′δ) and σit = σu•exp(zit′γ), with σu > 0 but µ unrestricted. Conditional on the zit, the 

uit are independent over both i and t. This is the same as the model presented in Wang 

(2002) except for the specification of µit, which he took to be linear.  

 

Various special cases of this general model are of interest, and we can test the restrictions 

that lead to these special cases. This point has been made by Wang (2002, 2003), though 

his list of special cases is not the same as ours. To address the testing question in some 

generality, let ξ = 0 denote the hypothesis of interest. (For example, the scaling hypothesis 

corresponds to δ = γ, and so ξ = δ – γ.) We will consider the following three standard 

testing principles, all of which are typically based on the results of maximum likelihood 

estimation. (i) Likelihood ratio test.  Let ln L be generic notation for the logarithm of the 

likelihood function. Suppose that LU is the maximized value of the likelihood when the 

model is estimated ignoring the restriction (i.e. U is for unrestricted), and let LR be the 

maximized value of the likelihood when the mode is estimated with the restriction imposed 

(i.e. R is for restricted). Then the test statistic is LR = 2(ln LU – ln LR). The statistic is 

asymptotically (for large N) distributed as χp
2, where p is the number of restrictions being 

tested. (ii)  Wald test.  Let ξ̂  be the unrestricted estimate of ξ and let V( ξ̂ ) be the 

asymptotic variance-covariance matrix of this estimate. Then the test statistic is ξ̂ ′V( ξ̂ )-

1 ξ̂ , and the statistic is also asymptotically distributed as χp
2. (iii) LM test. Let θ be the 

vector of all of the parameters in the model, and let θ~ be the restricted maximum likelihood 

estimate. (For example, in Wang’s model, θ contains β, µ, σv, σu, δ and γ; or, equivalently, 

β, µ, σu, δ and ξ, where ξ = δ – γ. The scaling hypothesis is ξ = 0, which means that the 

restricted estimates are β~ , µ~ , σ~ v, σ~ u, δ~ and ξ~ , where ξ~ = 0 and the rest of θ~ consists 

of the other restricted estimates.) Let I(θ~ ) be the information matrix evaluated at θ = θ~ , 

and let [∂lnL(θ~ )/∂θ] be the vector of partial derivatives of the logarithm of the likelihood 

function, evaluated at θ = θ~ . (The vector of partial derivatives is available from the authors 

on request.) Then the test statistic is LM = [∂lnL(θ~ )/∂θ]′ I(θ~ )-1[∂lnL(θ~ )/∂θ], and once 

again the asymptotic distribution is χp
2. 
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In the previous section we mentioned the possibility of allowing for non-independence of 

technical inefficiency over time by using “corrected” estimated variances for the 

parameters, as discussed further in the Appendix. The Wald test easily accommodates 

this possibility since one can simply take the asymptotic variance-covariance matrix V( ξ̂ ) 

to be the “corrected” matrix that is valid under non-independence. We will refer to the Wald 

test using this corrected variance-covariance matrix as the Robust Wald test. The LR and 

LM tests are not subject to such easy correction. 

 

We now consider various specific interesting restrictions (hypotheses to test). Each of 

these corresponds to a simplified version of the general model in which uit is distributed as 

N(µit, σit
2)+, with µit = µ·exp(zit′δ) and σit = σu·exp(zit′γ). Many of these simpler models 

appear previously in the literature. 

 A. δ = γ. As noted above, this is the scaling hypothesis. When δ = γ, the 

distribution of uit is N[µ•exp(zit′δ), σu
2•(exp(zit′δ))2]+, or equivalently exp(zit′δ)•N(µ, σu

2)+, 

which is the scaled Stevenson model. The scaled Stevenson model obviously has the 

scaling property. 

 B. γ = 0. In this case the distribution of uit becomes N(µ•exp(zit’δ), σu
2)+, which is a 

version of the KGMHLBC model. Wang (2002, 2003) tested essentially the same 

hypothesis. This model does not satisfy the scaling property (unless µ = 0). 

 C. δ = 0. In this case the distribution of uit becomes N(µ, σu
2•(exp(zit′γ))

2)+, a model 

that does not appear (so far as we are aware) in the literature, at least with µ unrestricted. 

With µ = 0 this would be the RSCFG model. Therefore we will call this model the RSCFG-

µ model. Unless µ = 0, it does not satisfy the scaling property. However, it is important to 

note that the hypothesis δ = 0 can only be tested in a meaningful sense if µ is not equal to 

zero. The reason is that if µ = 0, then δ is not identified, since then µ•exp(zit′δ) = 0 for any 

value of δ.  

 D. δ = γ = 0. In this case the distribution of uit is N(µ, σu
2)+, which is the model of 

Stevenson (1980). It does not contain any variables (zit) that influence the distribution of 

inefficiency, so the question of scaling does not arise.  

 E. µ = 0.  This is the restriction that yields the RSCFG model, since now the 

distribution of uit becomes N[0, σu
2•(exp(zit′γ))

2]+, or equivalently exp(zit′γ)•N(0, σu
2)+, which 

is the RSCFG model. An interesting and relevant observation (which also appears to be 
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original) is that, in the context of the Wang model, this is a non-standard test. The reason 

is that the “nuisance parameter” δ is not identified under the null hypothesis (µ = 0). As a 

result the asymptotic distribution of the likelihood ratio, Wald or LM test would not be chi-

squared. See Hansen (1996) for a general discussion of this phenomenon. We can solve 

this problem by making some specific assumption about δ that identifies it even when µ = 

0. So, for example, we could assert that δ = 0, in which case the test of µ = 0 becomes a 

standard (asymptotically chi-squared) test. In this case we are simply testing whether µ = 0 

in the RSCFG-µ model. We suggest that another useful mechanism for identifying δ under 

the null is to assert that the scaling hypothesis is correct, so that δ = γ. Then we are simply 

testing whether µ = 0 in the scaled Stevenson model, and this is a standard 

(asymptotically chi-squared) test. Naturally the test of µ = 0, that is of the adequacy of the 

RSCFG model, may differ depending on whether the alternative is the RSCFG-µ model or 

the scaled Stevenson model. What we cannot do (at least as a standard test) is test the 

joint hypothesis that µ = 0 and δ = 0. 

 F. µ = 0, γ = 0. These are the restrictions that yield the Aigner, Lovell and Schmidt 

(1977) (ALS) model, since now uit is distributed as N(0, σu
2)+. For the reasons given in the 

preceding paragraph, this is a non-standard test in the context of Wang’s model. It 

becomes a standard test under an identifying restriction on δ. Alternatively, we can obtain 

the ALS model as the special case of the RSCFG model corresponding to γ = 0. That 

would be a standard test. Like Stevenson’s model, the ALS model does not contain any 

variables that affect the distribution of inefficiency, and so the question of scaling does not 

arise. 

 

Table 1 gives a brief summary of these restrictions and the resulting models. 

 

 

6. Empirical examples 

In this section we give two empirical examples, involving previously-analyzed data sets on 

Spanish savings banks and Indian farms. 

 

 

6.1 Spanish savings banks 
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We estimate a stochastic cost frontier using data from N = 118 Spanish banks for T = 7 

years (1992-1998). These data were previously analyzed by Cuesta and Orea (2002) and 

Han, Orea and Schmidt (2004), to which the reader is referred for detail. However, those 

articles use somewhat different specifications than the specification that we use here. 

 

We have three outputs: loans to firms and households; other financial assets; and non-

interest income. We have two input prices: the loanable funds price, defined as the ratio of 

interest expenses to the total amount of deposits and other loanable funds; and an 

operational inputs price, defined as the ratio of total operating expenses to the total 

number of employees. In order to impose linear homogeneity in input prices, we divide 

total cost and total loanable funds price by the operational inputs price. We also include a 

linear time trend in the specification, and an intercept. We use a translog specification, so 

there are 21 explanatory variables (5 linear terms, 5 quadratic terms, 10 cross product 

terms, and the intercept). 

 

We have five zit variables that parameterize the inefficiency component: TREND, a time 

trend; MERGERS, which starts at zero and increases by one every time the bank acquires 

another bank; SIZE, measured by total assets; NBL, the ratio of non-bank loans to total 

assets; and DEPOSITS, the ratio of deposits to total assets. 

 

We estimate six different models, as follows. 1. Wang’s model, with δ and γ both 

estimated. 2. Stevenson’s model (δ = γ = 0). 3. The scaled Stevenson model (δ = γ). This 

model is estimated by MLE and by NLLS. 4. The KGMHLBC model (γ = 0). 5. The 

RSCFG-µ model (δ = 0). 6. The RSCFG model (µ = 0). In all cases uit is truncated normal 

with µit = exp(zit′δ) and σit = exp(zit′γ). 

 

In Table 2 we report the estimates of δ and γ. (To save space we do not report the 

parameter estimates (β’s) for the frontier.) We also report their standard errors, based on 

the usual MLE formula; the standard errors that are robust to autocorrelation, as discussed 

in the Appendix; and the maximized log likelihood values. 
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For the scaled Stevenson model, the KGMKLBC model and the RSCFG model, the effects 

of the zit variables are known to be monotonic, so that a positive coefficient means that an 

increase in that variable increases mean inefficiency, and conversely. For each of the zit 

variables, its coefficient has the same sign in each of these three models, so in that sense 

the results are qualitatively similar across models. Wang’s model is not directly 

comparable in this respect because the effects of the zit on mean inefficiency can be non-

monotonic. The level of statistical significance of the individual coefficients varies across 

coefficients and models, and depends on whether the ordinary or robust standard errors 

are used. The sets of coefficients are always jointly significant at any reasonable level, in 

the sense that the restrictions that would reduce any of these models to the Stevenson 

model (in which no zit appear) are always clearly rejected. For example, for Wang’s model, 

the restriction would be that δ = γ = 0, and this yields the following statistics: Likelihood 

ratio (LR), 686.0; Wald, 169.3; Robust Wald, 107.8. These are significant at any 

reasonable level (e.g. the 99% critical value of a chi-squared with 10 degrees of freedom is 

23.2). 

 

In fact, the restrictions that would reduce Wang’s model into any of the simpler models are 

also always rejected. (1) If we test the scaling hypothesis that δ = γ, we have LR = 252.5, 

Wald = 96.0, and Robust Wald = 60.9. (2) If we test γ = 0, which is a test of the adequacy 

of the KGMHLBC model, we have LR = 363.2, Wald = 82.2, Robust Wald = 49.1. (3) If we 

test δ = 0, which is a test of the adequacy of the RSCFG-µ model, we have LR = 115.2, 

Wald = 80.5, and Robust Wald = 33.6. All of these values are significant at any reasonable 

level (e.g. the 99% critical value of a chi-squared with five degrees of freedom is 15.1). 

 

To test the adequacy of the RSCFG model, we test µ = 0. As discussed above, δ is not 

identified when µ = 0 and so we need to specify something about δ to conduct the test. (1) 

If we test µ = 0 while asserting that δ = γ, we are interested in the significance of µ in the 

scaled Stevenson model. Here the LR statistic equals 255.1, the Wald statistic equals 

18.1, and the Robust Wald statistic equals 4.29. (These are chi-squared statistics with one 

degree of freedom. For the Wald statistics they are just the square of the asymptotic t-

statistic given by the coefficient divided by its standard error. For the LR statistic, we 

compare the likelihood values of the RSCFG and scaled Stevenson model.) The Robust 



 

 14 

Wald statistic is significant at about the 95% level, whereas the other two are significant at 

any reasonable level. (2) If we test µ = 0 while asserting that δ = 0, we are interested in the 

significance of µ in the RSCFG-µ model. Now we have LR = 392.5, Wald = 69.5, and 

Robust Wald = 137.8, all of which are significant at any reasonable level. Thus the RSCFG 

model also appears to be rejected by the data, though the example indicates the ambiguity 

in the test due to the need to pick the model against which it is tested (i.e. to maintain an 

assumption that identifies δ). 

 

Clearly the data favor Wang’s model over any of its simpler competitors, including the 

scaled Stevenson model. It is also interesting to ask how these simpler models compare to 

each other. The scaled Stevenson model, the KGMHLBC model and the RSCFG-µ model 

have the same number of parameters.  These models are non-nested but we can 

legitimately compare likelihoods because they have the same number of parameters. The 

RSCFG-µ model is clearly favored by the data among this set of models because its 

likelihood value is considerably higher than for the other models in the set. The RSCFG 

model has one less parameter than these other models, and it is nested in both the 

RSCFG-µ model and the scaled Stevenson model, as the special case that µ = 0. This 

restriction is decisively rejected by the data. So, if we were not considering Wang’s model, 

we would conclude that the RSCFG-µ model is preferred. 

 

 

6.2 Indian farms 

 

Next we analyze the data used by Wang (2002), which was previously used by Battese 

and Coelli (1995). This is an unbalanced panel of N = 34 Indian farmers, observed for a 

maximum of 10 years. The actual number of observations is 271. The model is a 

production frontier with five inputs plus a time trend. There are three zit variables: AGE, the 

age of the farmer; SCHOOL, the number of years of schooling of the farmer; and YEAR, a 

time trend. More precise definitions of these variables and additional detail about the data 

are given in Wang (2002). 
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We estimate the same set of six models as for the previous data set. The results are in 

Table 3, which has essentially the same format as Table 2. We note that the variables 

AGE and SCHOOL individually do not generally have very high levels of statistical 

significance, whereas YEAR does achieve significance in most cases. 

 

We now test to the restrictions that would reduce Wang’s model to the simpler 

specifications. (1) We can reject Stevenson’s model (δ = γ = 0). We have LR = 15.3, Wald 

= 27.1 and Robust Wald = 44.2, whereas the 95% critical value of a chi-squared with six 

degrees of freedom is 12.6 and the 99% critical value is 16.8. (2) We can also reject the 

KGMHLBC model, with LR = 9.85, Wald = 16.2 and Robust Wald = 20.0, whereas the 95% 

critical value of a chi-squared with three degrees of freedom is 7.81 and the 99% critical 

value is 11.3. (3) If we test δ = 0, which is a test of the adequacy of the RSCFG-µ model, 

we have LR = 5.56, Wald = 4.51 and Robust Wald = 25.7, so we would reject the 

hypothesis using the Robust Wald test but accept it using the other two tests. (4) If we test 

δ = γ, which is the scaling hypothesis, we have LR = 5.87, Wald = 4.46 and Robust Wald = 

28.6, so again we would reject the hypothesis using the Robust Wald test but accept it 

using the other two tests.  

 

If we use the Robust Wald tests, therefore, we are simply left with the Wang model. If we 

use the LR or Wald tests, we can simplify to either the scaled Stevenson model or the 

RSCFG-µ model. In either case it is interesting to ask whether we can simplify further to 

the RSCFG model. It turns out that we can. The estimate of µ is very insignificant in the 

scaled Stevenson model, which means that we cannot reject the hypothesis that µ = 0 

while maintaining δ = γ. The estimate of µ is also very insignificant in the RSCFG-µ model, 

so that we cannot reject the hypothesis that µ = 0 while maintaining δ = 0. Thus the 

RSCFG model is not rejected by the data. Note that this is a scaling model. 

 

 

7. Concluding remarks 

 

This paper did four rather different things. First, it gave a systematic discussion of the 

scaling property and identified its advantages. Basically these are advantages of 
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convenience. Second, it identified some new models that may be empirically useful, 

notably the scaled Stevenson model. Third, it showed how the scaling property, and other 

interesting hypotheses, can be tested. Wang (2003) noted the prospect of some of these 

tests, but this paper provides some important additional technical detail, especially on 

testing the adequacy of the RSCFG model. Fourth, it pointed out that maximizing a 

likelihood based on an incorrect assumption of independence over time still leads to 

consistent estimates, but the standard errors of the estimates need to be corrected. This 

point is known in the econometric literature but its relevance to the frontiers literature 

seems to have previously not been appreciated. 

 

An important topic for further research would be to construct tests of the scaling property 

that do not hinge on a specific distributional assumption for technical inefficiency. This 

should be possible in principle. 
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Appendix   

Maximum Likelihood with Non-Independent Observation s 

Let the observed data be wit, i = 1,…,N, t = 1,…,T, and suppose that the density of wit is 

f(wit,θ).  We assume random sampling over i (that is, (wi1, wi2, …, wiT) is independent and 

identically distributed over i) but we do not assume independence over different values of 

t.  We define the “quasi-likelihood” as 

  ln L = Σi Σt ln f(wit,θ)        (A1) 

If we have independence over t, then L is the joint density of (wi1, wi2, …, wiT) and we 

would call ln L the likelihood.  However, if we do not have independence over t, then L is 

not the joint density of (wi1, wi2, …, wiT) and the phrase quasi-likelihood is used.  We will 

use the notation θ̂  to represent the “quasi-MLE,” which is the value that maximizes ln L in 

(A1), and θ0 will represent the true population value of θ. 

 We define the following notation: 

  Sit(θ) = ∂ln f(wit,θ)/∂θ   ,   Si(θ) = Σt Sit(θ)        (A2) 

  Hit(θ) = ∂Sit(θ)/∂θ′ = ∂2 ln f(wit,θ)/∂θ ∂θ′   ,   Hi(θ) = Σt Hit(θ)     (A3) 

  Ci(θ) = Si(θ)Si(θ)′ = Σt Σr Sit(θ) Sir(θ)′                               (A4) 

  H = E Hi(θ0)   ,   C = E Ci(θ0)                                    (A5) 

The quasi-MLE solves the equation:  Σi Si(θ̂ ) = 0.  The key to understanding its properties 

is to view it as a generalized method of moments (GMM) estimator based on the moment 

condition:  (A6) E Si(θ0) = 0 . 

 

The validity of this moment condition depends only on correct specification for each t 

separately, in the sense that f(wit,θ0) is the density of wit.  This implies that E Sit(θ0) = 0 for 

all t, and thus (A6) holds,  whether or not there is correlation over time.  Therefore the 

GMM estimator based on (A6), which is the quasi-MLE, is consistent if we have correct 

specification, even if there is correlation over time.  Standard GMM results indicate that the 

asymptotic variance matrix of θ̂  is given by 

  V(θ̂ ) = N-1 H-1 C H-1                                             (A7) 
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This is the “sandwich form” expression with C sandwiched between the H-1 terms.  Now let 

H and C be estimated by their sample equivalents: 

  Ĥ = N-1 Σi Hi(θ̂  )   ,  Ĉ = N-1 Σi Ci (θ̂  ) = N-1 Σi Σt Σr Sit(θ̂ ) Sir(θ̂ )′   (A8) 

Then we can estimate V(θ̂ ) consistently by 

  V̂ (θ̂ ) = N-1 Ĥ -1 Ĉ Ĥ -1  =  [ Σi  Hi(θ̂  ) ]-1 [Σi Ci (θ̂  ) ] [Σi  Hi(θ̂  ) ]-1       (A9) 

(The N-1 terms have cancelled.)  This is our “corrected” asymptotic variance formula. 

 

The sense in which this is a “corrected” formula is the following.  The standard 

(uncorrected) formula is the one that would assume independence over time.  In this case 

we would have E Sit(θ0) Sir(θ0)′ = 0 when t is not equal to r.  Correspondingly the double 

sum in the definition of Ĉ  in (A8) would reduce to a single sum: 

  Ĉ  = N-1 Σi Σt Sit(θ̂ ) Sit(θ̂ )′                                      (A10)  

(It is also the case that, under independence, H = C, so that the term H-1 C H-1 in (A7) can 

be reduced to either H-1 or C-1.  However, it is still not the case that Ĥ = Ĉ .  Therefore the 

“sandwich form” estimator as in (A9) is still recommended; just the form of Ĉ simplifies.) 

 

The most plausible departures from independence would involve positive correlations over 

t, for a given i.  For example, we expect technical inefficiency to correlate positively over 

time, because firms that are very inefficient (relative to other firms) this time period will 

probably also be very inefficient in other time periods.  So we expect Sit to correlate 

positively with Sir (with r not equal to t).  If so, Ĉ in (A8) will tend to be larger than Ĉ  in 

(A10), so that the “corrected” asymptotic variances will tend to be larger than the 

uncorrected ones.  Another way to say this is that, if there is correlation over time, the 

(uncorrected) estimated variances one obtains under the assumption of independence will 

be too small. 
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Université Catholique de Louvain. 

Simar, L, and P. Wilson (2003), “Estimation and Inference in Two-Stage, Semi-Parametric Models 
of Production Processes,” Discussion Paper No. 0307, Institut de Statistique, Université 
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Table 1. List of models 

Model N(µit, σit
2)+ 

 
Restrictions  

Mean Std. Deviation 
General Model (Wang)  µit = µ·exp(zit′δ) σit = σu·exp(zit′γ) 

RSCFG Model µ = 0 µit = 0 σit = σu·exp(zit′γ) 
KGMHLBC Model γ = 0 µit = µ·exp(zit′δ) σit = σu 

Scaled Stevenson Model δ = γ µit = µ·exp(zit′δ)  σit = σu·exp(zit′δ) 
RSCFG-µ Model δ = 0 µit = µ σit = σu·exp(zit′γ) 
Stevenson Model δ = γ = 0 µit = µ σit = σu 

ALS Model µ = γ = 0 µit = 0 σit = σu 
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Table 2. Results for Spanish banks 

   Model 1 
(Wang) 

 Model 2 
(Stevenson) 

 Model 3 
(Scaled Stevenson) 

           MLE  NLLS 
   Coeff. s.e. Robust 

s.e. 
 Coeff. s.e. Robust 

s.e. 
 Coeff. s.e. Robust 

s.e. 
 Coeff. s.e. 

 TREND  -0.002 0.021 0.018      0.027 0.011 0.015  0.032 0.084 
 MERGERS  0.122 0.032 0.069      0.018 0.014 0.030  0.100 0.020 
δ SIZE  -0.217 0.031 0.051      -0.221 0.025 0.051  -0.276 0.066 
 NBL  0.072 0.138 0.197      -0.239 0.063 0.150  -0.048 0.038 
 DEPOSITS  0.485 0.080 0.130      0.259 0.052 0.098  0.986 0.122 

 TREND  0.016 0.049 0.103      0.027 0.011 0.015  0.032 0.084 
 MERGERS  0.268 0.448 0.689      0.018 0.014 0.030  0.100 0.020 
γ SIZE  -0.409 0.076 0.164      -0.221 0.025 0.051  -0.276 0.066 
 NBL  -0.936 0.357 0.735      -0.239 0.063 0.150  -0.048 0.038 
 DEPOSITS  -2.464 0.342 0.636      0.259 0.052 0.098  0.986 0.122 

 σ  0.286 0.064 0.117  0.128 0.003 0.011  0.087 0.004 0.008    
 µ  0.392 0.069 0.088  0.547 4.726 0.075  1.090 0.256 0.507  0.163 0.293 

 lnL  867.160  524.168  740.897    

   
Model 4 

(KGMHLBC)  
Model 5 

(RSCFG-µµµµ)  
Model 6 

(RSCFG)    

                 
   

Coeff. s.e. 
Robust 

s.e.  Coeff. s.e. 
Robust 

s.e.  Coeff. s.e. 
Robust 

s.e. 
   

 TREND  0.036 0.023 0.045            
 MERGERS  0.092 0.068 0.175            
δ SIZE  -0.286 0.037 0.092            
 NBL  -0.094 0.149 0.497            
 DEPOSITS  0.953 0.188 0.486            

 TREND      0.031 0.032 0.046  0.047 0.044 0.076    
 MERGERS      0.577 0.342 0.801  0.702 0.350 0.589    
γ SIZE      -0.408 0.060 0.106  -0.717 0.066 0.093    
 NBL      -0.012 0.288 0.467  -1.230 0.357 0.805    
 DEPOSITS      -2.869 0.283 0.532  2.861 0.388 0.397    
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 σ  0.106 0.003 0.008  0.291 0.049 0.079  0.101 0.003 0.009    
 µ  0.172 0.060 0.177  1.208 0.145 0.103        

 lnL  685.582  809.584  613.342    
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Table 3. Results for Indian farms 
   Model 1 

(Wang) 
 Model 2 

(Stevenson) 
 Model 3 

(Scaled Stevenson) 

           MLE  NLLS 

   Coeff. s.e. Robust 
s.e. 

 Coeff. s.e. Robust 
s.e. 

 Coeff. s.e. Robust 
s.e. 

 Coeff. s.e. 

 AGE  -0.078 0.042 0.020      -0.004 0.005 0.006  -0.168 0.000 
δ SCHOOL  -0.281 0.213 0.138      -0.005 0.026 0.031  -0.268 0.137 
 YEAR  0.256 0.199 0.111      -0.082 0.030 0.030  1.763 0.680 

 AGE  0.002 0.005 0.005      -0.004 0.005 0.006  -0.168 0.000 
γ SCHOOL  0.011 0.024 0.027      -0.005 0.026 0.031  -0.268 0.137 
 YEAR  -0.100 0.026 0.023      -0.082 0.030 0.030  1.763 0.680 

 σ  0.709 0.222 0.199  1.118 1.000 0.678  1.389 0.911 0.724    
 µ  1.212 1.660 1.447  -3.223 7.491 5.190  -1.721 3.611 2.714  0.000 2.135 

 lnL  -83.944  -91.610  -86.879    

           

   
Model 4 

(KGMHLBC)  
Model 5 

(RSCFG-µµµµ)  
Model 6 

(RSCFG)    

                 
   Coeff. s.e. Robust 

s.e. 
 Coeff. s.e. Robust 

s.e. 
 Coeff. s.e. Robust 

s.e. 
   

 AGE  0.027 0.027 0.025            
δ SCHOOL  0.175 0.119 0.108            
 YEAR  -0.490 0.240 0.121            

 AGE      -0.003 0.004 0.004  -0.004 0.004 0.005    
γ SCHOOL      -0.004 0.019 0.023  -0.004 0.022 0.027    
 YEAR      -0.060 0.025 0.025  -0.076 0.024 0.027    

 σ  0.502 0.036 0.029  1.177 0.479 0.364  0.935 0.241 0.265    
 µ  0.100 0.204 0.199  -0.898 1.564 1.082        

 lnL  -88.871  -86.722  -87.376    

 


