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1. Introduction 

 

Production uncertainty and risk attitudes play a crucial role in producer decision 

making. When output is uncertain, risk-averse producers will take account not only of 

the expected output to be generated from a given input vector but also of the variability 

of this output. Thus, risk considerations will be a factor when choosing between 

production plans and hence will have influenced observed production results. It seems 

only natural therefore that they be taken into consideration when the production 

performance of producers is being evaluated. For example, it is well-known from 

banking and finance that choosing a more risky production plan which provides a 

higher expected profit may lead to a firm having a lower market value than if it chose a 

less risky plan with a lower expected profit (see, for instance, Hughes et al., 2000, and 

references therein). One of the most frequently used methods of measuring production 

performance is to construct a total factor productivity (TFP) index. However, if 

production performance is evaluated on the basis of a TFP measure based only on the 

level of expected output (which is one of the most widely-used methods), a higher 

measure would tend to be assigned to the risky plan, whereas it is clear that not all 

observers would agree that this represents better performance. To take an example 

from agricultural economics, consider the decision of a farmer to use pesticides. This 

will increase his input use and may not have much of an effect on his expected level of 

output, so a TFP index based on expected output will show a decrease. However, as 

the effect of the pesticide will probably be a significant decrease in output variability, 

the risk-averse producer (and many outside observers) will consider his production 

situation to be much better. 

  

What these examples illustrate is that productivity measures based solely on the levels 

of output provide a somewhat incomplete method of evaluating producer performance 

when producers who are not risk neutral face production uncertainty. While much has 

been written on the measurement of productivity growth and its decomposition (see 

Morrison, 1993, Lovell, 1996, and Balk, 2003, for surveys), little attention has been paid 

in this literature to the role of production risk. Our aim in this paper is to construct a 

measure of production performance which incorporates production risk, where the 

impact of risk on performance depends on the producer’s risk preferences. Using 

standard concepts from the literature on uncertainty, we introduce a measure of total 

factor productivity growth which takes these risk considerations into account and go on 
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to show how the measure can be decomposed in order to identify the relative 

importance of its constituent factors. 

  

To achieve this objective, we exploit the narrow relationship between productivity 

measures and welfare, highlighted recently by Hulten (2001) and Basu and Fernald 

(2002). While the former pointed out that welfare is restricted by the level of productivity 

(i.e. productivity represents a restriction on welfare maximization), the latter show that 

productivity itself can be viewed as a welfare measure. Here we use risk preferences to 

comprise expected output and the risk of output into an aggregated output. In this 

sense, our extended productivity index forms a welfare-type measure: a higher value of 

the index represents a higher utility level for the producer. 

 

The paper is organised as follows. In section 2 we revise how total factor productivity 

growth is decomposed using parametric methods when output risk plays no role. In 

section 3 we discuss the role that output risk and risk preferences play when 

interpreting TFP indices as indicators of production performance. An index of TFP 

growth which takes these risk considerations into account is proposed and 

decomposed in section 4. Some issues surrounding the empirical implementation of 

the index are discussed in section 5. In section 6 an empirical application is presented, 

where the index is calculated and decomposed for a panel of Spanish dairy farms. 

Section 6 concludes and points to possible extensions of this work. 

 

 

2. Measuring productivity growth ignoring uncertain ty 

 

While a variety of different approaches to productivity growth decomposition such as 

growth accounting and DEA exist, our focus is on parametric methods. The parametric 

literature on productivity growth decomposition usually assumes that output is 

generated by the following stochastic production function: 

vxfvxFy +== )(),(      (1) 

where F(x,v) is the stochastic version of the production function, f(x) is the deterministic 

part of production, y is the output, x = (x1….xK) is a vector of K inputs, and v is a 

random noise term. Under the classical assumptions of strict exogeneity and 

(conditional) homoskedasticity, we have that:  
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0)|( =xvE          (2) 

22 )|()|( σ== xvExvVar                (3) 

Though production uncertainty exists, standard practice in productivity growth 

decomposition is to proceed as if the output generating process were deterministic. 

This is justified by the assumption in (2), as the effect of the random noise on 

production change disappears when averaging over time or firms. Thus, the error term 

and hence uncertainty are ignored. Assuming that there is only one input in order to 

keep the discussion simple, total factor productivity is measured by the ratio: 

x

xyE

x

xf
TFP

)|()( ==               (4) 

Therefore, ignoring uncertainty, total factor productivity can be interpreted as an 

expected average productivity ratio, given (i.e. conditional on) the input level.1 

Differentiating with respect to time and dividing by the productivity level we can express 

the rate of growth of total factor productivity as: 

x

dtdx

xyE

dtxydE

TFP

dtdTFP −=
)|(

)|(
          (5) 

or in dot notation 

x

x

xyE

xyE

TFP

TFP
...

)|(

)|( −=          (6) 

Total factor productivity growth is thus defined as the rate of growth of expected output 

minus the rate of growth in the input usage. Hence, changes in TFP capture changes in 

expected average productivity. Expected average productivity may change due to the 

effect of non-constant returns to scale when the input level expands over time. We 

show in Appendix A that (4) can be decomposed as: 

                                                
1 Total factor productivity can also be measured in terms of actual output rather than expected 
output, that is, as the ratio F(x,v)/x, where F(x,v) is the random production function (1). Since 
this index depends explicitly on the production disturbance, it can be interpreted as an ex post 
average productivity measure. This measure reflects the “appropriate” productivity when the 
production disturbance is known. However, in many production problems, firms’ decisions are 
made ex ante, i.e. before the realization of the production disturbance, so productivity must be 
defined in terms of conditional expected output. For this reason we prefer to present the 
classical regression assumptions (2) and (3) using conditional notation instead of the more 
usual E(v)=0 and Var(v)=σ2, and we maintain this notation when defining TFP. 
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x

x

TFP

TFP
..

)1( −= ε      (7) 

where xf ln(·)ln ∂∂=ε  is the scale elasticity. The term on the right-hand side 

measures the contribution of changes in scale efficiency when outputs expand over 

time (i.e. movements along the production function) and the technology exhibits 

increasing or decreasing returns to scale. This term depends on the degree of returns 

to scale, measured as the scale elasticity minus one. Increasing and decreasing scale 

economies are indicated by a positive value and negative value respectively. Hence, 

an expansion in input use leads to an increase (decrease) in productivity when 

increasing (decreasing) returns to scale exist. As illustrated in Figure 1, equation (7) 

can be easily extended to account the effect of other exogeous variables not treated as 

traditional inputs, such as, technical change, enviromental variables or 

regulatory/institutional variables, and multiple inputs can also be easily incorporated 

(see Appendix A). 

 

 

3. Incorporating production risk and risk preferenc es 

 

The value attributed to production performance as expressed by the measure of the 

total factor productivity growth in (6) is defined exclusively in terms of the growth of the 

level of expected output, with output risk playing no role. As a measure of performance, 

(6) effectively assumes that producers are risk neutral - only then can a positive 

productivity growth according to (6) be unambiguously associated with an improvement 

in production performance. If producers are not risk neutral, then they will be 

concerned not only about the effects on expected output but also about risk properties 

when they choose input levels and/or they consider the adoption of potentially risk-

reducing or risk-increasing technologies.2 A growth in TFP according to (6) may 

therefore not necessarily be perceived as positive from the perspective of the producer 

or an observer.3  

                                                
2 Formally, if production is stochastic then these agents will be concerned not only with the first 
moment of the output distribution but also with the second and possibly higher moments.  
3 For example, changes in input usage, or technical change, which increase expected output 
such that TFP rises according to (6) may lead to increases in output risk (“risk-increasing 
inputs”) that makes a risk-averse producer perceive his situation to be worse than before. 
Equation (6) would therefore overstate the producer’s performance (or understate it if the 
producer were a risk lover).  
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We illustrate some of the issues outlined in the above discussion using Figure 2, which 

represents the case of a producer who produces output with a single input, using a 

constant returns to scale technology where expected output is represented by f(x). 

From time t to time t+1 the producer increases input use from xt to xt+1. Conditional on 

input usage, expected output increases from Et(y|xt) to Et+1(y|xt+1), moving from point A 

to point B. According to the TFP index in (6), we see no change in the producer’s 

productivity performance. Now introduce production risk, which will take the form of 

(conditional) output variability.The input x is therefore risk increasing as can be seen by 

the fact that vart+1(y|xt+1) = cd > ab = vart(y|xt).
4 Hence, if the producer is not risk 

neutral, he will not regard his production performance as being the same in both 

periods. In particular, if he were risk-averse, he would consider that his performance in 

terms of productivity in time t+1 has worsened with respect to time t. It could also be 

the case that the production risk does not change but that risk preferences do. Thus, 

take the case of a producer who operates at one of the points, say A, in both periods. If 

he is more risk-averse in time t+1 then he will consider his production situation to have 

worsened, whereas a TFP index such as (6) which ignores preferences will not reflect 

this. 

 

Thus, the measure in (6) is somewhat incomplete when we recognise that producers 

may not be risk neutral. The question then arises as to how it can be extended to take 

these factors into account and thereby give a fuller picture of the productivity 

performance of producers. In general terms, a measure of productivity growth under 

uncertainty (TFPU) will be a function of a total factor productivity measure under 

certainty (TFP), an output risk measure (expressed in terms of some function of output 

variance) and a risk preference measure (based on the parameters of the producer’s 

utility function). The next step therefore is to propose a specific, calculable index which 

incorporates these features. 

 

 

4. Decomposition of productivity growth with produc tion risk 

 

                                                
4 Note that input x is risk increasing if we define production risk in either absolute terms (as the 
conditional variance of output) or relative terms (using the coefficient of variation). 
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Given that risk-averse producers will be concerned not only with expected output but 

will take account of production risk, the question then is how to adjust expected output 

so that a more meaningful measure of production performance can be achieved. 

Assuming that producers maximize the expected utility of profits, this issue can be 

approached by asking what level of certain output would provide the producer with the 

same expected utility as that of a stochastic output which has mean E(y|x) but positive 

variance. The literature on uncertainty provides an answer to this question through the 

concepts of certainty equivalent and risk premium.  

 

We begin by assuming that producers have access to an input x (which, for notational 

ease, is assumed again to be a scalar) that gives rise to a conditional distribution of 

output with expected value E(y|x) and variance σ2(y|x). When output and input prices 

are exogenous, expected profit for any level x of the choice variable x is defined as 

wxypEE −= )x|()x|(π . Thus, an increase in x will contribute to expected profits 

through E(y|x). However, the choice of x also affects the variability of profits, as the 

variance of profits is p2σ2(y|x). The increases in the mean and variance of profits will 

both affect the utility of the producer. The Certainty Equivalent of profits, CE(π|x), is the 

level of riskless profit which would provide the producer with the same level of utility as 

the expected utility associated with the uncertain profit. Therefore, for any given choice 

of the input, x, there exists an output level y*(x) such that wx)x(*py)x|π(CE −= . 

Here, y*(x) represents the Certainty Equivalent in output terms, CE(y|x). That is, having 

chosen x, y*(x) is the amount of certain output that corresponds to a level of profits 

which generates the same utility as the expected utility of profits when production is 

stochastic. On the other hand, the Risk Premium in terms of profits, RP(π|x), defined 

as the difference between the expected profit under uncertainty and its certainty 

equivalent, represents the amount of profit that the producer would be willing to forego 

to avoid the risk, i.e. the cost of risk. By definition, having chosen x, 

[ ])(*)x|()x|()x|()x|( xyyEpCEwxypERP −⋅=−−≡ ππ . The term in brackets 

thus represents the amount in terms of output that the producer is willing to pay to 

avoid the risk arising from the stochastic nature of output. As such, it represents the 

Risk Premium in terms of output, RP(y|x).  

 

Having defined the concepts of risk premium and certainty equivalent in terms of 

outputs, we now proceed to incorporate these into a measure of productivity 
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performance.5 In line with the above, the risk premium in output terms RP(y|x) is 

defined as:  

)|()|()|( xyCExyExyRP −=          (8) 

Following Pratt (1964), the risk premium can be approximated as: 

ArxyxyRP )·|()|( 2
2
1 σ≈                        (9) 

where rA is the Arrow-Pratt measure of absolute risk aversion in output terms.6 In the 

analysis which follows, it will prove useful to consider the proportional risk premium, i.e. 

the fraction of output that the producer is willing to forego in order to avoid uncertainty. 

For a small variance, this is approximated by  

Rrm
xyE

xyRP 2
2
1

)|(

)|( ≈                  (10) 

where )x|y(E)x|y(σm =  stands for the coefficient of variation and 

)x|y(Err AR ⋅=  is the coefficient of relative risk aversion.7 Given that the risk premium 

measures the cost perceived by the producer of the risk associated with the conditional 

distribution of output, then expected output should be adjusted accordingly in order to 

provide a production performance measure under uncertainty. Clearly, the larger the 

risk premium, and hence the lower the certainty equivalent, the stronger is the negative 

impact of risk on producers and the worse is his perception of his performance.8 If the 

risk premium is zero, on the other hand, then risk plays no role in the producer’s 

valuation and he will be concerned only with the expected output, which in this case 

coincides with the certainty equivalent.  

 

In line with the above, the appropriate index of TFPU can be expressed as:  

x

xyCE

x

xyRPxyE
TFPU

)|()|()|( =−=     (11) 

                                                
5 The idea of using the certainty equivalent to incorporate production risk into a productivity 
growth index was also discussed by Buccola (2002), but in a profit function framework 
6 We discuss in Appendix B how to get risk aversion coefficients in output terms from risk 
aversion coefficients in profit terms that corresponds to profit maximising producers.   
7 Thus, RP(y|x)/E(y|x) is proportional to the square of the coefficient of variation.  
8 From the definition of RP, this increased negative impact may be due to either an increase in 
risk, an increase in the producer’s aversion to risk, or a combination of both factors. 



9 
 

where the substitution of expected output by the certainty equivalent brings with it the 

incorporation of the degree of risk and risk preferences to our measure. To express this 

index in detail, we begin with the identity: 

)|(

)|()|()|(

xyE

xyCE

x

xyE

x

xyCE ≡                 (12) 

Using (8) and substituting for the proportional risk premium from (10) 

Rrm
xyE

xyCE 2
2
11

)|(

)|( −=         (13) 

Thus, substituting (13) into (12), yields the following index of TFP under uncertainty: 

[ ]Rrm
x

xyE
TFPU 2

2
11·

)|( −=                    (14) 

where the expression in brackets represents the certainty equivalent output expressed 

as a proportion of expected output. It can be seen that TFPU is expressed in terms of 

an adjustment to the certainty TFP index, with the direction and magnitude of this 

adjustment depending on the size of relative risk (as represented by the coefficient of 

variation m) and the nature of the producer’s preferences towards risk. The latter is 

reflected in the sign and magnitude of the coefficient of relative risk aversion, rR. As this 

coefficient can take values greater, less than, or equal to zero whenever the producer 

is risk-averse, risk-loving, or risk-neutral respectively, the CE expressed as a proportion 

of expected output can be greater, less than or equal to one, and hence TFPU can be 

greater, less than or equal to the certainty TFP index.  

 

It is worth emphasizing that equation (14) can still be interpreted as a ratio between 

output and input levels, i.e. as a traditional average productivity measure. In particular, 

the numerator in (14) times the expression in brackets can be viewed as an 

“aggregate” output that incorporates the various facets of the productive process 

discussed earlier.9 That is, this “aggregate” output reflects not only the expected output 

level (like a certainty TFP index) but also the existence of production risk. This risk, in 

turn, is evaluated taking into account the degree of risk aversion of the producer.10  

                                                
9 Recall that, in (14), the product of the term in brackets and the numerator is the certainty 
equivalent output, and hence denotes a level of output. 
10 In accordance with the discussion surrounding Figure 2, in the presence of production 
uncertainty a producer who is risk-averse and has an expected output Et(y|xt) from the input 
vector xt will receive a lower valuation under TFPU than he would receive under TFP, reflecting 
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Changes in (14) will thus accurately reflect changes in producer performance as 

changes in risk and/or producer preferences towards this risk will be accounted for. It 

should also be clear that, conditional on input levels, the TFPU index forms a welfare 

measure in the sense that a higher value of the index corresponds to a higher 

conditional certainty equivalent of output which in turn, for given input and output 

prices, corresponds to a higher certainty equivalent in profits. As utility is monotonically 

increasing in the certainty equivalent of profits, higher values of TFPU therefore 

correspond to a higher utility level for the producer. 

  

Finally, some words are in order regarding the fact that the index is constructed 

conditional on input levels. The denominator in (14) is the observed input level, so the 

effect of unobservable inputs is accounted for in the numerator only. However, while 

inputs are taken as given, it is worth re-emphasizing that the same level of inputs can 

give rise to different values of the TFPU index through the role of preferences. Take, 

for example, the case of a risk-neutral producer and another producer who is non risk-

neutral but does not know how to reduce (to increase) production risk by adjusting the 

input levels (we will label this producer “myopic''). Since neither producer takes the risk 

effect of inputs into account, the optimal input level and, hence, the TFP (growth) are 

the same for both risk-neutral and myopic producers. However, if the myopic producer 

is risk-averse (risk-loving), the risk level faced is negatively (positively) valued by the 

myopic producer, so his TFPU valuation will be lower (higher) than that of the neutral 

producer. 

  

When producers are neither risk-neutral nor myopic, the input levels chosen by these 

producers are different from those selected by a neutral or a myopic producer. In this 

case, the observed production-risk level (measured by the coefficient of variation, m) 

faced by a risk-averse producer will be lower than that faced by a risk-neutral or a 

myopic producer. Thus, if the technology exhibits constant returns to scale (i.e. TFP is 

invariant), the index value of a risk-averse and non-myopic producer is higher than that 

for a myopic producer that has not managed his inputs in order to control output risk. In 

this sense, since our TFPU index is constructed conditional on input levels, and these 

levels have been adjusted, equation (14) give us a risk-adjusted measure of total factor 

productivity for those producers that have already partially adjusted their inputs levels. 

                                                                                                                                          
the negative influence of risk. In the absence of risk (m = 0) or if the producer is risk neutral (rR = 
0), the valuation of productive performance is the same. 
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To analyse TFPU growth, we first express (14) in logarithmic terms: 

[ ] 




 −+−= R
2rm

2
1

1lnlnxx)|lnE(ylnTFPU            (15) 

Differentiating (15) with respect to time,  

[ ]
dt

rm
2
1

-1dln

dt
lnxx)|lnE(yd

dt
dlnTFPU R

2







+=      (16) 

and substituting from (6), we get: 

dt

rm
2
1

1dln R
2






 −
+=

..

TFP

TFP

TFPU

TFPU
    (17) 

Carrying out the differentiation of the second term on the right-hand side, (17) can be 

expressed as: 














+⋅−=

....

2

1

m

m

r

r
W

TFP

TFP

TFPU

TFPU

R

R              (18) 

where ( ) 12
2
12 1

−−= RR rmmrW . The growth of TFPU is thus expressed in terms of an 

adjustment to TFP growth, where the adjustment takes the form of a term involving the 

growth of risk and changes in preferences weighted by a factor, W, comprising the 

initial levels of risk aversion, magnitude of risk, and the expected output as a proportion 

of the CE.  

 

From (18) it is clear that if the producer is risk neutral (rR = 0), then the second term on 

the right-hand side disappears and productivity growth under uncertainty and certainty 

coincide. Moreover, if there is no production risk (m = 0) the certainty and uncertainty 

measures again coincide. Assume now that the producer is risk-averse so that rR > 0. 

Then, for a given production risk (m > 0), an increase in risk aversion ( RR rr /
.

 > 0) 

causes the second term on the right-hand side to be negative and 

TFPTFPTFPUTFPU //
..

< . An increase in production risk ( mm/
.

 > 0) will have the 

same effect as the second term will again be negative.  
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The decomposition above is developed in general terms, so in principle it can be 

applied for any functional form of the stochastic production technology, F(x,v). 

However, in order to get an estimate of the underlying technology, some restrictions 

should be imposed on the structural form of the production function, which in turn will 

allow us to extend the decomposition in (18). One of the more popular forms for F(x,v) 

is that proposed by Just and Pope (1978). These authors suggested a series of 

desirable properties that a stochastic production function should have and introduced a 

production function that accommodates both risk-increasing and risk-decreasing inputs. 

In particular, input usage can affect both the mean and variance of output, with no a 

priori restrictions placed on the risk effects of inputs (i.e kxy ∂∂ )var(  can take any 

sign). 

 

The Just-Pope production function has the general form: 

vxhxfy ⋅+= 2
1

)()(      (19) 

where again we assume strict exogeneity and conditional homoskedasticity on the 

random noise term (v). Thus, the conditional output standard error can be written as: 

2/1)|var()()|( 2
1

xvwherexhxy vv =⋅= σσσ   (20) 

Taking logs in (20) and differentiating with respect to time, we get that the increase in 

(relative) production risk can be decomposed as: 

( )
..

x

x

m

m εη −=               (21) 

where xln(·)hln5.0 ∂∂⋅=η  is the elasticity of the conditional output standard 

deviation with respect to the input.11 Introducing equations (7) and (21) into (18) we 

get the overall decomposition of total factor productivity growth under production 

risk: 

                                                
11 This decomposition can be easily extended to account for multiple inputs and other exogeous 
variables as:  

( ) ( )
.

zz
k

k

.
K

1k
kk

.

zεη
x
x

εη
m
m −+−= ∑

=
 

where ηk  and εk are respectively the elasticity of h(·) and f(·) with respect to the kth input.  
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( ) ( )













−+⋅−−=

....

2

1
1

x

x

r

r
W

x

x

TFPU

TFPU

R

R εηε     (22) 

where the contributions of scale effects to both expected output and output risk are 

made explicit.  

 

Note that input x is risk increasing (reducing) in relative terms if η >(<) ε. It is thus made 

explicit that changes in input usage not only affect expected output (as captured in the 

traditional productivity growth under certainty) but may also affect the variance (and 

hence the risk) of output, and a risk-averse producer will take both considerations into 

account when planning input use. 

 

 

5. Some estimation issues 

 

As was mentioned before, the application of the proposed decomposition requires 

imposing some structural restrictions on F(x,v). For instance, since Just and Pope, a 

separability restriction such as that in (19) is often imposed on F(x,v) in order to 

distinguish the input’s marginal effects on expected output from its impact on 

production risk (see Love and Buccola, 1991).12  

 

Just and Pope suggested estimating the production function (19) in two stages, where 

the mean function and the variance (risk) function are estimated separately.13 The 

procedure involves estimating the mean function, and then fitting the variance function 

through a regression on residuals. That is, rewrite the production function (19) as: 

uxfy += )(       (23) 

                                                
12 Other authors (e.g. Newbery and Stiglitz, 1981) have argued for a production function of the 
form Y=f(x)·g(z,v), where z is a vector of stochastic inputs, such as rainfall. The main 
disadvantage of this multiplicative model over the additive model in (19) is that input's marginal 
effects on variance is a function of its marginal effect on mean, which makes difficult the 
estimation of both technology and preference parameters.  
13 Both the mean function and the variance function can also be estimated by FGLS and ML 
techniques (see, for instance, Harvey, 1976 and Saha et al., 1997). The ML estimator provides 
asymptotically more efficient estimates of the variance function than FGLS. However, a problem 
with the ML estimator is that parameters often do not converge. 
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where vxhu ⋅= 2

1

)( . The presence of production risk makes the stochastic term u 

heteroscedastic. However, the parameters of the mean function can be consistently 

estimated using just the production function, even without correcting for 

heteroscedasticity, under the assumption of exogeous regressors.14 If panel data is 

available, the mean function equation can be also extended by including a firm-specific 

effect in order to account for possible endogeneity problems due to the fact that there 

may be non-controllable and unobservable inputs (e.g. rainfall) that might be correlated 

with some of the observed inputs (foodstuffs, irrigation,..). In the context of recent 

developments in production theory where uncertainty is modelled in a state-contingent 

framework, these firm-specific effects could be interpreted as variables which capture 

the average state of nature faced by the firm over the period under review.15      

 

Given the estimate of f(x) one can obtain the estimated residuals )(ˆˆ xfyu −= . An 

estimate of the variance can then be obtained from a regression of the logarithm of the 

square of û  on the input set in a second step, that is: 

ψ+= )(ln)ˆln( 2 xhu      (24) 

where Ψ is an error term. As in the mean function equation, this specification can be 

also extended, if panel data is available, by including a firm-specific effect in order to 

account unobservable variables that might be correlated with the observed inputs. 

 

On the other hand, the application of the proposed decomposition requires not only an 

estimate of the underlying technology, but also the coefficient of relative risk aversion. 

The introduction of this coefficient will depend on the perspective from which 

productivity performance is being evaluated. If the evaluation is being carried out by 

some interested observer, such as for example a sector's regulator or the managing 

director of a firm who is evaluating the performance of subsidiaries or branches, then 

                                                
14 Such an assumption can be made when firms' decisions are made ex ante, i.e. before the 
realization of the production disturbance (see Blair and Lusky, 1975). See also Shankar and 
Nelson (1999) and Love and Buccola (1999) regarding the controversy on consistency of the 
estimators obtained from (23) alone. 
15 This is similar to the one of the basic models in a recent paper on state-contingent analysis of 
production risk by O'Donnell and Griffiths (2005) where the effects of changes in the states of 
nature are captured by (changes in) the intercept term. In a more general model in the same 
paper, these authors extend their analysis to allow the parameters of the inputs to vary with 
states of nature. 
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(an estimate of) only the observer's risk aversion can be used.16 In this case we can 

calibrate the theoretical decomposition under different assumptions/conjectures on the 

degree of risk aversion of producers. Thus, when calculating (22) we impose a 

common degree of risk aversion on each producer which corresponds to that of the 

observer. 

 

If we are interested in estimating how the individual producers evaluate their 

performance, we need estimates of each producers's risk preferences. These 

preferences can be aproximated using information from other sources, such as 

interviews, questionnaires, etc. Otherwise, they must be estimated. However, the 

estimation of the individual's risk preferences requires not only imposing more 

assumptions (for instance, on producer's behaviour or the risk preference function, 

quasi-fixed inputs, etc.), but also using more information relevant to firm or household 

optimal choices (such as input and output prices). This kind of information might be not 

available in many applications. If data on input and output prices is available, the 

estimation of firm preferences is often based on a system of input demand equations. 

  

In order to estimate producer risk preferences, we follow Kumbhakar (2002) and Love 

and Buccola (1991) by assuming that firms maximise the expected utility of anticipated 

profit, E[U(π)] - which is equivalent to maximising the utility of the certainty equivalent 

of profits - where anticipated profit is normalised by the output price so that π = y – wּx 

= xwvxhxf ⋅−⋅+ 2

1

)()( , with w representing the input prices relative to output price. 

The first order conditions of this maximization problem can be written as: 
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where wk is the kth input price relative to the output price and [ ] [ ])π('UEv)π('UEθ ⋅=  

is a risk preference function. This function takes values less than, equal to or higher 

than zero when producers are risk averse, risk neutral or risk loving respectively (see 

Chambers, 1983). Love and Buccola (1991) show that under negative exponential 

utility, the risk preference function can be expressed as ππ σµθ ⋅= )(Ar , where σπ is 

                                                
16 Note that this is equivalent to analysing how the producers themselves would evaluate their 
performance under the assumption that they all have the same risk preferences. 
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the standard deviation of profit, and )(')('')( πππ µµµ UUrA =  is the Arrow-Pratt 

coefficient of absolute risk aversion where xwxf ⋅−= )(πµ . Thus, the system of input 

demands (25) to be estimated is:  
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This system can be estimated jointly with the Just and Pope stochastic production 

function (see, for instance, Love and Buccola, 1991; Saha, Shumway, and Talpaz, 

1994) or alone, replacing the mean and variance marginal products by their predicted 

values from the previous estimation of the mean and variance function, (23) and (24). 

Both approaches have their own relative advantages and disadvantages. While the 

joint estimation approach yields more efficient (and, if some inputs are endogenous, 

consistent) estimators, the technological parameter estimates, i.e. the mean and 

variance function, might be biased if the additional assumptions required by (26) are 

not satisfied or input and output price information is not believable. 

 

Finally, note that the Arrow-Pratt coefficient of relative risk aversion (RRA) is 

πππ µµµ ⋅= )()( AR rr . However, this coefficient is defined in terms of profits whereas in 

(22) the RRA coefficient (rR) is defined in terms of output. In Appendix B we show that 

the RRA coefficient in output terms is the RRA coefficient in profit terms mutliplied by 

the ratio of expected revenue ( revµ ) to expected profits ( πµ ). This provides the last 

component needed to construct the TFPU index. 

 

In the next section we present an empirical application where we compare the growth 

of TFPU with that of TFP ignoring risk. Clearly, the application of the proposed 

decomposition requires estimates of the coefficient of relative risk aversion. While the 

joint approach, though more involved, we have chosen the latter perspective to avoid 

contaminating the technological parameter estimates by introducing extra assumptions. 

 

 

6. Empirical illustration: Evidence from Spanish da iry farms 

 

In this section we calculate and compare TFPU growth with TFP growth using a panel 

data set of 71 dairy farms from Asturias, a northern region of Spain and a principal 
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producer of milk, covering the years 1993 to 1998. This dataset has several 

advantages for our purposes. Firstly, we can exploit the panel structure of the data in 

order to account for unobservable variables that might be correlated with the observed 

inputs. Secondly, we can compare our estimated technology with that obtained in 

previous papers dealing with the same sector in the same region. Thirdly, the output 

price and some input prices are available, so not only can we estimate the technology 

but also producers' risk preferences. Fourthly, even though farms' milk production is 

restricted by production quotas it shows a high variability, as suggested by the highly 

changeable annual milk per cow growth rates depicted in Figure 3, and the imprecise 

relationship between the partial productivities, as illustrated in Figure 4 for the case of 

feedstuffs. Finally, this industry is highly endebted, so revenue variability as a 

consequence of output risk might endanger farms' bank repayments. 

  

To calculate the TFPU and TFP indices, a Just-Pope production function is estimated 

in two stages. The procedure involves estimating the mean function (23), and then 

fitting the variance function (24) through a regression on residuals. Functional forms for 

the mean function, f(·), and the variance function, h(·), must be chosen and we choose 

a linear quadratic form for the mean function and a restricted linear quadratic form for 

the (logaritmth of the) variance function,17 where the variance function is given an 

exponential specification following Harvey (1976) in order to ensure positive output 

variances. In particular, the mean function to be estimated takes the form:  
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while the variance function can be expressed in log form as:  
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where the zt vector is a set of (T-1) time-dummy variables (i.e. zτt=1 if τ=t and zτt=0 

otherwise), which are included to capture time effects not accounted for by other 

regressors, and the firm-specific effects β0i and α0i are included respectively in the 

mean function and variance function in order to account for possible non-controlable 

and unobservable inputs, which we assume invariant over time. The following inputs 

                                                
17 Tveteras (2000) estimates Just-Pope production functions with linear quadratic, generalized 
Leontief and translog mean functions and shows that the estimates are not dramatically affected 
by the choice of functional form. 
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are considered: cattle (COWS), measured as the number of cows; chemical feedstuffs 

(FEED), measured in thousand of kilos; veterinary and medical expenses (VET); and 

artificial fertilizer (FERT), where the latter two variables are measured in monetary 

terms (in thousands of 1998 Euros).18  

 

The results of the estimation are shown in Table 1. Although our main interest in the 

parameter values is to use them to calculate the input elasticities, some comments on 

the estimates are in order. We first carried out an F test for the joint significance of the 

firm effects and there was strong support for the existence of a firm-specific effect in 

the data. Given the evidence in favour of a firm-specific effect, the question arises as to 

how to estimate these firm-specific effects. We carried out a Hausman test to check the 

hypothesis that the individual effects are uncorrelated with the observed inputs and this 

hypothesis was rejected. On the basis of this, the estimation of the mean function was 

carried out using a WITHIN estimator. Regarding the variance function, an F test could 

not reject the existence of a common constant in the data so a pooled OLS estimator 

was used. As the R2 statistic could be considered to be relatively low, we carried out an 

F test for the joint significance of the inputs. The hypothesis that the inputs are jointly 

insignificant was strongly rejected. 

 

The value of the inputs is expressed as deviations with respect to the arithmetic sample 

mean, so the first order coefficients can be interpreted as marginal productivities 

evaluated at that point. The estimates corresponding to the mean function show that it 

is well-behaved at the sample mean in that concavity in all inputs is complied with: all 

the first-order coefficients are positive and significant, and all the second-order 

coefficients are negative and significant, with the exception of fertilizer and cows for 

which a zero value cannot be rejected. The estimates show that cattle increase output 

variability. This result is to be expected as our data show that labour is invariant, so an 

increase in the number of cows would mean that managerial time is distributed over 

more animals, leading to a greater variability in milk production. Concentrate feed also 

increases variability. Veterinary expenses has a negative coefficient and thus reduce 

variability. 

                                                
18 Note that land and labour do not appear as inputs. While data were available for these inputs 
for each production unit, they were almost invariant over time (and, for the labour input, also 
across firms), so their effect on the f(·) and h(·) functions is captured through the firm-specific 
effects. Moreover, since both inputs were virtually invariant over time, they do not contribute to 
productivity change. 
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The average elasticities of the inputs in the mean and variance functions over the 

period, calculated on the basis of these estimates, are shown in Table 2. The sum of 

the mean function elasticities yields a scale elasticity of 1.005, implying the existence 

on average of constant returns to scale. The magnitude of these returns is slightly 

lower than that found in other empirical studies of dairy farms.19 Taking into account 

that the contributions of land and labour to RTS are excluded due to the fact that they 

are captured by the individual effects, our RTS are likely underestimated. However, our 

estimate of returns to scale is still comparable to those obtained in previous work on 

this regional sector. For example, Cuesta (2000) cannot reject constant returns to 

scale, while Álvarez and González (1999) and Orea, Roibás and Wall (2004) find 

evidence of moderate but significant increasing returns to scale.  

 

Regarding the variance function, it can be seen that fertilizer is the unique risk-reducing 

input while feedstuff and cows are the most risk-increasing in that they increase the 

variance of output. However, given that we define risk in relative terms (through the 

coefficient of variation), the effect of increases in the inputs on the TFPU index will 

depend on the relative magnitudes of the mean and standard deviation elasticities as 

well as on the sign of the standard deviation elasticity. The fact that veterinary 

expenditure has almost no effect on expected output but it has a negative effect on the 

variance function implies that increases in this input will tend to increase the TFPU 

indices for risk-averse producers. Cows also increases the variance function but this 

effect is smaller than that on the mean function, so increases in cows reduce the 

coefficient of variation and thus would increase the TFPU indices for risk-averse 

producers. Increases in the other two inputs, feed and fertilizer, on the other hand 

would have little effect on TFPU as their effect on both the mean and standard 

deviation function increase are quite similar. 

 

The final column shows the overall average effects of a scale increase. An increase in 

scale will lead to a greater proportional increase in the mean function compared with 

the variance function, so the riskiness of output will decrease. From this we can draw 

some policy implications. For example, in the EU there are voluntary abandonment 

schemes and similar type measures to encourage increases in farm size. These 

                                                
19 For example, Ahmad and Bravo-Ureta (1996) estimate a variety of different specifications for 
production functions for US dairy farms and find scale elasticities ranging from 1.04 to 1.15. 
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measures have been promoted with the aim of increasing average productivity. To 

evaluate such policies, not only the effect on average productivity (which is expected to 

be moderate) should be taken into account, but also their effect on risk. In the case the 

sector we study, increases in farm size will lead to additional gains in the form of a 

reduction in output risk, thus providing further justification for promoting policies to 

increase scale. 

 

The magnitude of the overall impact on TFPU from changes in input use will also 

depend on the degree of risk aversion, which, along with the magnitudes of the 

changes in the inputs, is the final component we need in order to calculate the TFPU 

indices. To incorporate risk preferences to our productivity measure, we first choose 

the simplest possible empirical specification of (26) to estimate risk preferences and 

then we aggregate these into two groups, “low risk aversion” and “moderate risk 

aversion”. In particular, we have estimated the system of equations (26),assuming that 

rA(µπ) is common to all firms and invariant over time. Thus, we assume constant 

absolute risk aversion, which in turn implies increasing relative risk aversion.  

 

We have obtained each farm's coefficient of absolute risk aversion, rA(µπ) by estimating 

the system of equations (26),20 where the mean and variance marginal products are 

replaced by their predicted values from the prior estimation of the mean and variance 

functions. This replacement induces, however, a measurement error bias that tends to 

reduce the value of the estimated rA(µπ) if this parameter is positive (i.e. if farms are 

risk averse). Hence, here we will get a lower bound for the risk aversion coefficient. 

The system (26) was estimated by three-stage least squares (3SLS) and the estimated 

rA(µπ) was 0.551 with a standard error of 0.068 (yielding a t-statistic of 8.079).  

 

The relative risk aversion coefficients rR(µπ) associated with the risk preference function 

θ(·) are depicted in Figure 5. The coefficient of relative risk aversion varies from 0.20 to 

8.94, with a mean estimate of 2.88. These values are similar to that found in the 

literature on risk aversion estimation in agriculture, where the relative risk aversion 

                                                
20 In order to estimate (26) we have considered three inputs as variable inputs: feedstuffs, 
veterinary and fertilizer expenses. Since the latter two variables are measured in monetary 
terms, their prices are normalized to be equal to one. All prices are expressed in real terms.  
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varies from 0 to over 7.5, but with a median estimate of close to 1 (see Chavas and 

Holt, 1996).21 

 

The average relative risk aversion coefficient of the first group (rR(µπ) = 1.70) and 

second group (rR(µπ) = 4.03) represent low and moderate risk aversion respectively. To 

convert these into relative risk aversion coefficients in terms of ouput, we have to 

multiply these figures by the ratio of expected revenue to expected profits as 

mentioned above and outlined in Appendix B. Using overall sectoral data we find that 

the average value of this ratio is 1.6422. Thus, low and moderate risk aversion in output 

terms will be represented by rR = 2.79, and rR = 6.61 respectively. 

 

The average TFPU rates of growth for the five annual periods corresponding to these 

two degrees of risk aversion are shown in Table 3, which also presents the TFP rates 

of growth as well as the changes in inputs and the contribution of these inputs and 

temporal effects on productivity growth. In order to implement the decomposition of 

TFPU, a discrete approximation to (22) has been made.  

 

While the absolute values of productivity change are relative small for the sector as a 

whole over the period studied, the results presented in Table 3 clearly show how the 

incorporation of risk preferences can affect the evaluation of a sector's productivity. The 

first block of Table 3 shows how inputs have changed over the period, and it can be 

seen that farms have expanded over time in that, with the exception of 1996/97 and the 

use of fertilizer in 1994/95, all inputs have risen for all years. The next block shows the 

evolution of average TFP growth. Two aspects here are worth highlighting. Firstly, the 

scale effect, which captures the effect of input growth on TFP growth, is relatively 

small. This is to be expected given that we have constant constant returns to scale. 

The exception is the final year, where the scale effect is much larger. This latter result 

is influenced by large changes in input use by a few farms which had significntly strong 

increasing returns to scale. Secondly, the temporal effect (loosely speaking, “technical 

change”), is generally much stronger than the scale efect. Finally, we note that average 

                                                
21 See also Table 2 in Saha et al (1994) for estimates of relative risk aversion coefficients from a 
variety of applied risk studies.   
22 Since many inputs in the sector under study can be considered quasi-fixed (see, for example, 
Maietta, 2000 and Reinhard and Thijssen, 2000), this ratio is obtained using variable profits 
rather than total profits as a denominator.  
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expected TFP growth was positive in all years except 1995/96, where there was a 

strong negative temporal effect. 

 

Given our assumption that risk preferences are invariant over time, the difference 

between the growths of TFP and TFPU basically depend on the the magnitude of the 

changes in output risk. The changes in output risk, measured by changes in the 

coefficient of variation, are shown in the table and have also been decomposed into a 

scale effect and a temporal effect. Except for the the year 1997/98, these two effects 

go in the same direction and thus reinforce each other. Again, the temporal effect is 

generally much higher. As is to be expected, in years when inputs expand, output risk 

as measured by the coefficient of variation falls. Furthermore, we observe large 

increases and descreases in output risk over the period analysed, ranging from 

decreases of over 20% in the first two years to an increase of over 46% in the year 

1996/97. 

 

Given the large changes in output risk experienced by producers, their perception of 

productivity performance will vary substantially from that implied by changes in TFP 

when they are risk averse. This is particulary well illustrated in the values of productivity 

change from 1996 to 1997. In this period, the TFP index, which ignores risk 

preferences, shows that productivity increased by 1.52%. However, the TFPU index 

shows that a moderately risk-averse observer would consider that productivity 

performance has actually worsened, with a change in the TFPU index of –0.06. 

Similarly, from 1997 to 1998, there was a small improvement in productivity 

performance according to the TFP index (an increase of 0.47%), whereas risk-averse 

observers would consider that productivity performance has worsened as illustrated bu 

the negative values of the TFPU index. The indices thus give very different pictures of 

productivity performance. 

 

Closer inspection of Table 3 provides explanations as to why the risk situation of 

producers changes from one period to the next. For example, in the period from 1996 

to 1997, there was a positive shock to production captured by the time dummy for 1997 

in the production function which produces an increase in TFP. However, at the same 

time the large value of the dummy variable for 1997 in the variance function reflects a 

shock to output variability which drives a large increase in the coefficient of variation of 

output, thus considerably worsening the risk situation of producers. 
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Overall, these results show that production risk can be significantly affected by scale 

(input) effects and exogenous (temporal) effects. This in turn will affect the evaluation 

of production performance, and therefore highlights the importance of accounting for 

risk and risk preferences in estimating and decomposing total factor productivity 

growth.  

 

 

7. Conclusions 

 

Focusing on physical production, in this paper we extend previous work on productivity 

measurement in order to incorporate the impact of risk on production performance. In 

this context, we outline certain desirable characteristics that we believe an index of 

total factor productivity under uncertainty should have if it is to capture the impact of 

risk on the production performance perceived by the producer. Drawing on familiar 

concepts from the literature on the measurement of risk aversion, a total factor 

productivity index under uncertainty is proposed. This index depends on input and 

output levels and risk preferences, and is decomposed in order to isolate the 

contributions of changes in scale (inputs) and in non-controllable variables (e.g. 

technical change) on both the expected and risky facets of production process. We 

conclude with an empirical application to dairy farms in Spain which illustrates how the 

incorporation of production risk, and risk preferences, provides a different picture of the 

sector's average production performance compared with that provided by a productivity 

index which uses only levels of output. 

  

The fact that the picture of a sector's production performance can substantially change 

when uncertainty is incorporated into the analysis has important policy implications. 

Care must be taken when considering or evaluating the impact of policy measures 

which affect production risk. If such measures are in place, use of a traditional 

productivity index based solely on levels of output may well show gains in productivity, 

whereas the picture may be very different if the policy measure has affected the 

variability of output as well. These measures may include promoting the introduction of 

new technologies; policy measures which affect scale by promoting increases in the 

average size of firms, such as voluntary abandonment schemes in agriculture; or 

measures which promote the substitution of certain inputs by others, such as replacing 
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pesticides with other less polluting inputs. Incorporation of the risk effects of a policy 

measure and the attitudes towards risk of the agents to be affected is crucial for a 

complete evaluation of the policy. 

  

There are several directions in which the research in this paper can be extended. The 

first is to allow for multiple outputs. This could be done by exploiting some of the recent 

primal representations introduced in the literature such as output-oriented distance 

functions (see Färe and Primont, 1995; Coelli and Perelman, 2000; Orea, 2002), and 

would allow us to study the risk implications of joint production. Second, our focus is on 

measuring physical production performance. Although this has the advantage that our 

productivity measure can be applied to any producer regardless of its final objectives 

(profit maximization, market share, social welfare maximization, etc), it is limiting in that 

the role of prices and price uncertainty are ignored (see Chambers, 1983, for a 

discussion of productivity and scale elasticities under output price uncertainty). The 

third related extension is to explicitly accommodate our model to the literature on the 

state-contingent treatment of production risk (see Chambers and Quiggin, 2000). The 

empirical side to this literature is still at a relatively incipient stage but is proving to be 

an exciting line of research in this field.  



25 
 

References 

Ahmad, M. and Bravo-Ureta, B.E., 1996. ‘Dairy farm technical efficiency measures using panel 
data and alternative model specifications’, Journal of Productivity Analysis, 7, 399-415.  

Álvarez, A. and González, E., 1999. ‘Using cross-section data to adjust technical efficiency 
indexes estimates with panel data’, American Journal of Agricultural Economics, 81, 894-
901.  

Anderson, J. R. and Dillon, J.L., 1992. ‘Risk analysis in dryland farming systems’, in Farming 
Systems Management Series, No. 2, Rome: FAO,. 

Balk, B.M., 2003. ‘The residual: on monitoring and benchmarking firms, industries, and 
economies with respect to productivity’, Journal of Productivity Analysis, 20, 5-47. 

Basu, S. and Fernald, J.G., 2002. ‘Aggregate productivity and aggregate technology’, European 
Economic Review, 46, 963-991. 

Blair, R. D., and Lusky, R., 1975. ‘A note on the influence of uncertainty on estimation of 
production function models’, Journal of Econometrics, 3, 391-394. 

Buccola, S. T., 2002. ‘Productivity Growth when output is risky’, Paper presented at the North 
American Productivity Workshop II, Schenectady, NY, June 20 - 22, 2002. 

Chambers, R. C., 1983. ‘Scale and productivity measurement under risk’, American Economic 
Review, 73, 802-805 

Chambers, R.C. and Quiggin, J., 2000. Uncertainty, production, choice, and agency : the state-
contingent approach, New York: Cambridge University Press.  

Chavas, J.P. and Holt, M.T., 1976. ‘Economic behavior under uncertainty: a joint analysis of risk 
preferences and technology’, Review of Economics and Statistics, 76, 329-335. 

Cuesta, R.A., 2000. ‘A production model with firm-specific temporal variation in technical 
efficiency: with application to Spanish dairy farms’, Journal of Productivity Analysis, 13, 
139-158. 

Coelli, T.J. and Perelman, S., 2000. ‘Technical efficiency of european railways: a distance 
function approach’, Applied Economics, 32, 1967-1976. 

Färe, R. and Primont, D., 1995. Multi-output production and duality: theory and applications, 
Boston/London/Dordrecht: Kluwer Academic Publishers.  

Harvey, A. C., 1976. ‘Estimating regression models with multiplicative heteroscedasticity’, 
Econometrica, 44 (3), 461-465. 

Hulten, C.R., 2001. ‘Total factor productivity: a short biography’, in C.R. Hulten, E.R. Dean and 
M.J. Harper (eds.), New developments in productivity analysis, studies in income and 
wealth, volume 63. Chicago and London: the University of Chicago Press.  

Just, R. E. and Pope, R.D., 1978. ‘Stochastic specification of production functions and economic 
implications’, Journal of Econometrics, 7, 67-86.  

Kumbhakar, S. C., 2002. ‘Specification and estimation of production risk, risk preferences and 
technical efficiency’, American Journal of Agricultural Economics, 84 (1), 8-22. 

Love, H.A. and Buccola, S.T., 1991. ‘Joint risk preference-technology estimation with a primal 
system’, American Journal of Agricultural Economics, 73, 765-774 

Love, H.A. and Buccola, S.T., 1999. ‘Joint risk preference-technology estimation with a primal 
system: reply’, American Journal of Agricultural Economics, 73, 765-74. 

Lovell, C.A.K., 1996. ‘Applying efficiency measurement techniques to measurement of 
productivity change’, Journal of Productivity Analysis, 7, 329-340.  



26 
 

Maietta, O.W., 2000. ‘The decomposition of cost efficiency into technical and allocative 
components with panel data of Italian farms’, European Review of Agricultural 
Economics, 27 (4), 473-495. 

Morrison, C.J., 1993. A Microeconomic Approach to the Measurement of Economic 
Performance: Productivity Growth, Capacity Utilization and Related Performance 
Indicators, New York: Springer-Verlag,). 

Newbery, D.M.G. and Stiglitz J.E., 1981. The Theory of Commodity Price Stabilization: A Study 
in the Economics of Risk, New York: Oxford University Press. 

O’Donnell, C.J. and Griffiths W., 2005. ‘Estimating State-Contingent Production Frontiers’, 
American Journal of Agricultural Economics (forthcoming). 

Orea, L., 2002. ‘Parametric decomposition of a generalized malmquist productivity index’, 
Journal of Productivity Analysis, 18, 5-22. 

Orea, L., Roibás, D. and Wall, A., 2004. ‘Choosing the technical efficiency orientation to analyze 
firms’ technology: a model selection approach’, Journal of Productivity Analysis, 22, 51-
71.  

Pratt, J. W., 1964. ‘Risk aversion in the small and in the large’, Econometrica, 32, 122-136. 

Reinhard, S. and Thijssen, G., 2000. ‘Nitrogen efficiency of Dutch dairy farms: a shadow cost 
system approach, European Review of Agricultural Economics, 27 (2), 167-186. 

Saha, A., Shumway, C.R. and Talpaz, H., 1994. ‘Joint estimation of risk preference structure 
and technology using expo-power utility’, American Journal of Agricultural Economics, 76, 
173-184. 

Shankar, B., and Nelson, C. H., 1999. ‘Joint risk preference-technology estimation with a primal 
system: comment’, American Journal of Agricultural Economics, 81, 241-244. 

Tveterås, R., 2000. ‘Flexible panel data models for risky production technologies with an 
application to salmon aquaculture’, Econometric Reviews, 19 (3), 367-389. 



Appendix A. Decomposing TFP growth under certainty 

As noted in Section 1, the standard framework for estimating (decomposing) 

productivity change under certainty is derived from the deterministic production 

function:   

),( zxfy =          (A.1) 

where x is the input vector and z is a vector of exogenous variables not treated as a 

traditional input variable. The vector z often includes, for instance, a simple time trend 

as an indicators of the technological level, a set of firm-specific dummy variables, 

enviromental variables or regulatory/institutional variables. 

 

As customary, a total factor productivity index can be obtained by logarithmically 

differentiating (A.1) to obtain 

.
.

1

.

z
x

x

y

y
z

k

k
K

k
k εε +=∑

=

             (A.2) 

where kk xln(·)flnε ∂∂= is the elasticity of output with respect to input k and 

z(·)flnε z ∂∂=  is the rate of growth of output associated with changes in z. Taking 

into account that  
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we can rewrite expression (A.2) as 
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The left-hand side can be viewed as an index of total factor productivity, defined as the 

difference between the growth of (expected) output and the weighted average rates of 

growth of inputs. Using input elasticities as weights for aggregating the rate of growth 

of inputs, (A.4) measures the effect of changes in the environmental variable z on 

(expected) output. The expression above can be extended to allow for the effect of 

non-constant returns to scale. This can be accomplished by aggregating the growth of 

inputs using input elasticities shares rather than input elasticities. Defining the elasticitiy 

share of the kth input, ek, as 
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total factor productivity growth in (6) can be rewritten in the case of multiple inputs as: 
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    (A.6) 

Using expression (A.2), and after some manipulation, equation (A.6) can then be 

decomposed into two terms: 
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Note, finally, that the TFP growth rate in (A.7) collapses to  

( )
x

x

TFP

TFP
..

1−= ε       (A.8) 

when output is produced using a unique input and the environmental variables do not 

exist or they are time-invariant. 
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Appendix B. Relationship between coefficients of ri sk aversion in terms of 

output and profits 

 

Let us assume that firms select inputs in order to maximize expected utility of profit. 

The appropriate profit depends on the existence of quasi-fixed inputs. If all inputs in the 

x vector are variable, profit is defined in the long-run as π = Py - w·x. In the presence of 

quasi-fixed inputs, total cost (w·x) is replaced by variable cost and profit (π) will 

represent short-run variable profits. Hereafter, we will assume that all inputs are 

variable, so the firm’s objective can be written as 

( )[ ]πUEmax
x

      (B.1) 

where π =Py - w·x, y = F(x,z,v) is the stochastic output, P is the output price, z is a 

vector of exogeous variables not treated as traditional inputs, x and w are vectors of 

inputs quantities and input prices respectively, and v is a random noise term.  

 

The problem (B.1) is the same as maximizing U[CE(π)], i.e. the utility of the certainty 

equivalent of profits, which can be defined as: 

RP(ð)  E(ð)  CE(ð)=                      (B.2) 

where RP(π) is the risk premium, which in turn can be expressed as 

 
2

)(
)(

2
ππ µσπ Ar

RP =      (B.3) 

where rA(µπ) is the Arrow-Pratt coefficient of absolute risk aversion in terms of profits.  

 

Now we assume that output and input prices are non-stochastic, and the input 

quantities selected by firms are given. In this case, the variance of profits can be 

written as 

),|(),,,|( 222 zxyPzxwPVar σπσ π ==    (B.4) 

and the expected level of profits as  

xwzxwPE rev ⋅−== µπµπ ),,,|(     (B.5) 

where )z,x|y(EPµrev ⋅=  represents expected revenue.  
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Using (B.2)-(B.5), the certainty equivalent of profit for a given level of input can be 

expressed as: 

),,,|),,,|( ( zxwPzxwPCE RPxwrev ππ µ −⋅−=   (B.6)  

where 

)(),|(
2

1
( 22),,,| πµσπ ArzxyPRP zxwP ⋅=    (B.7) 

Thus, the certainty equivalent of profit for a given level of input will depend on the 

expected level of output and the variance of output. 

 

In order to get the certainty equivalent in terms of output, which is what enters into our 

productivity growth decomposition, we concentrate on the risk premium. The risk 

premium associated with profit is the amount of profit that the producer is willing to 

forego in order to avoid the profit risk arising from production risk. For a given input 

level and given input and output prices, the risk premium in profits can be written as  

),|(),,,|( zxyRPPzxwPRP ⋅=π     (B.8a) 

or equivalently 

P

zxwPRP
zxyRP

),,,|(
),|(

π=     (B.8b) 

where RP(y|x,z) is the output-counterpart of the risk premium in profits. This risk 

premium measured in output terms can be interpreted as the output reduction 

corresponding to the profit that a risk-averse producer is willling to forego in order to 

avoid the uncertainty associated with output, given an input level.  

 

Next we can follow Pratt (1964) and express the output risk premium (B.8b) as 

                    ArzxyzxyRP ⋅= ),|(
2

1 2),|( σ      (B.9) 

where rA is the equivalent coefficient in output terms that has to be inferred from the 

coefficient of absolute risk aversion in profits. Substituting (B.7) and (B.9) in (B.8b) we 

get  
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                    )( πµAA rPr ⋅=              (B.10) 

Given mean profit µπ defined in (B.5), the relative risk aversion coefficient in profits can 

be written as  

πππ µµµ ⋅= )(( ) AR rr      (B.11) 

Multiplying both sides of (B.10) by expected output and rearranging using (B.11), we 

get the equivalent coefficient in output terms, rR, of the coefficient of relative risk 

aversion in profits, )πR µ(r , that is: 









⋅=⋅=

π
π µ

µµ rev
RAR rzxyErr )(),|(    (B.12) 

Thus, the relative risk aversion coefficient in terms of output is the relative risk aversion 

coefficient in terms of profit multiplied by the ratio of expected revenue to expected 

profits. In particular, (B.12) shows that )µ(rr πRR > , with the magnitude of this 

difference depending on the ratio of total revenue to profit. Alternatively, the lower the 

ratio of total costs to total revenue, the greater the size of rR relative to )πR µ(r . 

 

To summarize, if data on output prices are available then the relationship in (B.10) can 

be used to construct the absolute risk aversion coefficient regarding output from 

plausible estimates for )πA µ(r . Estimates for )πR µ(r  can be used to construct rR if the 

ratio of revenue to profits is known, as can be seen from (B.12).  
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Table 1. Parameter estimates: mean and variance fun ctions 

 Mean Function 

(Dependent variable=milk) 

Variance Function 

(Dep. variable= ln(error)2 ) 

Parameter WITHIN 
Estimates 

t-statistic (a) OLS 
Estimates 

t-statistic 

CONSTANT - - -1.8402 -6.1454 
VET 0.6859 4.1177 -0.4760 -2.0094 
FEED 0.0558 10.0668 0.0171 2.4018 
FERT 0.3693 2.1553 0.1757 0.5893 
COWS 0.3958 13.8056 0.0471 1.7448 
VET2 -0.3477 -1.6776 -0.0397 -0.2190 
FEED2 -0.0006 -2.0464 0.0003 1.0023 
FERT2 -0.0332 -0.1595 0.0969 0.4761 
COWS2 0.0052 0.9920 0.0063 1.6667 
VET*FEED 0.0014 0.2372 0.0033 0.3163 
VET*FERT -0.4902 -2.2842 -0.1215 -0.2951 
VET*COWS 0.0812 3.2936 0.0226 0.5883 
FEED*FERT 0.0006 0.1125 0.0042 0.4203 
FEED*COWS 0.0009 0.7713 -0.0032 -1.8889 
FERT*COWS 0.0319 1.3454 -0.0446 -1.0251 
Z94 0.0326 0.1948 -0.3675 -0.9913 
Z95 0.2998 1.8022 -0.5526 -1.4879 
Z96 0.0492 0.2625 -0.6257 -1.6487 
Z97 0.2019 1.1404 0.2715 0.7252 
Z98 0.1618 0.8848 0.7346 1.9538 

R2 Statistic 0.9861  0.1516  
Adjusted R2 Statistic 0.9824  0.1119  
Hausman Test: RE vs FE (b) 49.355  -  
Firm-specific effects (c) 10.927  1.1580  
Overall inputs (d) -  3.7394  

Notes: 

(a) Test robust to heteroskedasticity. 

(b) The Hausman test for fixed or random effects was carried out using a chi-squared statistic 
with 14 degrees of freedom. 

(c) The firm-specific effect test is carried out using an F-statistic with 70 restrictions and 336 
degrees of freedom. 

(d) The overall input test is carried out using an F-statistic with 14 restrictions 420 degrees of 
freedom 
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Table 2. Average elasticities for the period 1993/9 8 
      
 Vet  Feed Fertilizer Cows 

Scale effect 
      
      
Mean effect ( εεεε k) 0.060 0.225 0.020 0.700 1.005 
      
Standard Dev. effect (ηk) -0.240 0.265 0.012 0.273 0.309 
      
      
Risk effect (ηk - εk) -0.300 0.040 -0.009 -0.427 -0.696 
      

Note: The scale effect is the sum of the input elasticities for each function. 



 
 
Table 3. Decomposition of Total Factor Productivity  Growth (%) 

Expected productivity 
growth (1) Changes in risk (2) Productivity growth under risk (3) 

Low risk aversion  
(rR(π) = 1.70) 

Moderate risk aversion 
(rR(π) = 4.03) 

Changes in inputs  
Decomposition Decomposition 

Decomposition Decomposition 
Period 

   Vet   Feed    Fert.  Cows 
TFP

PFT &

 
Scale 
Effect 

Temporal 
Effects 

m
m&

 
Input 
effect 

Time 
effect TFPU

PUFT &

 

TFP
PFT &

 
Risk 

Effect TFPU
PUFT &

 

TFP
PFT &

 
Risk 

Effect 

1993/94 16.48 12.90 28.45 4.20 0.24 -0.12 0.36 -21.55 -2.81 -18.74 0.59 0.24 0.34 1.07 0.24 0.83 
1994/95 0.75 0.30 -9.98 0.10 2.87 0.10 2.77 -20.69 -8.66 -12.02 3.04 2.87 0.17 3.28 2.87 0.41 
1995/96 16.06 17.05 48.32 8.52 -2.37 0.06 -2.43 -3.45 -2.23 -1.22 -2.34 -2.37 0.02 -2.31 -2.37 0.06 
1996/97 -0.81 -7.76 -38.56 -4.59 1.52 0.07 1.45 46.53 3.13 43.41 0.86 1.52 -0.66 -0.06 1.52 -1.58 
1997/98 

3.39 5.24 16.59 1.70 0.47 0.86 -0.38 9.03 -14.51 23.54 -0.08 0.47 -0.55 -0.90 0.47 -1.38 
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Figure 1 . Productivity decomposition under certainty 
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      Figure 2 . Productivity and risk  
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       Figure 3. Milk per cow growth rates (%)  
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 Figure 4. Milk per cow vs. Feedstuffs per cow growt h rates (%)  
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               Figure 5. Farms' relative risk aversion coefficient  (in profits)  


