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1. Introduction 

 

Management has always been considered an important factor of production. However, 

the modeling of management is problematic because it is unobservable and for this 

reason it has been omitted from many production models. This may be a source of 

important problems because the omission of relevant variables can lead to biased 

estimates of the remaining parameters of the production function (Griliches, 1957). 

Economists have coined the term ‘management bias’ to refer to this problem and two 

remedies have been proposed in the literature. Following Mundlak (1961), some 

authors have used covariance analysis [e.g. Massell (1987)] or similar tools such as 

the within transformation to control for the effect of time invariant management by 

effectively eliminating it from the equation to be estimated. Other studies have used 

‘proxies’ for management [e.g. Dawson and Hubbard (1985); Mefford (1986)]. 

 

An alternative approach is to consider management as a random effect and model it as 

part of the stochastic element of the production function. This is the approach implicitly 

followed by the stochastic production frontier literature (Aigner et al., 1977) where the 

stochastic structure is composed of two terms: a symmetric term, which accounts for 

‘noise,’ and an asymmetric term that accounts for technical inefficiency. In this 

literature, it has been common to assume that the inefficiency term picks up, among 

other things, differences in the level of managerial skills. 

 

The production function and stochastic production frontier literatures have followed 

parallel but independent paths. On the one hand, the literature on ‘average’ production 

functions (i.e., production functions defined so that observations are stochastically 

arranged symmetrically around the function) recognizes the role of management but 

seldom mentions production inefficiency. On the other, the stochastic frontier literature 

focuses on estimating technical efficiency (TE) and recognizes that it is related to 

management ability but it has not provided an analytical linkage between the two 

concepts. For example, Farrell (1957) stated that “technical efficiency indicates the 

gain that can be achieved by simply ‘gingering-up’ the management,” suggesting that 

technical inefficiency is the result of a lack of managerial ability. On the other hand, 

Leibenstein (1966) viewed technical inefficiency as the result of a lack of motivation or 

effort. In this case, the solution to inefficiency calls for better organization of the work 
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process or greater motivation and supervision of employees, all of which are commonly 

considered to be management functions [Mefford (1986)].  

 

In this paper we explore the analytical linkages between technical efficiency and 

management within the framework of a translog production model where management 

is treated as an unobservable fixed input in an otherwise fully specified production that 

accounts for other time invariant factors. Starting from an average production function, 

we construct a production frontier which allows us to derive an explicit relationship 

between technical efficiency and management. In particular, technical efficiency is 

shown to be a function of the difference between the firm’s level of managerial input 

and the amount of managerial input that the firm would need to operate on the frontier. 

 

In the empirical section of the paper we estimate the production function with the latent 

fixed input described above. It is important to note that in a translog production function 

the latent input enters the model both additively as well as in interaction with the 

remaining inputs. This feature is very important for modeling the role of management in 

production but greatly complicates the estimation of the model. The model that 

emerges is a type of random coefficients model that has to be estimated by maximum 

simulated likelihood.  

 

The structure of the paper is as follows. In Section 2 we develop a model in which 

managerial ability is treated as an unobservable input in a flexible production function. 

Section 3 discusses estimation issues. Empirical results based on a study of dairy 

farmers are presented and discussed in Section 4. Finally, some conclusions are 

drawn in Section 5. 

 

 

2. A production model with fixed managerial ability 

 

Our starting point is a translog production function with one time-varying variable input, 

xit, and managerial ability, mi, which is considered a fixed input. The flexibility of the 

production function relaxes ex-ante constraints on the roles of mi and xit in the 

production process. The translog production function can be written as: 

              2 2= ½ ½ln ln (ln ) lnit x xx m mm xmit it i i it i ity x x m m x m vα β β β β β+ + + + + +  (1) 
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where subscripts i and t denote firms and time, respectively, and yit is the single output. 

The inputs in the translog model are conventionally expressed in logs, but since 

managerial ability and its units of measurement are unobservable we express it in 

generic form. We assume that vit is a symmetric random disturbance with zero mean. 

Therefore, the model in (1) corresponds to the typical ‘average’ production function.  Its 

key feature for present purposes is the interaction of management with the variable 

input. Without this interaction, the two management terms collapse into an individual 

effect and the model does not differ in substance from the standard fixed or random 

effects production function model. 

 

Greater managerial ability should allow the agent to produce more output from any 

given amount of input, so we expect production to be monotonically increasing in mi. In 

the translog production function this assumption holds for a certain range of mi; that is: 

                     
ln ln

= ln 0    iff   it m xm it
m mm i xm it i

i mm

y x
m x m

m

β ββ β β
β

∂ ++ + > <
∂ −

. (2) 

Thus, for a given xit, higher values of mi can imply higher levels of output. We assume 

that the level of managerial ability (mi) is exogenously given and differs among 

producers. This is the stance taken in previous papers that deal with the issue of 

differences in managerial ability, such as Jovanovic (1982) or Alvarez and Arias (2003). 

 

We define *
im to be the amount of managerial ability that produces maximum output for 

given conventional inputs (i.e., the frontier output). Therefore, *
im  is exogenously given 

and no assumption of producer optimality is made about it. The stochastic production 

frontier may then be obtained by substituting *
im  for mi: 

            * * * 2 *2= ½ ½ln ln (ln ) lnit i i ix xx m mm xmit it it ity x x m m x m vα β β β β β+ + + + + +  (3) 

where yit* denotes efficient output. 

 

We can now establish a link between technical efficiency and management. This 

follows from the definition of an output-oriented index of technical efficiency as the ratio 

of observed to potential output. In log terms this is: 

               ( ) ( ) ( )* * 2 *2
iln  ln -ln = ln ½ 0m xm mmit it it it i i iTE y y x m  m m mβ β β −= + − + ≤  (4) 
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Note that when *
i im m= , that is when the firm is using the amount of management that 

defines the frontier, lnTEit =0 and the firm is therefore technically efficient. Equation (4) 

can be rewritten as: 

 ( ) ( )
( )

* 2 *2

*

ln         ln ,

      -   ½ - ,

     - .

it i xi it

i m i i i i

xi xm i i

mm

TE x

m m m m

m m

= +

= +

=

θ θ

θ β β

θ β

 (5) 

Equation (5) shows that TE has two components. The first can be modeled as a time-

invariant individual effect (θi).  The other term, reflecting the interaction of management 

with input use, is specified as a time-varying component in the production function 

(θxilnxit). Therefore, an interesting feature of expression (5) is that the implied technical 

efficiency will be time-varying because it depends on xit even when the observed level 

of management and the one at the frontier are constant over time. Given the 

specification in (1), this suggests that in contrast to earlier formulations of the panel 

data frontier model such as Schmidt and Sickles (1984), it does not seem appropriate 

to model technical efficiency as a fixed effect since it depends on xit. A consequence of 

this specification is that the change in managerial input necessary to increase TE by a 

given amount differs according to input use.  This idea appeared in an early paper. Hall 

and Winsten (1959) claimed that for similar firms (using the same amounts of inputs) 

more management would imply more output and therefore greater TE. In this case, 

there is a clear direct relationship between managerial ability and TE. However, things 

are less clear in the case of two firms using different inputs with the same level of TE. 

In this case, any increase in technical efficiency would require different increases in the 

levels of management for each firm. 

 

The special implications for economic analysis of our measure of TE can be better 

understood by looking at the effects on TE of changes in managerial ability and input 

use. These effects are given by the following derivatives: 

 
( )*

ln
ln

ln
.

ln

it
m mm i xm it

i

it
xm i i

it

TE
m x

m

TE
m  m

x

∂
= + +

∂
∂

= −
∂

β β β

β
 (6) 
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The derivative of TE with respect to managerial input corresponds exactly to the 

condition for monotonicity of production with respect to managerial ability shown in 

expression (2). Therefore, an increase in managerial ability increases TE given 

conventional inputs if the production function is monotonic in managerial ability. The 

derivative of TE with respect to the level of input use is negative if βxm is positive 

because mi is smaller than *
im  by definition. Therefore, when βxm is positive the 

increase in the use of conventional inputs decreases TE for a given amount of 

managerial ability. 

 

In this section we have shown that the model in (1) raises interesting issues about the 

relationship between fixed management and technical efficiency. In particular, it shows 

that TE is not necessarily a fixed effect but instead can vary over time, and that the 

relationship between TE and managerial ability depends on the amount of managerial 

ability and usage of the conventional inputs. In the next section we discuss the 

estimation of this model in more general terms, with more than one observed input. 

 

 

3. Estimation issues 

 

The model in (1) cannot be directly estimated because the individual level of 

management is unobservable. Previous authors have dealt with this problem by 

introducing a proxy for management in a cost function. [See, e.g., Dawson and 

Hubbard (1985) and Alvarez and Arias (2003)]. Since the use of a proxy introduces 

new complexities (such as measurement error) into the model, we will employ a more 

direct approach to the problem which takes advantage of the panel nature of the data 

set we will analyze.  We will now translate the model in the preceding section into an 

empirically estimable form.  

 

3.1. Stochastic Frontier Model with Fixed Management 

 

We consider production with K inputs, x1…,xK.  As before, let *
im  denote the  level of 

management that defines the frontier and mi  the actual management input for firm i. 

We continue to employ the translog form.  The production model will then be 
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*

1
21 1 1

* *2 *1
2 1

ln =  ln - 

         ln ln ln

                    ln  - 

it it it

K K K

k itk kl itk itlk k l

K

m i mm i km itk i it itk

y y u

x x x

m m x m v u

= = =

=

= α + β + β +

β + β + β +

∑ ∑ ∑

∑

 (7) 

where uit corresponds to the standard definition of technical inefficiency, so that   TEit = 

exp(-uit). 

 

For estimation, a critical assumption is the absence of correlation between uit and the 

input levels in (7).  Therefore, it is important to show explicitly the definition of uit in the 

model:  

                     ( )( ) ( )
*

* * 2 21
21

  ln  -  ln  

   ln  0. 

it it it

K

m km kit i i mm i ik

u y y

x m m m m
=

=

= β + β − + β − ≥∑
 (8) 

While lnxit does appear in uit we assume that it does not influence ( *
i im m− ).  Thus, uit 

is of the form ( ) ( )*

k

 +   g  i i i kita m m x−∑ , and each term ( ) ( )* i i kitm m g x− will, by virtue 

of the presence of the freely varying ( *
i im m− ) be uncorrelated with xkit.  We note, this is 

essentially the argument of Zellner et al. (1966), who argued that in a production 

function, the input levels would be uncorrelated with the deviation of output from the 

optimal output, even though they would obviously be correlated with the actual output, 

itself. 

 

Although (7) involves an unobservable variable *
im , we can translate it into an 

empirically estimable form.  The result follows from the fact that the unobservable can 

be seen as a ‘random effect’ in a panel data model.  For that purpose, we rewrite (7) as 

follows: 

           
( )

( )

* *21
2

* 1
21 1 1

ln

         ln ln ln  .

it m i mm i

K K K

k km i itk kl itk itl it itk k l

y m m

m x x x v u
= = =

= α + β + β

+ β + β + β + −∑ ∑ ∑
 (9) 

If we write the model in (9) in the form 
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1
2,1 1 1

* *21
2

*
,

ln ln ln ln  
K K K

it i km i itk kl itk itl it itk k l

i m i mm i

km i k km i

y x x x v u

m m

m

= = =
= α + β + β + −

α = α + β + β

β = β + β

∑ ∑ ∑
 

we find that it bears a superficial resemblance to the random parameters (RP) 

stochastic frontier model proposed in Greene (2005) and Tsionas (2002). It differs from 

a conventional RP model in several crucial respects.  Most importantly, from a logical 

standpoint, the ‘randomness’ of the parameters in the specification is not a reflection of 

cross firm unobserved and unexplained heterogeneity as it is in an RP model; it is a 

specifically modeled unobserved factor of the production model. Thus, the random 

component is not an element of the parameter vector, it is a component of the 

‘regressor’ vector.  In practical terms, note that the random component in the structural 

model enters quadratically in the constant term and linearly in the ‘slopes,’ (and is 

absent from the second order terms) and, moreover, the same random element, mi* 

enters all of the first order coefficients. Thus, as noted, the resemblance to a more 

familiar RP model is only coincidental; indeed, the model in (9) cannot be obtained as a 

special case of either Greene’s or Tsionas’s RP model. 

 

The estimation of the model has two important requirements that remain to be 

considered. First, the random coefficients model requires as an identification condition 

that the random components of the coefficients be uncorrelated with the explanatory 

variables. The random component of the coefficients in our model is the level of 

management that defines the frontier ( *
im ), which likely is correlated with at least some 

of the inputs. (Note this is a different issue from the deviation of mi from *
im  which we 

argued above is uncorrelated with the inputs.)  In order to avoid this problem, we take 

the approach suggested for random effect models by Chamberlain (1984) (and borrow 

from early work by Mundlak) and specify mi* as a function of inputs in the following 

way: 

 *
iim w= +′ ilnxττττ  (10) 

where ilnx  is the vector of the means of the logs of inputs, ττττ is a vector of parameters 

to be estimated (a constant term will not be identified) and wi is a random term that 

follows a standard normal distribution and which we assume is uncorrelated with the 

inputs.  
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The second issue concerns the stochastic specification of uit. Maximum likelihood 

estimation of the model in (9) requires a distributional assumption about uit. In this 

paper, we model the distribution of uit as half normal, which produces a model that is 

logically a type of random coefficients stochastic frontier model in the spirit of Aigner et 

al. (1977).  

 

3.2. Estimation of the Random Coefficients Stochastic Frontier Model 

 

This section will describe the method used to estimate the parameters of the stochastic 

frontier model. From (7),  we define 

 =   -it it itv uε  (11) 

In what follows, it is useful to note explicitly that εit will be conditioned on mi*.  The 

conditional density for a single observation in the half normal stochastic frontier model 

is 

 
| * | *2

( | *) it i it i
it i

m m
f m

ε −λε   ε = φ Φ   σ σ σ   
 (12) 

where φ(z) and Φ(z) denote the density and CDF of the standard normal variable, 

respectively. The parameter λ is the ratio σu/σv, while σ2=σv
2+σu

2. [See Aigner et al., 

(1977)].  The joint density for T observations on firm i is 

 1 1
( ,..., | *) ( | *).

T

i iT i it it
f m f m

=
ε ε = ε∏  (13) 

This is the contribution to the conditional likelihood for firm i, Li|mi*. The unconditional 

contribution to the likelihood function is 

 
*

* *

1
( | *) ( )

i

T

i it i i itm
L f m g m dm

=
= ε∏∫  (14) 

where g(mi*) is the marginal density of mi*. Consistent with the preceding discussion, 

there are no new parameters in this density. The log likelihood is 

 
1

log ( ) log ( )
N

ii
L L

=
=∑δ δδ δδ δδ δ  (15) 
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where we use δδδδ to denote the full vector of parameters in the model.  The maximum 

likelihood estimates of the parameters are obtained by maximizing (15) with respect to 

δδδδ. Since the integral in (14) will not have a closed form, it is not possible to maximize 

(15) directly.  We will use the method of maximum simulated likelihood, instead.  [See 

Train (2003), Greene (2003), Gourieroux and Monfort (1996) and the Appendix for 

discussion].  

 

 

4. Empirical application 

 

Our empirical application uses a balanced panel of 247 dairy farms located in Northern 

Spain. We have data on these farms for a period of six years (1993-1998). Since the 

farms are specialized in milk production we consider only one output. The variables 

used in the estimation of the production frontier are described in Table 1. 

 

Table 1. Variables Used in Production Analysis 

  Mean Std. Dev. Minimum Maximum 

Milk Liters of milk production 131,107 92538 14110 727,281 

Cows Number of milking cows 22.12 11.27 4.5 82.3 

Labor Number of man-equivalent units 1.67 0.55 1 4 

Land Hectares of land  12.99 6.17 2 45.1 

Feed Kilograms of feedstuffs  57941 47981 3924 376,731 

 

We wish to explore the empirical consequences of restrictions on the role of 

management in the production function. For that purpose, we first estimate a 

conventional (pooled) stochastic production frontier with four inputs and including time-

effects (this is equivalent to estimating equation (7) without considering the level of 

management at the frontier). The results of the estimation of the production frontier are 

given in the first column of estimates in Table 2. Since the explanatory variables in the 

original data were divided by their geometric mean, the first order coefficients can be 

interpreted as output elasticities evaluated at the geometric mean of the sample. They 

are positive and significantly different from zero at conventional levels of significance.  
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Table 2. Estimated frontier models 

Variable Param. Stochastic 
Frontier 

Random Coefficients Model 

   Means of Random 
Parameters, βk    

    Management 
× Inputs, βkm 

Cows β1 0.6106  
(0.0223)** 

0.6597 
(0.0113)** 

-0.0130 
(0.0067)** 

Land β2 0.0254  
(0.0128)** 

0.0406 
(0.0081)** 

0.0167 
(0.0046)** 

Labor β3 0.0239 
(0.0146)** 

0.0251 
(0.0013)* 

-0.0173 
(0.0053)** 

Feed β4 0.4393 
(0.0121)** 

0.3090 
(0.0060)** 

0.0103 
(0.0040)** 

Constant α  11.719  
(0.0128)** 

11.6761 
(0.0041)** 

  

Management βm   0.1083 
   (0.0014)** 

Management x Management βmm   
 

-0.0143 
(0.0018)** 

Cows × Cows β11 0.5556  
(0.1158)** 

0.1512 
(0.0479)** 

Land × Land β22 -0.1042 
(0.0457)** 

-0.0425 
(0.0173)** 

Labor × Labor β33 0.2116  
(0.0371)** 

-0.1275 
(0.0334)** 

Feed × Feed β44 -0.01150 
(0.0964) 

0.0962 
(0.0151)** 

Cows × Land β12 -0.1078 
(0.0507)** 

-0.0186 
(0.0209) 

Cows × Labor β13 -0.3390 
(0.0638)** 

0.0936 
(0.0241)** 

Cows × Feed β14 0.2230 
(0.0753)** 

-0.0780 
(0.0258)** 

Land × Labor β23 0.0694 
(0.0263)** 

0.0003 
(0.0148) 

Land × Feed β24 -0.0027 
(0.0500) 

-0.0186 
(0.0108) 

Labor × Feed β34 -0.0695 
(0.0411) 

-0.0074 
(0.0143) 

Year 1994 δ94 -0.0363 
(0.0120)** 

0.0315 
(0.0044)** 

Year 1995 δ95 -0.0198 
(0.0126) 

0.0578 
(0.0044)** 

Year 1996 δ96 -0.0013 
(0.0117) 

0.0675 
(0.0044)** 

Year 1997 δ97 -0.0067 
(0.0121) 

0.0715 
(0.0043)** 

Year 1998 δ98 -0.0110 
(0.0125) 

0.0902 
(0.0044)** 

 

λ 1.8657 
(0.1521)** 

1.1994 
(0.0490)** 

σ 0.1932 
(0.0061)** 

0.0961 
(0.0014)** 

Log L 860.649 1401.562 
Standard errors in parentheses. 

 

We now estimate the random coefficients model specified in equation (9) following the 

estimation procedure described previously. The results are given at the right in Table 2. 
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The means for the random parameters remain positive and significant at the geometric 

mean of the sample. These means differ slightly from the coefficients of the 

conventional stochastic frontier. The coefficients of management (βm, βmm and βkm) are 

significantly different from zero at conventional levels of significance. This can be 

interpreted as evidence in favor of the random coefficients model with respect to the 

conventional stochastic frontier approach since the coefficients of the production 

function change with the level of management of the farm.  The log likelihood function 

for the management model is far larger than that for the restricted model; the likelihood 

ratio statistic of roughly 280 is far larger than the critical value for 6 degrees of freedom.  

Thus, the restricted model is rejected on this basis. 

 

The first order parameters of the translog production function (βk’s) can be interpreted 

as output elasticities evaluated at the geometric sample mean provided that the original 

data were divided by the geometric sample mean. This is the case in our empirical 

application. In turn, a positive βm can be seen as evidence of a positive effect of 

managerial ability in production. 

 

The second order parameters of the translog production function (βkl’s, βkm’s and βmm) 

do not have a direct economic interpretation. However, they affect the value of relevant 

economic effects, such as the following: 

 

a) The marginal product of management: 

*
*

*

*
*

* 1

ln  
where ln  

it
mit it

i

Kit
mit m mm i lm itll

i

y
e y

m

y
e m x

m =

∂ =
∂

∂= = β + β + β
∂ ∑

                (16) 

b) The effect of managerial ability on the marginal product of management: 

 ( )

*

*
2 *

*

it

i
mm mit it

i

y

m
e y

m

 ∂∂  ∂  = β +
∂

    (17) 

c) Output elasticities at the frontier 
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*
*

1

ln  
ln  

ln

Kit
kit k kl itl km il

itk

y
e x m

x =

∂= = β + β + β
∂ ∑    (18) 

d) The effect of managerial ability on the marginal product of inputs 

( )

*

*

*

it

itk it
km mit kit

i itk

y

x y
e e

m x

 ∂∂  ∂  = β +
∂

     (19) 

The computation of these relevant economic effects requires an estimate of *
im . We 

develop such estimate below.  

 

The efficiency levels can be computed according to Jondrow et al.’s (1982) prescription 

conditioned on mi*.   

                
2

( ( | *) / ) ( | *)
 |  , * =  

(1 ) ( ( | *) / )
it i it i

it it i
it i

m m
E u m

m

 φ − ε λ σ ε λσλ
 ε −   + λ Φ − ε λ σ σ 

 (20) 

Like other quantities that involve mi*, this can be estimated by simulation.  We have, 

instead, computed estimates of mi* as described below, then computed the values in 

(20) conditioned on the estimates of mi* and the other data for farm i.  The value of mi* 

can be computed from the conditional distribution of mi* given the data on farm i using 

Bayes theorem as follows:  Let yi denote the T×1 vector of logs of the outputs for farm i 

for the six years.  Let the T×K matrix Xi denote the other data (inputs and year dummy 

variables, linear and quadratic terms in logs) for farm i.  The conditional distribution of 

mi* given yi is 

                                    

*

* *
*

* *

* * *

( | , ) ( )
( | , )

( | )

( | , ) ( )
                     

( | , ) ( )
i

i i i i
i i i

i i

i i i i

i i i i im

f m g m
f m

f

f m g m

f m g m dm

=

=
∫

y X
y X

y X

y X

y X

  (21) 

The denominator is the contribution of farm i to the likelihood function for the sample 

(not the log likelihood) in equation (14). Thus, we can estimate mi* for farm i as the 

conditional mean from this distribution. This would be 
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*

*

* * * *

*

* * *

( | , ) ( )
ˆˆ * ( | , )

( | , ) ( )
i

i

i i i i i im
i i i i

i i i i im

m f m g m dm
m E m

f m g m dm
= =

∫

∫

y X
y X

y X
 (22) 

Like the likelihood, itself, this quantity cannot be computed directly, as the integrals will 

not have a closed form. But, they can be simulated, in the same fashion.  Thus, the 

simulation based estimator of mi* is  

       …………………..
* *
, ,* 1

*
,1

ˆ(1/ ) ( | , )ˆ ( | , ) .
ˆ(1/ ) ( | , )

R

i r i i r ir
i i i R

i i r ir

R m f m
E m

R f m
=

=

= ∑
∑

y X
y X

y X
 (23) 

where mi,r* is a draw from the population of mi*.  Note, f̂  denotes the contribution to 

the likelihood function for farm i, evaluated at the parameter estimates and the current 

draw of mi,r*.  Draws on mi* are obtained by drawing wi in (10) from the standard normal 

distribution using Halton sequences. With these estimates in hand, estimated 

inefficiencies for the farms are produced using (20). 

 

4.1 Discussion 

 

Our model allows for a complex role of management in the production function. For 

example, it is possible to gauge the effects of management in the technological 

characteristics of the frontier.  In this section we will calculate the main characteristics 

of interest developed in the preceding sections, which correspond to the marginal 

effects contained in equations (16) – (19). Since mi* enters all of these effects, we 

estimate it using equation (23). The results are shown in Table 3 below. 

 

Table 3. Descriptive Statistics for Estimated Management (mi*) 

 Mean Standard 
Deviation 

Minimum Maximum 

Frontier Management, mi* 0.0634 1.0799 -2.8240 3.4772 

 

Since mi* is unit free, these values do not have a direct interpretation relative to any 

observed quantities.  However, as mentioned above, they are necessary to compute 

the marginal effects. We have computed those effects for each data point and the 

results show the expected signs. The marginal product of management in (16) is 

positive for all observations. Evaluated at the mean estimated value of mi* of 0.0634 
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and the geometric means of the inputs, this is roughly equal to 14500.  While it is 

difficult to be specific about the margin involved – we could not state specifically what it 

would mean to increase management by one unit – this result does suggest that in the 

terms of the unobserved factor, mi* is clearly important in the determination of output.  

At the same time, the second derivative of output with respect to mi* in equation (17) is 

negative for all observations, indicating the existence of decreasing returns to 

management. Finally, an increase in mi* increases the marginal products of all 

conventional inputs. The positive but decreasing marginal effect on output and positive 

effects on the marginal product of conventional (observed) inputs of mi* can be seen as 

empirical evidence supporting the interpretation of this latent variable as an indicator of 

an unobserved input, namely managerial ability. 

 

We have also calculated the set of output elasticities at the frontier for each of the 

inputs. The results are shown in Table 4 evaluated at the geometric mean of the inputs 

and estimated mean of mi*. 

 

                         Table 4. Output elasticities at the frontier 

 Output elasticity at the frontier 
Cows 0.6344 
Land 0.0408 
Labor 0.0229 
Feed 0.3095 
RTS 1.0076 

 

The sum of output elasticities for the conventional factors shown in Table 4 is a 

measure of returns to scale to conventional inputs. The measure depends on the sum 

of the parameters βkm, which by our estimates is extremely small since these 

parameters take on positive and negative values. Therefore, in terms of the observed 

inputs, management plays a very small role in explaining returns to scale. However, 

when management is considered directly as an input, it adds 0.1059, or about 11% to 

the total. This result suggests that when management is considered among the factors 

of production, at least for this application, there is a moderate degree of increasing 

returns to scale. We do note that the preceding results are in terms of management at 

the frontier, mi*, not actual management, mi.  It seems reasonable to assume that these 

would at least be highly positively correlated, so at least the qualitative result would 

persist. 

 



 16 

Table 5 presents descriptive statistics for the inefficiency estimates produced from the 

basic stochastic frontier model and from the random coefficients stochastic frontier 

model. The distribution for the latter set of estimates has a much smaller mean and a 

much tighter distribution.  Figure 1 below suggests the same pattern. This suggests 

that not accounting for the effect of management on production has somewhat inflated 

the estimated inefficiency. One might view this as a decomposition of the inefficiency 

into two parts, one explicitly accounted for by the management effect and the other 

apparently due to other unexplained factors. 

 

Table 5. Descriptive Statistics for Estimated Inefficiencies 

 Mean Standard 
Deviation 

Minimum Maximum 

Basic Stochastic Frontier 0.1352 0.0794 0.0107 0.4747 

Fixed Latent Management 
SF Model 0.0581 0.0256 0.0116 0.2637 

 

In summary, the results of the present paper show that management plays a complex 

role in production. As a result, the conventional production frontier with nonrandom 

coefficients (where management enters as a shifter) might not be a good instrument to 

analyze firm behavior when management is unobservable. This result is important in a 

number of settings. For example, unobserved management is a key factor in explaining 

firm size and growth (Jovanovic, 1982). Another example is farm policy, where the level 

of management is important for assessing the effects of increasing the size of farms 

(Alvarez and Arias, 2003). This is an important issue for policy purposes since in the 

agricultural sector it is common to implement farm policies oriented towards farm 

growth. These policies usually consist of low interest loans that allow farmers to buy 

more inputs and therefore disregard the important implications of holding management 

constant, as shown in previous sections. 

 

 

5. Conclusions 

 

This paper explores the relationship between managerial ability and technical 

efficiency. For that purpose, fixed managerial ability is introduced as an unobservable 

input in a translog production function. The interaction between the unobservable input 

and conventional inputs implies that technical efficiency depends not only on 
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management but also on input use. As a result, fixed management can lead to time 

variant technical efficiency if input use changes over time. This is an important insight 

not considered in models with time invariant efficiency based in the assumption of fixed 

management.  

 

The interaction between the unobservable input and conventional inputs creates a 

great deal of difficulty in estimating the resulting model. However, the model can be 

cast as a stochastic frontier with random coefficients. The unobserved variable is 

integrated out leading to a likelihood function with definite integrals that do not have a 

closed form. This is the reason why the model is estimated by maximum simulated 

likelihood.  

 

We illustrate the feasibility of the proposed estimation procedure using a sample of 

dairy farms in Northern Spain. The mean of the random coefficients are of similar 

magnitude as the coefficients of a standard stochastic frontier, but managerial ability is 

found to affect the value of a number of random input coefficients. As a result, the 

random coefficients frontier provides a measure of technical efficiency that can be 

related with different levels of management depending on the circumstances of the 

farm (input use and output production). The feasibility of estimating the level of 

management that defines the production frontier is a clear advantage of our model.  

 

The empirical model developed in the paper can be useful in analyzing firm policy 

issues since management is considered a key variable in assessing the effects of 

these policies. In fact, the model avoids treating management as a mere shifter of the 

production function, as in the conventional stochastic frontiers, and the econometric 

problems associated with the use of proxies.  
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Figure 1.  Kernel density estimates for distribution of inefficiency across firms 
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APPENDIX. 

 

Let mir* denote the r-th random draw from the standard normal population of mi* in a 

sample of R such draws.  Then, the contribution to the simulated likelihood function for 

firm i is 

 *

1 1

1
( | )

TRS
i it irr t

L f m
R = =

= ε∑ ∏  (A.1) 

The simulated log likelihood that is maximized is 

 *
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TN RS
it iri r t
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R= = =
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where f(εit|mi*) appears in (12). This function is smooth and twice continuously 

differentiable in the parameters.  (For conditions under which maximization of the 

simulated log likelihood produces an estimator with the same asymptotic properties as 

the true MLE, see Gourieroux and Monfort (1996), Train (2003) and Greene (2003)).  

The derivatives of the simulated log likelihood are obtained as follows:  
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where ωir is a set of nonnegative weights that sum over r to one for each i by 

construction and git(mir
*
 ) is the vector of derivatives, *log ( | ) /it irf m∂ ε ∂δδδδ .  Let 

xitr* = [1,…,lnxitk,…,…, ½ lnxitklnxitl,…,mir*, ½mir*
2,…, ½lnxitkmir*] 

so that εit|mir* = yit - ββββ′′′′xit(mir*) = εitr*.  For convenience, let hitr* = φ(-λεitr*/σ )/Φ( -λεitr*/σ).  

The required first derivatives are 

 

* * *

* * 2 * *

* *

{( / ) }
1

log ( ) / ( / ) 1 ( / )
itr itr itr

itr itr itr itr

itr itr

h

f h

h

 ε σ + λ 
  ∂ ε ∂ σ ε σ − + ε σ λ   σ   λ −ε   

xββββ
  =    =    =    =   (A.4) 



 21 

The integrals in (14) and its derivatives are approximated by obtaining a sufficient 

number of draws from the population generating mi*. The law of large numbers is 

invoked to infer that the sample averages will converge to the underlying integral. 

Random draws from the population are sufficient for this process, but not necessary. 

What is essential is coverage of the range of variation of mi*, not randomness of the 

draws. The method of Halton sequences [see Bhat (1999), for example] is used to 

provide much more efficient coverage of the range, and in turn, much faster estimation 

than the method of random simulation. [See, as well, Train (2003, pp. 224-238) for a 

discussion of Halton sequences]. Thus, mir* is the rth element of the Halton sequence 

for individual i.  The elements of the Halton sequence, Hir are spread over the unit 

interval, (0,1). The draw of mir* is obtained by the inverse probability transform. Thus, 

mir* = Φ-1(Hir). The estimated standard errors of the parameter estimators are computed 

by using the BHHH estimator, as before, with simulation used for the derivative vectors. 

Since we are only integrating over a single dimension, the gain in efficiency, if this 

application is like others, is on the order of ten fold  - that is, the same results are 

obtained with only about one tenth the number of draws needed.  We have used 1,000 

draws in our estimation, which would correspond to several thousand draws were they 

produced with a random number generator instead. 

 

Computations were done using LIMDEP 9.0 (Econometric Software, Inc., 

www.limdep.com).  

 


