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1. Introduction 

 

In the last two decades, we have seen a renewed interest in the study of the 

determinants of long-run economic growth. It is widely accepted nowadays that factor 

accumulation can explain only a small fraction of cross-country differences in growth 

rates. For this reason macroeconomists are looking at Total Factor Productivity (TFP) 

as the main source of economic growth. Although since Solow technical change has 

been considered the main driver of TFP growth, more emphasis has been placed 

recently on the role of international diffusion of knowledge and technology. That is, 

follower countries do not need to produce innovations in order to grow, rather they can 

adopt the best-practice technologies developed by leader countries.  

  

When backward countries adopt new technologies they move towards the 

technological frontier. This is known as “technological catch-up” effect. In fact, the 

absence of technological catch-up has been considered the main factor responsible for 

non-convergence or slow convergence in output per worker (Quah, 1997). Therefore, 

some of the recent macroeconomic literature is interested in the relative importance of 

technological catch-up and technical change as determinants of economic growth. 

Given that both effects are unobservable, it is interesting to know the ability of models 

to disentangle these two effects. 

 

The empirical approach to testing for the existence of catching-up has traditionally 

followed the path-breaking article by Nelson and Phelps (1966) which implies the use 

of proxies for the technology gap. More recently, some papers have identified catch-up 

with inefficiency change (i.e., with the reduction of the distance to the frontier). Part of 

this literature has used non-parametric techniques to estimate inefficiency change 

(e.g., Färe et al., 1994). On the other hand, other papers (e.g., Koop et al., 1999) have 

used the stochastic frontier methodology developed by Aigner, Lovell and Schmidt 

(1977). 

 

However, even though it has been recognized that “it may be difficult to disentangle the 

separate effects of technical change and technical efficiency change when both effects 

are proxied by the passage of time” (Kumbhakar and Lovell, 2000; pp. 107), to the best 

of our knowledge, we are not aware of papers that have studied the ability of models to 

disentangle technical change from efficiency change. 
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For this reason, in this paper we use Monte Carlo techniques in order to study the 

ability of several stochastic frontier models to correctly identify these two effects based 

on macroeconomic data from the Penn World Table 6.2. Specifically, the following 

models are compared: the traditional pooled stochastic frontier as well as the models 

suggested by Battese and Coelli in 1992 (BC92) and in 1995 (BC95). The Monte Carlo 

experiments are based on three alternative data generating processes. In the first one, 

we generate the data imposing that there is catch-up but no technical change. In the 

second one, we generate the data assuming that there is only technical change. 

Finally, in the third one we impose that there are both catch-up and technical change. 

Given that results can be sensitive to the relative importance of inefficiency over 

statistical noise, we present the results under different scenarios concerning this 

parameter. 

 

The rest of this paper is organized as follows. The next section deals with the modelling 

of catching-up. It is followed by a description of the Monte Carlo study. Then the results 

are presented. Finally some conclusions are drawn. 

 

 

2. Modelling catching-up  

 

The idea behind technological catch-up is that backward countries are able to absorb 

the technology developed by leading countries. This is due to a process of 

technological diffusion which depends on the absorptive capacity of the country, that is, 

on the ability to assimilate and apply new knowledge. 

 

The first empirical models to investigate the existence of technological catching-up 

were based on the model developed by Nelson and Phelps (1966). They specified the 

rate of growth of the technology as: 

  ( 1 ) 

where subscript i refers to country and subscript w denotes the world frontier. The 

function φ(z) models the absorptive capacity of the country, which depends on a set of 

variables (z). The state of the technology, A, is unobservable and therefore must be 
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proxied. For example, Hansson and Henrekson (1994) used the initial income gap 

(Yi/Yw) as a proxy for the technological gap (Ai/Aw). 

 

Nelson and Phelps (1966) considered that the rate of growth of the technology is an 

increasing function of education attainment. Other variables that have been used to 

capture absorptive capacity are Trade Openness, Foreign Direct Investment (FDI), 

Human Capital or Domestic R&D. For instance, Kneller and Stevens (2006) have used 

a stochastic frontier model to investigate whether differences in absorptive capacity 

help to explain cross-country differences in the level of technical efficiency using panel 

data from nine manufacturing industries in 12 OECD countries. 

 

Since technological catch-up is defined as a movement toward the frontier, the frontier 

methods, which are able to identify the frontier and the distance of each country to the 

frontier (inefficiency) seem to be appropriate to study this issue. Färe et al. (1994) was 

one of the first studies to apply frontier techniques. This paper analyzed productivity 

growth in 17 OECD countries over the period 1979-1988 using a nonparametric 

programming method to compute Malmquist productivity indexes which were 

decomposed into technical change and efficiency change. Later, Kumar and Rusell 

(2002) using a similar approach decomposed the growth of labour productivity into 

technical change, efficiency change and capital accumulation (i.e. movements along 

the frontier). Similar studies are Taskim and Zaim (1997), Henderson and Russell 

(2005) or Henderson and Zelenyuk (2007). 

 

Koop et al. (1999) pointed out that stochastic frontier methods have several 

advantages over nonparametric methods in the presence of noisy data sets such as 

those typically used in the growth literature. Hence, in order to separate the 

components of output growth, namely efficiency change, technical change and input 

change, they estimated a stochastic frontier model. Other papers that have estimated 

different versions of stochastic frontier models in order to obtain an estimate of 

efficiency change are Kneller and Stevens (2003); or Kumbhakar and Wang (2005).  

 

In this paper we are concerned with the parametric approach to frontier measurement. 

Stochastic Frontiers were first developed by Aigner, Lovell and Schmidt (1977). A 

stochastic frontier production function may be written as: 
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itititit uv)x(fyln −+=                            ( 2 ) 

where y represents the output of each country, x is a vector of inputs, f(x) represents 

the technology, v captures statistical noise and it is assumed to follow a distribution 

centered at zero, while u is a non-negative term that reflects technical inefficiency and 

it is assumed to follow a one-sided distribution. 

 

In this model a reduction in inefficiency (uit) implies an approximation to the 

technological frontier and, therefore, this can be interpreted as evidence that countries 

are “catching-up”. The statistical methods employed to estimate stochastic frontiers, 

such as maximum likelihood, can only provide an estimate of the composed error term. 

However, using the conditional expectation of ui on vi-ui E(ui/vi-ui) a predictor for ui can 

be obtained. This allows us to compute a measurement of catch-up in the sample by 

comparing the evolution of average inefficiency for every period. 

 

In this framework Kumbhakar (2000) describes the procedure to decompose TFP 

change into its components using the production function approach. In particular:  

ECx
e

e
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j
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&&                       ( 3) 

Where TC is technical change, e is the scale elasticity, ej are the input elasticities and 

EC is the efficiency change. The technical change is measured as t)x(flnTC ∂∂=  

and the efficiency change is calculated as )ûû(EC 1itit −−−= . 

 

 

3. The Monte Carlo Design 

 

Similarly to Greene (2005) our experiments are based on a realistic configuration of the 

right-hand side of the estimated equation, rather than simply simulating some small 

number of artificial regressors. To do so we take both output (GDP) and input variables 

(capital and labor) from the Penn World Table 6.21. The number of countries 

considered is 91 while the number of years considered is 31 (1970-2000)2. The number 

                                                
1 The monetary variables are measured in 1996 US$ with purchasing power parity adjustment. 
2 See further details about the data in the appendix 
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of replications in each experiment is 1000. First, we estimate a Cobb-Douglas fixed 

effects model: 

ititLitKiit vLlnKlnyln +β+β+β=                             ( 4 ) 

where y is output, K is capital, L is labor, βi are individual effects and v is a error term. 

In order to generate the replications in the Monte Carlo we use the estimated 

parameters rounded off to the second decimal as the true values in the model. 

Likewise we use the real values of capital and labor as regressors. However, since we 

are not interested in the individual effects we take their average as intercept. 

Specifically, we generate the output data from three different versions of the following 

stochastic production frontier: 

ititititit uvtLln20.0Kln63.016.0yln −+⋅φ+⋅+⋅+=   ( 5 ) 

where t is a time trend, v is a random error term which is drawn from a normal 

distribution with zero mean, while u is a non-negative random error term, which is 

drawn from a truncated-normal distribution. In this simple model the passage of time 

may cause two effects: one is to change the distance of each country to the frontier 

(uit), while the other effect is shifting the frontier.  

 

In order to observe how the estimates depend on the relative importance of inefficiency 

over noise the simulations were carried out under three different scenarios by varying 

the parameter γ, which is equal to ( )2
v

2
u

2
u σ+σσ , where 2

uσ  and 2
vσ  are the variances 

of the inefficiency term and random error term respectively. In particular γ will be equal 

to 0.2, 0.5 and 0.8. Moreover, in order to keep the variance of the error term constant in 

the different scenarios we consider the denominator of γ equal to 0.1. Hence it can be 

obtained the uσ  and vσ  for each γ setting. 

Next we present the three experiments: 

 

a) Experiment 1 

In this case we generate the data assuming that there is no technical change (φ=0) but 

there exists catch-up, that is, countries improve their efficiency level over the years. To 

do so the mean of the pre-truncated normal distribution (µt) decreases over time, as 

follows: 
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    ( )utit ,Nu σµ∼ +  ;    ( )tt01.02.0t −+=µ                               ( 6) 

where t is the average of the years (i.e. 16, as we have data for 31 years) and t is a 

time trend. Hence, µt decreases from 0.35 in the first year of the sample to 0.05 in the 

last year of the sample. Therefore, the data generating model is: 

ititititit uvLln20.0Kln63.016.0yln −+++=                           ( 7) 

 

b) Experiment 2 

In this experiment we assume that the countries’ efficiency level stays constant over 

time (on average) but there is technical change. To do so, µt is fixed over time (equal to 

0.2), while technical change is assumed to be 2% every year. Therefore, the data 

generating model is: 

ititititit uvt02.0Lln20.0Kln63.016.0yln −+⋅+++=          ( 8) 

where ( )uit ,2.0Nu σ∼ + . 

 

c) Experiment 3 

This is the most general case. Now we include both technical change and technological 

catch-up in the data generating model. We generate the inefficiency term u using 

equation (5) while technical change is assumed to be 2% every year. Therefore, the 

data generating model is: 
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−⋅+=µ
σµ∼

−+⋅+⋅+⋅+=
+                ( 9 ) 

Next we explain in some detail the models that we estimate. The models differ in the 

way they accommodate time varying inefficiency. The models are: the traditional 

pooled Stochastic Frontier model (SFTN), as well as the models suggested by Battese 

and Coelli in 1992 (BC 92) and in 1995 (BC 95). The three models have in common the 

composed error term feature. In fact, the three models are different versions of the 

general stochastic frontier model: 

itititit uvt)x(fy −+⋅φ+=                                     ( 10 ) 

 

Model 1: Pooled Stochastic Frontier Model 

We assume that u follows a truncated normal distribution3. It is important to note that in 

this model inefficiency is allowed to vary over time but around a time-invariant mean 

(µ). Therefore, mean inefficiency is constant over time and for this reason we do not 

expect these models to perform well in experiments 1 and 3. 

 

Model 2: Battese and Coelli (1992) 

This model allows for time-varying inefficiency, which is modelled as a truncated-

normal random variable multiplied by a deterministic function of time. The idiosyncratic 

error term is assumed to follow a normal distribution centered at zero. The only panel-

specific effect is the random inefficiency term. Therefore the model can be expressed 

as: 

                                                
3 Other distributions that can be used are half-normal or exponential. See Kumbhakar and 
Lovell (2000) for further details about these models. 
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( )( ) iit uTtexpu ⋅−η−=  ; ( )ui ,Nu σµ∼ +                      ( 11 ) 

where η is a parameter to be estimated which captures the rate of decline in technical 

inefficiency, t is the actual period and T is the total number of periods in the sample. 

Note that this model is rather restrictive in the way that accommodates the variation 

pattern of inefficiency. In fact the BC92 model imposes that all firms increase or 

decrease inefficiency and that they do so at the same rate. 

 

Model 3: Battese and Coelli (1995) 

This is probably the most popular model among those which attempt to model explicitly 

the determinants of inefficiency. In this model the parameters of the technology as well 

as the parameters of the inefficiency explanatory variables are estimated in one stage. 

The model assumes that the inefficiency effects are obtained by truncation (at zero) of 

a normal distribution. 

( )uitit ,Nu σµ∼ + ;    ),z(g itit δ=µ                       ( 12 ) 

where zit is a vector of some exogenous variables that are believed to explain 

differences in inefficiency. Following Kneller and Stevens (2003) we use a time trend 

as the only explanatory variable for the technical inefficiency. So, the mean of the 

pretruncated normal distribution is: 

 t10it ⋅δ+δ=µ                        ( 13 ) 

where δ0 and δ1 are parameters to be estimated. 

 

 

4. Simulation Results 

 

In this section we report the results of the three experiments described above. In order 

to report the results we use three tools. First, tables 1-3 present the arithmetic mean of 

the estimates across the replications in each experiment. Second, additional insight is 

gained by examining kernel density estimates for the distribution of the time trend 

estimator over the 1000 Monte Carlo trials. Finally, we study the ability of the models to 

disentangle technical change and efficiency change using the decomposition of TFP 

growth in technical change, scale change and efficiency change in our experiments. To 

do so, we calculate the average of each TFP component throughout replications, years 
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and countries. We compare them with the TFP decomposition true values that emerge 

from the neutral technical change of the data generating model, the true input 

parameters together with the change in inputs used across countries and the changes 

in the inefficiency from the generated inefficiency. The simulation procedures have 

been carried out using the econometric package STATA 9.0. All models were 

estimated by maximum likelihood. 

 

In tables 1-3, each cell corresponds to the arithmetic mean of the estimates. Likewise 

the percentage of significant estimates (t-stat greater than 1.96) across the replications 

is shown in parentheses. It can be seen that some results are common to the three 

experiments. Specifically, the input parameters in all models are both estimated 

accurately and significant in almost all replications. This is not surprising since the two 

random terms are generated independently of the inputs. On the other hand, the 

constant term (α) is clearly biased in almost all models. 

 

In experiment 1 the data generating process assumes that there is no technical change 

(φ=0) but there exists catch-up. Table 1 presents the results of the Monte Carlo 

analysis for the experiment 1. In these models we have included the possibility to 

estimate technical change, though we have generated the data without technical 

change. In fact, in most of the estimated models the coefficient on the time trend is 

positive and significant. As the data was generated in the absence of technical change 

and imposing catch-up, a positive, significant trend parameter in the model indicates 

that efficiency improvements are partially absorbed by technical progress. This result is 

reinforced in Figure 1, 2 and 3 in which kernel density estimates of the technical 

change parameter are shown for experiment 1. The vertical line indicates the true value 

of the parameter. It can be seen that both the pooled model and the Battese and Coelli 

(1992) model clearly overestimates this parameter. Actually there is no trial in which 

this parameter is estimated accurately in the latter models. However the Battese and 

Coelli (1995) model estimates this parameter accurately if gamma equals to 0.5, and 

rather accurately in the case of gamma equals to 0.8, but it fails to estimate the 

parameter accurately if gamma is 0.2. Moreover, it is worth pointing out that the bigger 

γ the closer the coefficient on the technical change to the true parameter. Hence, as γ 

gets larger, the ability of the models to distinguish these effects is enhanced. 
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Finally, Table 4 presents the TFP decomposition under experiment 1. Since all models 

estimate accurately the input parameters there is no difference between the calculated 

scale change and the true scale change. However, the true efficiency change is very 

similar to the calculated technical change in the pooled model and Battese and Coelli 

1992 model. This result suggests that these models fail to distinguish between 

technical change and catch-up. Actually they consider the efficiency change as 

technical change. Opposite, the Battese and Coelli (1995) model is the only model that 

does not seem to confuse technical change and efficiency change in some scenarios. 

Specifically, when gamma is higher than 0.2, the TFP is decomposed fairly well. 

 

Regarding the variances estimates, the Battese and Coelli (1992) is the only model 

performing poorly. 

 

Table 2 shows the results for experiment 2 in which there is technical change but no 

efficiency change. The results show that likewise the estimation of the input parameters 

is unbiased. The constant term seems to be unbiased when γ is equal to either 0.5 or 

0.8, with the exception of the Battese and Coelli (1992). Furthermore all models 

estimate accurately the parameter of technical change. This result can also be seen in 

Figures 4, 5 and 6. Moreover, the larger gamma the larger the dispersion of the 

distributions of the time trend parameters. In Table 5 it can be seen that the TFP 

change components is well decomposed in all models. So if the data doest not hold 

efficiency change the considered models estimate accurately all the components of 

TFP change. Hence, unlike experiment 1, in which the changes in the efficiency are 

considered in some models as technical change, the changes in the technology are not 

measured as efficiency changes. Regarding the variances estimates, this table 

reinforces the results obtained in Table 1 since the Battese and Coelli (1992) does not 

estimate accurately the variances in contrast to the other models that seem to perform 

relatively fine. 

 

Finally in the Experiment 3 we describe the most general case in which there is 

efficiency change as well as technological change. The results of experiment 3 

basically confirm the results obtained in the experiment 1. An interesting issue is that in 

the pooled model and the Battese and Coelli 1992 model the percentage of replications 

in which the time trend is significant is higher in the experiment 1 than in experiment 3. 
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This fact is rather surprising since in experiment 1 the data is generated without 

technical change while in experiment 3 the data is generated with technical change.  

 

 

5. Conclusions 

 

In this paper we have performed Monte Carlo simulation in order to study whether 

several versions of the stochastic frontier model are able to correctly distinguish 

between technical change and efficiency change (catch-up). We estimated several 

models: the pooled Stochastic Frontier Model with the composed error term following a 

Normal-Truncated Normal model, as well as the models suggested by Battese and 

Coelli in 1992 and 1995. 

 

The results show that most models fail to correctly distinguish between technical 

change and efficiency change. In fact, most models estimate significant technical 

change when the data were generated without it. An important finding is that this 

problem seems to disappear as γ increases. Furthermore, the Battese and Coelli 

(1995) model seems to be able to disentangle these two effects when γ is larger than 

0.2; nonetheless, when γ is equal to 0.2 it does not perform so well. 

 

Obviously, the results obtained in this paper represent just a first step which must lead 

to further research in order to know the consistency of these results under alternative 

scenarios. Moreover, it would be also interesting to analyze the differences between 

the econometric approach, namely stochastic frontier models and the non-parametric 

approach (DEA) in order to disentangle the TFP growth components: scale change, 

technical change and efficiency change. 
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APPENDIX 

Table  1. Monte Carlo mean estimates under experime nt 1 (no technical change) 

  γ = 0.20 γ = 0.50 γ = 0.80 

SF SF SF SF SF SF SF SF SF 

  

True 

value T-N BC92 BC95 

True 

value T-N BC92 BC95 

True 

value T-N BC92 BC95 

0.160 -0.071 -0.179 0.046 0.160 0.041 -0.185 0.184 0.160 0.096 -0.200 0.187 
α 

 (6%) (72%) (17%)  (10%) (82%) (44%)  (43%) (94%) (91%) 

0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 βk 

  (99%) (99%) (99%)  (100%) (100%) (100%)  (99%) (99%) (99%) 

0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 βl 

  (99%) (99%) (99%)  (100%) (100%) (100%)  (99%) (99%) (99%) 

0.000 0.008 0.009 0.003 0.000 0.006 0.007 -0.001 0.000 0.004 0.006 -0.001 
φ 

 (99%) (97%) (50%)  (100%) (97%) (8%)  (99%) (98%) (15%) 

0.360   0.182 0.360   0.345 0.360   0.306 
δ0 

   (28%)    (83%)    (14%) 

-0.010   -0.010 -0.010   -0.015 -0.010   -0.013 
δt 

   (40%)    (93%)    (99%) 

σu 0.141 0.144 0.098 0.156 0.224 0.248 0.099 0.248 0.283 0.309 0.160 0.306 

σv 0.283 0.293 0.307 0.286 0.224 0.229 0.281 0.222 0.141 0.142 0.249 0.139 

µ  0.00 -0.34   0.07 -0.49   0.10 -1.48  

η   -0.17    -0.21    -0.28  

γ  0.21 0.12 0.24  0.54 0.14 0.55  0.82 0.28 0.83 
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Table  2. Monte Carlo mean estimates under experime nt 2 (no catch-up) 

  γ = 0.20 γ = 0.50 γ = 0.80 

SF SF SF SF SF SF SF SF SF 

  

True 

value T-N BC92 BC95 

True 

value T-N BC92 BC95 

True 

value T-N BC92 BC95 

0.160 0.069 -0.072 0.082 0.160 0.166 -0.078 0.169 0.160 0.173 -0.142 0.175 
α 

  (8%) (8%) (10%)   (50%) (22%) (46%)   (86%) (54%) (85%) 

0.630 0.630 0.627 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.631 0.630 βk 

   (91%) (91%) (91%)   (87%) (87%) (87%)   (94%) (94%) (94%) 

0.200 0.200 0.204 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 βl 

   (91%) (91%) (91%)   (87%) (87%) (87%)   (94%) (94%) (94%) 

0.020 0.020 0.023 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 
φ 

  (91%) (91%) (90%)   (87%) (86%) (87%)   (94%) (94%) (94%) 

0.200     0.011 0.200     0.090 0.200     0.309 
δ0 

      (2%)       (17%)       (14%) 

0.000     0.000 0.000     0.000 0.000     0.000 
δt 

      (8%)       (4%)       (5%) 

σu 0.141 0.150 0.094 0.155 0.224 0.258 0.123 0.258 0.283 0.309 0.201 0.309 

σv 0.283 0.293 0.313 0.291 0.224 0.222 0.282 0.221 0.141 0.137 0.248 0.137 

µ   0.00 -0.53     0.08 -1.09     0.11 -2.96   

η      -0.16       -0.12         -0.30   

γ   0.22 0.10 0.23   0.57 0.17 0.57   0.83 0.36 0.83 
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Table  3. Monte Carlo mean estimates under experime nt 3 (catch-up and technical change) 

  γ = 0.20 γ = 0.50 γ = 0.80 

  SF SF SF SF SF SF SF SF SF 

 

True 

value T-N BC92 BC95 

True 

value T-N BC92 BC95 

True 

value T-N BC92 BC95 

α 0.160 -0.075 -0.180 0.055 0.160 0.048 -0.183 0.180 0.160 0.096 -0.199 0.187 

   (5%) (67%) (18%)   (10%) (76%) (40%)   (41%) (89%) (87%) 

βk 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 

   (91%) (91%) (90%)   (91%) (91%) (91%)   (94%) (94%) (94%) 

βl 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

   (91%) (91%) (91%)   (91%) (91%) (91%)   (94%) (94%) (94%) 

φ 0.020 0.028 0.029 0.023 0.020 0.026 0.027 0.019 0.020 0.024 0.026 0.019 

   (91%) (90%) (85%)   (91%) (91%) (90%)   (94%) (94%) (94%) 

δ0 0.360     0.197 0.360     0.337 0.360     0.306 

       (26%)       (74%)       (14%) 

δt -0.010     -0.010 -0.010     -0.015 -0.010     -0.013 

       (38%)       (87%)       (94%) 

σu 0.141 0.144 0.097 0.157 0.224 0.250 0.103 0.250 0.283 0.309 0.163 0.306 

σv 0.283 0.293 0.307 0.284 0.224 0.228 0.281 0.223 0.141 0.142 0.249 0.139 

µ   0.00 -0.45     0.07 -0.47     0.10 -1.72   

η     -0.18       -0.19       -0.28   

γ   0.21 0.12 0.25   0.54 0.14 0.55   0.82 0.28 0.83 
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Table  4. Monte Carlo TFP decomposition under exper iment 1  

  2.0=γ  5.0=γ  8.0=γ  

True SF SF SF True SF SF SF True SF SF SF 
  

Value T-N BC92 BC95 Value T-N BC92 BC95 Value T-N BC92 BC95 

CT &  0 0.008 0.009 0.003 0 0.006 0.007 -0.001 0 0.004 0.006 -0.001 

CS &  -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 

CE &  0.008 0.000 0.000 0.004 0.006 0.000 0.000 0.007 0.005 0.001 0.000 0.006 

PFT &  0.001 0.001 0.003 0.001 -0.001 -0.001 0.001 -0.001 -0.002 -0.002 -0.001 -0.002 

TC- Technical change; SC- Scale change; EC- Efficiency change 

Table  5. Monte Carlo TFP decomposition under exper iment 2  

  2.0=γ  5.0=γ  8.0=γ  

True SF SF SF True SF SF SF True SF SF SF 
  

Value T-N BC92 BC95 Value T-N BC92 BC95 Value T-N BC92 BC95 

CT &  0.020 0.020 0.023 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 

CS &  -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 

CE &  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

PFT &  0.013 0.013 0.016 0.013 0.013 0.013 0.014 0.013 0.013 0.013 0.014 0.013 
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Table  6. Monte Carlo TFP decomposition under exper iment 3 

  2.0=γ  5.0=γ  8.0=γ  

True SF SF SF True SF SF SF True SF SF SF 
  

Value T-N BC92 BC95 Value T-N BC92 BC95 Value T-N BC92 BC95 

CT &  0.020 0.028 0.029 0.023 0.020 0.026 0.027 0.019 0.020 0.024 0.026 0.019 

CS &  -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 

CE &  0.008 0.000 0.000 0.005 0.006 0.000 0.000 0.007 0.005 0.001 0.000 0.006 

PFT &  0.021 0.021 0.023 0.021 0.019 0.019 0.021 0.019 0.018 0.018 0.019 0.018 
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Figure 1. Kernel densities of time trend coefficien t under experiment 1 ( γ= 0.2) 

 

 

 

 

 

 

 

 

 

 

Figure 2. Kernel densities of time trend coefficien t under experiment 1 ( γ= 0.5) 

 

 

 

 

 

 

 

 

 

 

Figure 3. Kernel densities of time trend coefficien t under experiment 1 ( γ= 0.8) 
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Figure 4. Kernel densities of time trend coefficien t under experiment 2 ( γ= 0.2) 

 

 

 

 

 

 

 

 

 

 

Figure 5. Kernel densities of time trend coefficien t under experiment 2 ( γ= 0.5) 

 

 

 

 

 

 

 

 

 

 

Figure 6. Kernel densities of time trend coefficien t under experiment 2 ( γ= 0.8) 
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Figure 7. Kernel densities of time trend coefficien t under experiment 3 ( γ= 0.2) 

 

 

 

 

 

 

 

 

 

Figure 8. Kernel densities of time trend coefficien t under experiment 3 ( γ= 0.5) 

 

 

 

 

 

 

 

 

 

 

Figure 9. Kernel densities of time trend coefficien t under experiment 3 ( γ= 0.8) 
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Countries: 

Algeria Haiti Paraguay 

Argentina Honduras Peru 

Australia Hong Kong Philippines 

Austria Hungary Poland 

Barbados Iceland Portugal 

Belgium India Rwanda 

Benin Indonesia Senegal 

Bolivia Iran, I.R. of Sierra Leone 

Botswana Ireland Singapore 

Brazil Israel South africa 

Cameroon Italy Spain 

Canada Jamaica Sri Lanka 

Central African Rep. Japan Sweden 

Chile Jordan Switzerland 

China Kenya Syria 

Colombia Korea Taiwan 

Congo Lesotho Tanzania 

Costa Rica Malawi Thailand 

Cote d'Ivoire Malaysia Togo 

Denmark Mali Trinidad & Tobago 

Dominican Rep. Mexico Tunisia 

Ecuador Mozambique Turkey 

El Salvador Nepal Uganda 

Fiji Netherlands United Kingdom 

Finland New Zealand United States 

France Nicaragua Uruguay 

Gambia Niger Venezuela 

Germany, West Norway Zambia 

Ghana Pakistan Zimbabwe 

Greece Panama  

Guatemala Papua New Guinea  
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Data 

Output : GDP measured at constant prices (1996 US$), with purchasing power parity 

(PPP) adjustment. We multiplied the real GDP per capita chain series (RGDPPCH) by 

total population for each country. 

Labor : this variable was proxied by population of equivalent adults. This population 

measure used here assigns a weight of 1.0 to all persons over 15, and 0.5 for those 

under age 15. In order to calculate such a measure, we divided real GDP per capita 

chain series (rgdpch) by real GDP per equivalent adult (rgdpeqa) and then we 

multiplied it by the population (pop). 

Capital : the physical capital stock series of each country in the sample was obtained 

using the perpetual inventory method. To compute the investment series we followed 

the methodology followed by Oliveira and Garcia (2004). We multiplied the GDP, in 

constant 1996 local currency, by the “current” investment rate, and then we converted it 

to US$ using the 1996 exchange rate. To obtain the GDP in 1996 local currency units 

we added up all the components available in the nafinalpwt spreadsheet of PWT. The 

current investment rate was obtained dividing the value of investment in current local 

currency by the current GDP. In addition, an estimate of the initial capital stock is 

required so that the perpetual inventory method may be applied. We estimated the 

initial capital stock using the investment series. Using the assumption that at the 

beginning of the sample period countries are in steady state (so capital stock growth 

can be proxied by output growth), an estimate of the country’s initial capital stock can 

be obtained as follows: 

 

K0 = I/(g+d) 

 

where: 

K0 = initial capital stock 

I = average investment (calculated over the starting three-year period; in our case 

1970, 1971, 1972) 

g = average growth rate of output for the three-year period 

d = average depreciation rate for the 3-year period (which is taken to be the same for 

all countries; in our database d is equal to 2%). 

 

 

 


