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1. Introduction 

 

Measuring the degree of competition in oligopolistic markets and finding the underlying 

determinants of such competition are key activities in empirical industrial organization. 

Earlier studies focused on estimating conduct parameters that distinguish collusive 

behaviours from non-collusive behaviours, using contemporary observations of 

outputs, costs, and prices. The literature on measuring oligopolistic conduct follows 

from original research by Iwata (1974), Gallop and Roberts (1979), and Appelbaum 

(1982), who estimate a static model of firm’s behaviour. The traditional static market 

power model is designed to estimate the level of market competition in a one-shot 

game that is repeated over time. Since in these models the (firm or industry) degree of 

market power is measured by a parameter θ that is jointly estimated with other cost 

and demand parameters, it is called the Conduct Parameter Method.1  

 

In static models, firms maximize individual profits each period without explicit 

consideration of the effect of behaviour in one period on the competitive environment in 

other periods. As the problem of repeated oligopoly interaction has received greater 

attention, the estimation of time-varying conduct parameters that are truly dynamic has 

become an issue. The Stigler’s (1964) theory of collusive oligopoly implies that, in an 

uncertain environment, both collusive and price-war periods will be seen in the data. If 

data on cartelized or tacitly collusive industry should show both periods of successful 

cooperation and periods of outright competition, empirically, this will show up as a time-

varying conduct parameter.2 In particular, Green and Porter (1984) predict a procyclical 

behaviour pattern for mark-ups because of price reversion during a period of low 

demand. Hence the conduct parameter changes from collusive value to competitive 

value when there is an unanticipated negative demand shock. Meanwhile, Rotemberg 

and Saloner (1986) predict that prices and mark-ups are countercyclical. The incentive 

to deviate from collusive agreements is greater when demand is high, so the optimal 

price decreases during a boom to prevent a deviation from the collusion in this model. 

Hence the conduct parameter will decrease when demand is high.  

                                                
1 Another approach in the New Empirical Industrial Organization (NEIO) is to estimate the 
demand and pricing relationship under specific assumptions of market competition. This 
approach has been used for differentiated product markets with price competition. See, for 
example, Berry, Levinston and Pakes (1995), Nevo (2001) and Jaumandreu and Lorences 
(2002). 
2 Empirical studies that estimate time-varying conduct include Bresnahan (1987), Brander and 
Zhang (1993), Gallet and Schroeter (1995), and Gallet (1997).  
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The above theories have in common that they imply an empirical model where the 

conduct parameter changes over time. Since they predict different time patterns the 

time-series behaviour of conduct is hard to estimate. Moreover, Abreu et al. (1986) find 

that in complex cartel designs the length of price wars is (i.e. changes in conduct 

parameter are) random due to there are “triggers” both for beginning a price war and 

for ending one. 

 

The conduct parameter not only varies over time, but also across firms. In a many 

treatments of oligopoly as a repeated game, firms expect deviations from the collusive 

outcome. Firms expect that if they deviate from the collusive arrangement, other will 

too. This expectation deters them from departing from their share of the collusive 

output. Since these deviations are unobserved in an uncertain environment, each firm 

might have their own expectation about what would happen if he deviates from 

collusive output. That is, “there is nothing in the logic of oligopoly theory to force all 

firms to have the same conduct” (Bresnahan, 1989, p. 1030). 

 

Taking all of these theories at once would lead to complex firm and time-varying 

conduct parameters. Obviously, allowing the conduct parameter varies both by firm and 

observation results in an overparameterized model. To avoid this problem the empirical 

models proposed in the literature always put some structure on the way the conduct 

parameter varies across firms and time. The overparameterization is solved by 

aggregation (i.e. by estimating the average of the conduct parameters of the firms in 

the industry), reducing the time variation into a period of successful cartel cooperation 

and a period of price wars or similar breakdowns in cooperation, allowing different 

conduct parameters between two o more groups of firms. 

 

Most of the structural econometrics models treat the firm’s behaviour as a common 

parameter to be estimated altogether with other cost and demand parameters. A 

crucial issue using this approach is how the data identify market power (i.e. θit or an 

industry-aggregation of this parameter) from other cost and demand parameters. 

Bresnahan (1982) solved this by introducing variables that combine elements both of 

rotation and of vertical shifts in the demand curve.3 Other methods to achieve this 

                                                
3 The economic intuition behind this result is quite straightforward. Suppose that the exogenous 
variables entering demand rotate the demand curve around the industry equilibrium point. 
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objective are based on comparative statics in costs, supply shocks and econometric 

estimation of marginal costs (see, for instance, Appelbaum, 1982, and Bresnahan, 

1989).  

 

Instead of treating firms’ behaviour as a (restricted) parameter to be estimated, in the 

present paper we propose treating firms’ behaviour (i.e. θit) as a random variable. 

Therefore, our approach relies on the estimation of a “composed error” model where 

the stochastic part is formed by two random variables, i.e. the traditional noise term, 

capturing random shocks, and a random conduct term, which measures market power. 

Once all parameters describing the structure of the pricing equation are estimated 

using appropriate econometric techniques, distributional assumptions can be invoked 

on either error component in order to obtain consistent estimates of the parameters 

describing the structure of the two error components. Conditional on these parameter 

estimates, market power is then estimated for each firm by decomposing the estimated 

residual into a noise component and a market-power component. 

 

Our approach does not require deciding, in advance, which firms are behaving 

strategically and which are not. Instead, conditional on the distributional assumption on 

the one-sided error component, our approach allows us to detect firms which are likely 

involved in a partial (perfect) collusion or behaving (more) competitively (e.g. maverick 

firms). Note that other papers (see, e.g., Puller, 2007) allowed each firm to have 

different conduct parameters, but these point estimates are only asymptotically 

consistent when the time dimension of their panel data set is long (i.e. T→ ∞). Since, in 

our model, the firm-specific market power estimates relies on distributional 

assumptions on the two error components, they can be obtained, unlike in previous 

papers, when a simple cross-section data set is available.  

 

It should be noted that the main contribution of the proposed approach is not the way 

that both parameters describing the structure of the pricing equation and an average 

level of market power are estimated, but the way the asymmetry of the composed error 

term (i.e. its skewness or kurtosis) is exploited in order to get firm-specific market 

                                                                                                                                          
Under perfect competition, this will have no effect: supply and demand intersect at the same 
point before and after the rotation. Under either oligopoly or monopoly, changes in the slope 
(and thus the elasticity of demand) will shift the perceived marginal revenue of firms. Equilibrium 
price and quantity will respond. Hence, the market comparative statics of perfect competition 
are distinct from those of monopoly. 
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power estimates. Indeed, the key feature of the composed error term is that it is 

asymmetric in two senses. First, the economic theory suggests that θit always takes 

positive values, so it follows a one-sided distribution. Second, several well-known 

oligopolistic equilibrium outcomes yield skewed conduct random terms. This makes 

asymmetric the composed error term.4 

 

If we take advantage of this asymmetry we can measure not only the average-industry 

market power, but also market power of each firm. Another advantage of the proposed 

approach is that the type of skewness or kurtosis of the conduct random term can be 

used to test different types of oligopolistic equilibrium outcomes. As we aware, 

skewness or kurtosis of conduct parameter (i.e. prices) in oligopolistic industry settings 

are not examined explicitly in most (if any) of the previous empirical papers. 

 

We illustrate this approach by estimating a MLE specification of the proposed model 

using a balanced panel data set from the Spanish banking industry for the period 1993-

1998. Our preliminary results show that imposing common conduct behaviour to all 

banks would yield biased results. In addition, we find a deterioration of competition 

during the period 1994-1998 since expected demand increase and expected decreases 

in costs. 

 

 

2. Theoretical background and empirical specificati on 

 

Homogeneous product 

 

As it is customary, we first assume a static model, i.e. firms maximize individual profits 

each period without explicit consideration of the effect of behaviour in one period on the 

competitive environment in other periods.5 Assume, for instance, that N symmetric 

firms simultaneously choose to supply individual quantities each period in a 

homogenous product market. When sellers are price takers, price equals marginal 

costs, and price is determined such that supply equals demand. However, when firms 

                                                
4 . See Section 3 for a discussion of some distributions and their associated equilibrium 
outcomes. 
5 See Section 5.1 for a dynamic version of the models outlined below. 
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are not price takers, perceived marginal revenue, and not price, will be equal to 

marginal cost.  

 

Let’s denote P(Qt,xt) as inverse demand, Qt as  total industry quantity, C(qit,wt) is the 

firm i’s cost function, qit is the individual firm quantity in period t, and xt and wt are 

vectors of demand and cost shifters observable to all firms in period t, respectively. If 

firm chooses quantity of output to maximize profit, the FOCs are: 

0),´(),(),( =⋅+− itttttittt QxQPwqmcxQP θ    (1) 

where mc(qit,wt) is marginal cost, and θit is a new parameter that parameterizes the 

MR=MC optimality condition. Equation (1) (and aggregations of this equation) is the 

standard model used to justify the Conduct Parameter Method. Under perfect 

competition, θit=0 and price equals marginal cost. When θit=1 we face a perfect cartel, 

and when 0<θit<1 various oligopoly regimes apply.6 

 

The empirical specification of (1) can be obtained by adding a traditional symmetric 

noise term capturing random shocks, εit. That is: 

ititttttitt QxQPwqmcP εθβα +⋅−= ),,´(),,(    (2) 

where α and β are respectively firm i’s marginal cost and demand parameters to be 

estimated.   

 

Differentiated product 

 

If firm’s products are differentiated, firm i’s profit function in period t can be written as: 

)),,,((),,( ttjtitittjtitititit wxppqCxppqp −=π    (3) 

where pit is firm i’s price, and pjt is the price for firm j, C is the firm i’s cost function, and 

xt and wt are vectors of demand and cost shifters observable to all firms in period t, 
                                                
6 The estimated conduct parameter does not consistently estimate how rivals response to a 
change in firm i’s behaviour, i.e. it cannot be interpreted as a conjectural variation. Rather it 
estimates behaviour in equilibrium. i.e. it only indicates that the result of that behaviour is as 
competitive “as-if” the firms were in fact playing a conjectural variation game with the estimated 
conjectural variation parameter. The estimated conduct parameter can be interpreted as a 
summary statistic measuring the degree of market power. See Bresnahan (1989) and Reiss and 
Wolak (2005) for a good discussion of (mis)interpreting an estimate of the conduct parameter 
θit. 
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respectively. We assume that firms charge different prices and their marginal cost 

varies across firms and over time. Finally, qit represents firm i’s demand function at 

period t. 

 

In a static model, i.e. firms maximize profits without explicit consideration of the effect 

on future competition, that is: 

)),,,((),,(max ttjtitittjtititit
p

wxppqCxppqp
it

−    (4) 

The static FOC’s are: 

[ ] 0=





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



⋅
∂
∂+

∂
∂−+ it

jt

it

it

it
ititit p

q

p

q
mcpq θ    (5) 

where θit=∂pjt/∂pit is the traditional static conduct parameter. This equation captures, as 

special cases, several static solutions. If θit=0 firm’s conduct is consistent with one-shot 

Nash-Bertrand behaviour. If θit=1, it is perfect collusion. An imperfect collusion arise 

when 0<θit<1. 

  

The empirical specification of (5) can be obtained by adding again a symmetric noise 

term: 

 [ ] [ ] ititititititititit dmcpbmcpq εθβαβα +⋅−−−= )()()()(

 

  (6) 

where 
it

it
it p

q
b

∂
∂−=)(β , and 

jt

it
it p

q
d

∂
∂=)(β .7 

 

General specification of the empirical model 

 

Whatever the product is homogeneous or differentiated, the model to be estimated is 

quite similar. In both settings the empirical model can be written as: 

ititititit gfy θ⋅−ε+=      (7) 

                                                
7 For notational ease, the model above assumes that firm i only has one competitor (firm j). With 
N firms the random variable θit 

can be interpreted as the firm i’s weighted average conduct, and 

itN d1
1
−  as the average cross derivative of firm i’s demand with respect to the N-1 competitor’s 

prices.  
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where, depending on the model, fit and git are functions of cost parameters (α), demand 

parameters (β), or both cost and demand parameters (α,β). If the product is 

homogeneous, yit=Pt, fit=mcit(α), and git=Pt´(β)Qt. If the product is heterogeneous yit=qit, 

fit=[pit-mcit(α)]bit(β), and git=[pit-mcit(α)]dit(β).  

 

Most structural econometrics models treated firm’s behaviour as a (common) 

parameter to be estimated altogether with other cost and demand parameters. In the 

present paper we propose treating firms’ behaviour as a random variable, which follows 

a one-sided distribution once we incorporate the theoretical restriction that of 0≤θit or 

θit≤1.8 The distinctive feature of our model is that the stochastic part is formed by two 

random variables, i.e. the traditional symmetric noise term, εit, and a one-sided random 

conduct term, git·θit, that depends on the measure of market power. The one-sided 

restriction makes asymmetric the composed error term and allows us getting separate 

estimates of θit and εit from an estimate of the composed error term. 9 

 

While assuming that the noise term is i.i.d. and symmetric with zero mean is 

conventional, several simple distributions for the (one-sided) conduct random term can 

be estimated. Here, there is a trade-off between tractability and (economic) 

reasonability. On one hand, we need to choose a simple distribution for the asymmetric 

term in order to make estimable the empirical model. But, on the other hand, each 

distribution can be associated to a different oligopolistic equilibrium outcome or a 

specific family of (similar) oligopolistic equilibriums. For this reason, the selected 

distribution for the one-sided conduct term reflects the researcher’s believes about the 

underlying oligopolistic equilibrium that generates the data. Although, in principle, this 

feature of the present approach can be viewed as a disadvantage, the types of 

skewness (or kurtosis) of the conduct random term that can be estimated can be used 

to test different types of oligopolistic equilibrium outcomes. 

 

                                                
8 Since it is not easy to impose at the same time the theoretical restriction that 0≤θit and θit≤1 
and allowing for simple asymmetric distributions, we will only impose 0≤θit or θit≤1, and leave the 
opposite limit open as a way to capture more sophisticated (e.g. two modal) distributions or as a 
model’s specification test. Note also that if firms are asymmetric in size and cost, the upper limit 
(i.e. in perfect collusion) in a homogeneous product market is Qt/N·qit, and hence it does not 
take a particular value except for the case where all firms are of the same size. This is an 
additional reason to impose a unique restriction on θit when products are homogeneous. 
9 Note that in a homogeneous setting git is by construction negative, while in a differentiated 
setting it is positive. Hence, the one-sided error term is positive (i.e. -git·θit≥0) in the first case, 
but negative (-git·θit≤0) in the second. The asymmetry, however, still holds.  
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Unlike previous papers that focused on industry-average conduct scores, here we 

focus on the distribution of this random term and the implications of choosing a specific 

one-sided distribution in order to get firm-specific market power scores.10 While some 

papers have obtained firm-specific conduct parameter using panel data set, they have 

not explicitly analyzed the skewness and kurtosis of the estimated conduct parameters. 

If we cannot take advantage of the panel structure of the data (because, for instance, 

the time dimension is not long enough), firm-specific market power scores can still be 

obtained analyzing the skewness of the conduct random term. This kind of analysis, in 

addition, can provide useful information about the nature of the competition among 

firms in a particular market.  

 

In Section 3 we first review several distributions and their associated oligopolistic 

equilibriums, whereas in Section 4 we discuss the estimation strategies that we can 

follow in order to get both the parameter estimates of the pricing equation (7) and 

individual and industry-average market power scores.  

 

 

3. Distributional assumptions and equilibrium outco mes 

 

With the aim of estimating firm-specific market power scores, several simple 

distributions for the (one-sided) conduct random term can be used. All of them make 

asymmetric the composed error term, but the particular skewness of the conduct 

random term is associated to a different oligopolistic equilibrium outcome or a specific 

family of (similar) oligopolistic equilibriums.  

 

For instance, it is common to assume that demand is supplied by few (and likely large) 

firms that face a fringe of firms. These firms are often assumed to be small and/or 

foreign firms that do not behave strategically (i.e. they are modelled as a competitive 

fringe), while the first firms have enough market power to fix prices over marginal cost 

or/and are involved in some kind of collusion agreement. 11 Unlike previous papers, 

                                                
10 It should be highlighted that, in practice, we can estimate the pricing equation (7) and the 
industry-average market power level without assuming any distribution assumptions for the two 
random terms (e.g. using some method of moments). This, however, does not allow as getting 
firm-specific market power scores. In contrast, if we are interested in firm-specific market power 
scores or we want to estimate all parameters using MLE techniques, we need to choose a 
distribution for both the one-sided conduct term and the noise term (see Section 4).  
11 See, for instance, Gallet (1997) and Gallet and Schroeter (1995). 
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here we do not split in advance the sample into firms that behave strategically and 

competitive firms. Instead, conditional on the distributional assumption on the one-

sided error component, our approach allows us to detect firms with (high) market power 

(or involved in a cartel) or firms behaving (more) competitively. This incomplete 

collusion equilibrium is reasonable in markets with many firms where coordination 

among all firms is extremely difficult to maintain as the number of firms in the collusive 

scheme is too high or other market characteristics (e.g. markets with differentiated 

products) makes coordination too expensive. The most important characteristic of this 

equilibrium is that the modal value of the conduct random term is close to zero. This 

situation is illustrated in Figure 1, where we have also assumed that only a few number 

of firms are involved in almost a perfect collusion scheme. As illustrated in Figure 1, if 

increasing values of θit are less likely, several relative simple (i.e. with one-parameter 

densities) distributions widely employed in the stochastic frontier literature for the one-

sided random term, such as half-normal or exponential, 12 fits quite well this market-

equilibrium outcome.  

  

[Insert Figure 1 here] 

 

In these markets, the fringe of firms that remains outside the cartel has an incentive to 

price up to the cartel’s level. This phenomenon is called the “umbrella pricing”, which 

yields that some firms set prices higher than those fixed by pure competitive (i.e. 

Bertrand) firms. In this oligopolistic equilibrium, as it is illustrated in Figure 2, the modal 

value of the conduct random term might be higher than zero (but closer to zero than to 

one). This equilibrium outcome, and other oligopolistic equilibriums which yield a 

                                                
12 The half-normal distribution is obtained from the truncation below zero of a random variable 
which follows a normal distribution with zero mean and variance σ. In this case, the density 
function of θit ≥0 is given by  













σ
θ

−⋅
σ⋅π

=θ
2

2

2
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2

2
)( it

itf  

If θit ≥0 follows an exponential distribution, the density function is 









σ
θ−

⋅
σ

=θ it
itf exp

1
)(  

Both half-normal and exponential are a single-parameter distributions. There is some evidence 
in the frontier literature that neither rankings of firms by their efficiency (here conduct) scores or 
the composition of the top and bottom scores deciles are particular sensitive to the single 
distribution assigned to the one-sided error term (see Kumbhakar and Lovell, 2000, p. 90). 
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similar distributional outcomes, can be modelled by allowing θit to follow a truncated 

normal distribution. 13  

 

[Insert Figure 2 here] 

 

All firms in other markets are involved in perfect cartel scheme. In a cartel-equilibrium, 

firms usually fix prices by agreeing to sell at some “target” price (see, Connor, 2005). 

This target price is the monopoly price in perfect-collusion equilibrium and it is 

associated with the maximum conduct value (e.g. θit =1). This means that the modal 

value of the conduct random term in this equilibrium is one, with less values of θit 

increasingly less likely. As shown in Figure 3, a truncated (over one) one-mean normal 

distribution fits quite well this cartel-equilibrium outcome. It is well known that secret 

price cuts by cartel members are almost always a problem in cartels. For instance, 

Ellison (1994) finds that secret price cuts occurred during 25% of the cartel period and 

that the price discounts averaged about 20%.14 Here, cheating behaviour explains why 

firm-conduct and prices are negative skewed compared to the same market in a perfect 

collusion.  

 

[Insert Figure 3 here] 

 

Firms involved in cartel equilibrium fix prices by agreeing to sell at some lower “floor” 

(minimum) price. In these industries, the cartel price is high, and it can be associated 

with a high conduct value (mark-up). This means that the modal value of the conduct 

random term in this equilibrium is, as shown in Figure 4, less than (but close to) one, 

with less and high values of θit increasingly less likely. Here, a truncated (over one) 

normal distribution with nonzero mean fits quite well this cartel-equilibrium outcome. 

Again, cheating behaviour explains why firm-conduct and prices to become negative 

skewed. Because the cartel price is not as high as in a perfect-collusion, some sales by 

cartel members would occur at supra-target prices or mark-ups. 

 

[Insert Figure 4 here] 

                                                
13 The truncated normal distributions assumed for θit generalizes the half normal distribution, by 
allowing the pre-truncated normal distribution to have a nonzero mode, i.e. it is a two-parameter 
distribution (see below equation (14)). It should be noted that two-parameter distributions are 
much more difficult to estimate as shown by Ritter and Simar (1997). 
14 See also Borenstein and Rose (1994). 
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Two final situations are worthy to mention from an estimation point of view.  First, all 

the previous distribution functions for the skewed conduct random term assume the 

existence of one mode, with less (high) values of the conduct value increasingly less 

likely. Many industries, however, may be formed by two groups of firms with two 

different behaviours, which imply the existence of two modes. In principle, the previous 

simple one-parameter and two-parameter distributions cannot handle this situation. In 

addition, the tractability principle prevents us using other (one-sided) distributions 

which are much more sophisticated and difficult to estimate.  

 

Note, however, that we only impose 0≤θit or θit≤1, and leave open the opposite limit. 

This allows us to “capture” indirectly more sophisticated (e.g. two modal) distributions 

in the sense that is explained below. Imagine that the conduct variable is distributed as 

in Figure 5. Here, compared to Figure 1, there are accumulation points not only in zero 

but also in one. As illustrated in Figure 5, if we estimate a half-normal (i.e. one-mode) 

distribution allowing for values higher than one, the estimation method will try to 

estimate a distribution with the same “mass” close to one by enlarging the range of 

values for the conduct variable up to, say, A is equal to B. Hence, values higher than 

one might indicate that the model is not well specified, but also that an accumulation 

point is not directly captured by the selected distribution function. 

 

[Insert Figure 5 here] 

 

Second, in all previous situations, we have assumed that the conduct random term is 

skewed distributed. Since assuming that the noise term is symmetric with zero mean is 

conventional, this allows us getting firm-specific market power scores. If the conduct 

random term is distributed as in Figure 6, where both right hand side and left hand side 

tails are symmetric, we cannot estimate firm-specific market power scores. This is 

because we cannot get separate estimates of statistical noise and conduct value from 

estimates of the composed error for each firm. Note, however, that in this situation we 

can estimate the pricing equation (7) and the industry-average market power level. 

  

[Insert Figure 6 here] 
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4. Estimation strategy 

 

We now consider how to estimate the model. The traditional structural market power 

model to be estimated is formed by a demand function and a pricing equation. In order 

to focus on empirical issues regarding the estimation of industry and firm-specific 

market power scores, we only discuss the estimation of the pricing relationship (7), 

given a previous estimation of the demand parameters.15  

 

Models of the form in (7) have been proposed and estimated in the literature of frontier 

production function literature (measuring of the efficiency and production).16 Two 

estimation methods are possible: a method of moments approach and MLE. The 

method of moments approach involves three stages. In the first stage, least squares or 

GMM is used to generate consistent estimates of all parameters describing the 

structure of the pricing equation, apart from the variances of both random terms. This 

stage is thus independent of distributional assumptions on either error component. In 

the second stage of the estimation procedure, distributional assumptions are invoked in 

order to obtain consistent estimates of the parameter(s) describing the structure of the 

two error components, conditional on the first-stage estimated parameters describing 

the structure of the pricing equation. In the third stage, market power is estimated for 

each firm by decomposing the estimated residual into a noise component and a 

market-power component.  

 

The MLE approach uses maximum likelihood techniques to obtain consistent second-

stage estimates of the parameter(s) describing the structure of the two error 

components, conditional on the first-stage estimated parameters, describing the 

structure of the pricing equation. It can be also used to estimate simultaneously both 

types of parameters. In this case, the MLE approach merges the two first stages of the 

method of moments approach into one. 17  

                                                
15 This is the strategy followed, for instance, by Nevo (2001) and Jaumandreu y Lorences 
(2002). 
16 See, in particular, Simar, Lovell and Vanden Eeckaut (1994), and the references in 
Kumbhakar and Lovell (2000). 
17 Base on the results of a Monte Carlo experiment, Olson, Schmidt, and Waldman (1980) 
concluded that the choice of estimator (MLE versus method of moments) depends on the 
relative values of the variance of both random terms and the sample size. When the sample 
size is small and the variance of the one-sided error component, compared to the variance of 
the noise term, is not large the method of moments outperforms MLE in a mean-squared error 
sense. 
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4.1. First stage 

 

We start describing the method of moments approach. In the first stage, least squares 

or GMM is used to generate consistent estimates of all parameters describing the 

structure of the pricing equation, apart from the variances of both random terms. Let us 

rewrite the pricing equation (7) as: 

itititit vgfy +θ⋅βα−βα= )ˆ,()ˆ,(     (8) 

where we define fit and git in general terms as functions of both cost and demand 

parameters, α are parameters of the firm i’s marginal cost function to be estimated, β̂  

are demand parameters already estimated, θ = )( itE θ , and  

{ }θ−θ⋅βα−ε= itititit gv )ˆ,(      (9) 

The parameters in equation (8) can be estimated by (non)linear least squares by 

means of 

[ ]∑∑ θ⋅βα+βα−=






 θα
∧

i t
ititit gfy

2
)ˆ,()ˆ,(minarg,ˆ    (10) 

Note that the pricing relationship (10) which is estimated in this first stage is equivalent 

to the traditional specification of a structural market power model where an industry-

average market power level is estimated altogether with cost (and, just in case, 

demand) parameters. Hence, our estimation procedure nets the traditional methods 

used in the literature. As mentioned in the introduction section, the main contribution of 

the proposed approach is not the way that both parameters describing the structure of 

the pricing equation and an average-industry market power are estimated, but the way 

the asymmetry of the composed error term (i.e. the skewness of the conduct random 

variable) is exploited in order to get firm-specific market power estimates in the second 

and third stages.18 

                                                
18 The pricing equation (8) can be extended allowing for firm-specific conduct parameters (see, 
for instance, Puller, 2007) as follows: 

itiititit vgfq +θ⋅βα+βα= )ˆ,()ˆ,(  

This model assumes that firm-specific conduct parameters are time-invariant and it is only 
consistent when long panel data sets are available (i.e. as T→∞). In addition, the incidental 
parameter problem appears as N→∞. 
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Two estimation issues arise in this first stage. Since some regressors are endogenous, 

a GMM or IV method should be employed in order to get consistent estimates. Second, 

the resulting parameter estimates are consistent, but not efficient by construction since 

the vit’s are independently but not identically distributed. Assuming that itθ and εit, are 

distributed independently of each other, the second moment of the composed error 

term can be written as: 

22222 )ˆ,()( θε σ⋅βα+σ=σ= itvitit gvE     (11) 

where 22 )( εσ=ε itE , and 2)( θσ=θitV . Equation (11) shows that the error in the 

regression indicated by (9) is heteroskedastic. Therefore generalized least squares 

would be needed to obtain estimates that are efficient. Efficient parameter estimates 

can be obtained using weighted least squares by means of 

∑∑ 








σ
θ⋅βα+βα−

=






 θα
∧

i t vit

ititit gfy
2

)ˆ,()ˆ,(
minarg,ˆ    (12) 

However, since 2
vitσ  is unknown, it is necessary to construct a feasible least squares 

estimator. This is done in the second stage. 

 

4.2. Second stage 

 

Since the conduct random variable is likely skewed (see previous section), the first-

stage residual is likely asymmetric, and then its third moment can be used to 

estimate 2
vitσ .19 Assuming, as it is customary, that εit is symmetrically distributed, the 

third moment of the composed error term can be written as 

( )[ ]333 )ˆ,()( θ−θ⋅βα−= ititit EgvE     (13) 

Equation (14) shows that the third moment of vit is simply the third moment of the 

random conduct term, adjusted by )ˆ,(3 βα− itg . Note also that the variance of the noise 

error term does not appear in (13). That is, while the second moment (11) provides 

                                                
19 If θit=0, then vit=εit, the first-stage residuals are symmetric. However, if θit>0, then vit is likely 
positively or negatively skewed. Hence, this suggests that a test that first-stage residuals are 
symmetric provide a simple test for the existence of non-Bertrand behaviour. 
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information about the parameter(s) describing the structure of the two error 

components (i.e. 2
εσ and 2

θσ  ), the third moment (13) only provides information about 

the asymmetric random conduct term. Now, if we assume a specific distribution for this 

one-sided random term, we can estimate 2
θσ  from the third moment of vit, and then 2

εσ  

from its second moment. As shown below, this provides all the information required to 

estimate not only and 2
vitσ  but also to get firm-specific market power scores.  

 

Assume, for instance, that our market equilibrium outcome can be modelled by 

allowing θit to follow a truncated normal distribution. 20 If we assume that θit ~N+(µ,σ2) 

then 

( )












σ
µ−θ−⋅σµΦ⋅

σ⋅π
=θ −

2

2
1

2
exp)(

2

1
)( it

itf    (14) 

where Φ(·) is the standard normal cumulative distribution function (see Greene, 2003). 

Given this distributional assumption for the conduct term, the first three moments of θit 

can be written as (see Jawitz, 2004): 

σ⋅
σµΦ
σµφ+µ=θ=θ

)(

)(
)( itE        (15) 

[ ] θσ
σµ
σµφσσθθ θ ⋅⋅

Φ
−==−

)(
)(

)( 222
itE      (16) 

[ ] 22

2

33

)(

)(

)(

)(

)(

)(
)( θ⋅σ⋅

σµΦ
σµφ+θ⋅σ









σµΦ
σµφ+σ

σµΦ
σµφ−=θ−θitE   (17) 

Note that, while the first stage is thus independent of distributional assumptions on 

either error component, in the second stage of the estimation procedure we invoke 

distributional assumptions in order to obtain consistent estimates of the parameter(s) 

describing the structure of the two error components, conditional on the first-stage 

estimated parameters describing the structure of the pricing equation, which includes 

                                                
20 We have chosen this distribution because it is a generalization of the one-parameter half-
normal distribution and it is one of the most employed in the production frontier literature. See 
Jawitz (2004) for other distributions and the moments required to estimate then using the 
method of moments.  
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an estimation of θ . Hence, equation (15) can be viewed as a nonlinear constraint 

between µ and σ.  

 

Given the assumed distribution function for θit, the second and third moments of the 

composed error term can be rewritten as: 

 







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 (19) 

Next, using the first-stage residuals, the two equations formed by the nonlinear 

constraint and the third moment of the composed error term 
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 (21) 

provide estimates of µ and σ, which yield an estimate of )()( 1 σµΦ⋅σµφ − . Using the 

second moment of the composed error term, these estimates together yield an 

estimate of 2
εσ  by means of 

∑∑
= =

∧













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t
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NT 1 1

2222 ˆ
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ˆ)ˆ,ˆ(ˆ
1

ˆ θσ
σµ
σµφσβασ ε &     (22) 

This provides all the information required to estimate 2
vitσ , which is used in least 

squares in equation (12).  

 

The procedure is much more simple if we assume that θit follows a half-normal 

distribution, that is, θit ~N+(0,σ2). In this case θit  comes from a truncation below zero of 

a normal distribution with zero mean. Note that if µ=0, 2/11 )/2()/()/( π=σµΦ⋅σµφ − , 

2/1)2/(ˆ π⋅θ=σ
∧

, and )12/(ˆ 2 −πθ⋅θ=σ
∧∧

θ . Hence 
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These estimates provide all the information required to estimate 2
vitσ  and, hence, to 

carry out equation (12). 21 

 

Given that we have assumed a particular distribution for the conduct term, the structure 

of the two error components can be estimated by MLE. Consider, for instance, that θit 

~N+(µ,σ2) and εit~N(0,σε
2). The density function of θit in (8) is given in equation (14). 

Hence, it follows that ),(~)ˆ,(~
ititititit Ng σµθβαθ +⋅≡  where µβαµ ⋅≡ )ˆ,(itit g , and 

σβασ ⋅≡ )ˆ,(itit g . Given the independence assumption, the joint density function of 

itθ~ and itε is the product of their individual density functions 
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The joint density of itθ~  and itititv θ−ε= ~~ is  

( ) ( )
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The marginal density of itv~ is obtained by integrating itθ~ out of )~,~( itit vf θ , which yields 

                                                
21 So far we have assumed that θit is positive skewed as in Figures 1 and 2. If, on the other 
hand, θit is negative skewed as in Figures 3 and 4, the procedure is roughly the same. Both 
cartel-equilibrium outcomes represented by Figures 3 and 4 can be modelled as the truncation 
over one of a normal distribution with mean equal to one (Figure 3) or less than one (Figure 4). 
The truncation over one can be converted into a (more traditional) truncation below zero if we 
redefine the random conduct term as *1 itit θ−=θ , where θ*

it ~N+(1-µ,σ). This implies that the first-

stage residual is { }**)ˆ,( θ−θ⋅βα+ε= itititit gv , where θ−=θ=θ 1)( **E . Unlike (11), a plus sign 

appears before git(·) and θ*
it comes from a truncation below zero of a normal distribution with 

mean equal to µ*=1-µ. Here, µ* and σ can be estimated from (20) and (21) by replacing µ by µ*, 
substituting the estimate of θ by the estimate of *θ , and changing the sign of right-hand side of 
(21). An estimate of 2

εσ  can be obtained from (22) by replacing µ by µ*. 
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where ( ) 2/122~
εσ+σ≡σ itit  and εσσ≡λ itit . In this case, the likelihood to be maximized is  
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Given the first-stage estimates )ˆ,ˆ( βα of the parameters describing the pricing equation 

structure, maximizing the likelihood function )~(lnln itti vfL ∑∑=  with respect to the 

parameters generates estimates of (σ, σε ,µ). If we do not condition the maximization on 

the first-stage parameter estimates (i.e. firm i’s marginal cost, α), we can estimate both 

the parameters describing the pricing equation structure and the structure of the two 

error components simultaneously, merging the two previous first stages of the method 

of moments approach into one.  

 

4.3. Third stage  

 

The third stage is to obtain estimates of market power estimates of each firm.  We have 

estimates of ititititit fyv θεβα ~)ˆ,(~ −=−= , which obviously contains information on itθ . 

The problem is to extract the information that itv~ contains on itθ~ , and given git(·), on itθ . 

Jondrow et. al (1982) face the same problem in the frontier production function 

literature and propose using the conditional distribution of the one-sided random term 

(here itθ~ ) given the composed error term (here itv~ ). The conditional distribution f( itθ~ | itv~ ) 

is given by 
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Note that )~|~( itit vf θ is distributed as ),( 2
** σµ+N , where ( ) itititit v σσµ+σ−≡µ ε

~~ 22
* , 

and ( ) ( ) ( )22222222
*

~
εεε σσσσσσσσ +⋅=⋅≡ itititit . Thus the mean of )~|~( itit vf θ can be used to 

get firm-specific estimates of itθ~ . The mean is given by 

( )
( )**

**
**)~|~(

σµΦ
σµφ⋅σ+µ=θ itit vE     (29) 

The mode of this distribution can also be used as a point estimator for itθ~ . However, the 

mean is, by far, the most employed in the frontier literature.22 Once we have got a point 

estimator for itθ~ , a conduct score itθ can be obtained using the identity 

).ˆ,(/~ βαθθ ititit g≡ 23 

 

 

5. Other econometric issues 

 

5.1. Dynamic pricing 

 

Corts (1999) found in a homogeneous product framework that traditional approaches to 

estimate the competitive conduct in an oligopoly market can yield inconsistent 

estimates of the conduct parameter if firms are engaged in an efficient tacit collusion, 

i.e. firms try to maximize joint profits subject to the constraint that no firm has an 

incentive to deviate in order to earn higher one-time profits at the risk of starting a 

“price war”. 24 

                                                
22 It is also possible to obtain confidence intervals for the point estimates of 

itθ~ , by exploiting the 

fact that the density of is known (see, Horrace and Schmidt, 1996). 
23 Note that λ≡σ/σε=0 implies that θit=0. Hence, we can use this parameter to test Bertrand 
behaviour. Remember that our model allows for firm-specific conduct parameters, so we can 
identify those firms which are more (less) competitive. To do that, we compute a firm-specific 
competitiveness level measure by comparing firm’s performance with a hypothetical Bertrand 
equilibrium. In particular, this measure uses Bertrand as “the” competitive framework, and can 
be calculated as CLit=exp(-θit). If CL=1 firm’s conduct is consistent with static Nash-Bertrand 
behaviour. If CL<1, its value indicates how far the conduct is from a “competitive” outcome. 
24 See e.g. Green and Porter (1984), Rotemberg and Saloner (1986), Haltiwanger and 
Harrington (1991) and Staiger and Wolak (1992). 
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The origin of this problem and its possible solutions can be discussed if we extend our 

static models outlined in Section 2 in a dynamic pricing game framework.25 Under 

efficient tacit collusion, each firm solves a dynamic profit maximization problem by 

comparing the benefit of a deviation from the collusion with the future loss caused by 

retaliation. In this framework, deviation from the collusive quantity is punished by 

permanent reversion to a lower profit “punishment” outcome such as Cournot or Nash-

Bertrand price. Hereafter, we assume that firms revert to Nash-Bertrand competition 

during the retaliation period. 

 

Let’s us assume a differentiated product market. Let πit
b(p,xt,wt) denote the firm’s best 

response profit at time t and represents the individual profit to any firm that unilaterally 

deviates from the collusive regime by choosing its one-shot best response to the 

collusive prices of the other firms. Let πis
nb(xs,ws) denote the punishment profit in period 

s>t. If all other firms play their Nash-Bertrand equilibrium strategy in every period, the 

best that a single firm can do is to play its Nash-Bertrand equilibrium strategy in each 

period s. Let πit(p*,xt,wt) denote a firm’s profit that is obtained when collusion is 

sustained and p* is the optimal collusive price in state xt and wt.  

 

We can then write the FOC’s as follows: 
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where Et[·] denotes expectations of future profits conditional on information known in 

period t, and δ is the firms’ common discount rate. Following this, the dynamic FOC’s 

are 
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25  See the dynamic model developed by Kim (2006) in a differentiated product setting, and 
Corts (1999) and Puller (2006) for a similar model developed in a homogeneous product setting. 
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where ψ is the Lagrange multiplier on the incentive compatibility constraint (ICC). 

Adding a pure stochastic term that does not affect firm’s pricing behaviour, ηit, and 

rearranging terms; this FOC can be written as:  
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where now the random term εit captures not only errors in optimization (i.e. ηit), but also 

the effect on optimal pricing of the firm in a collusive regime with the binding ICC, that 

is:  
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Note that θit is the traditional conduct parameter, but it is different than the static 

conduct parameter due to in (31) the conduct depends not only on the conduct 

parameter θit, but also on whether the incentive compatibility condition binds, i.e. ψ>0. 

This equation captures, as special cases, several static (i.e. ψ=0) and dynamic 

solutions (i.e. ψ>0). If θi=0 firm’s conduct is consistent with Nash-Bertrand behaviour. 

If, in addition, ψ=0, this outcome is consistent with the static one-shot Nash-Bertrand 

competition. If θit=1 and ψ=0, it is perfect collusion. Two imperfect collusions arise. In a 

static solution when 0<θit<1. When ψ>0 and θit=1, conduct is consistent with the 

dynamic and efficient tacit collusion. Under efficient tacit collusion, firms jointly adjust 

prices so that no firm has an incentive to deviate from joint profit maximization. 

 

Most market power papers estimate a similar pricing equation to (32) assuming a 

common conduct parameter to all firms. Corts (1999) demonstrated that the estimates 

of conduct parameter are biased and inconsistent if the ICC is binding (ψ>0) and the 

best-response profits are non-linear. If the static model is correct, the error term in an 

econometric model for (32) is a pure stochastic term and therefore should not affect a 

firm’s pricing behaviour. However, if the ICC is ever binding (i.e. ψ>0) the static 

conduct parameters are biased and inconsistent. 

  

Since both expected demand and cost shocks affect the ICC, consistent estimates can 

be obtained by replacing {ψ/(1+ψ)}·∂πb(·)/∂pit by a function of expected demand and 

cost shocks and estimating the following extended pricing equation:  
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Based on (34), Puller (2006) pointed out that, under the assumption that both expected 

demand and cost shocks are common to all firms, Corts’ critique can be avoided by 

estimating the pricing equation (34), but replacing G(xt,wt) by a set of time-dummy 

variables.  

 

Kim (2006) proposes a similar solution to address Corts’ critique. Firm’s behaviour in 

(31) depends not only on the conduct parameter θit, but also on whether the ICC binds, 

i.e. ψ>0. Corts showed that when the latter is not modelled, the conduct parameter θit is 

biased and the bias depends on expected future demand and costs. Since firm’s 

dynamic behaviour is influenced by contemporary demand levels, expected future 

demand, and expected future costs, he suggests modelling the time-varying conduct 

parameter as a core time-invariant conduct parameter, θi*, plus a function of 

{ψ/(1+ψ)}·∂πit
b(·)/∂pit. This function is in turns modelled as a linear function of their 

determinants, i.e. demand and cost shocks. That is: 

( )ttittiit wxwxG ⋅+⋅+=+= 21*),(* ϕϕθθθ     (35) 

In equation (34), the first term, the core conduct parameter, measures the firm-specific 

average level of collusion over time while the second linear term captures the deviation 

from the average level. Kim mentions two advantages of the above specification. First, 

by specifying a time-varying conduct parameter we can test the relationship between 

the firm’s conduct and both demand shocks and cost shocks. If xt has a negative sign, 

this implies countercyclical firm conduct and mark-up as in Rotemberg and Saloner 

(1986). If xt is positively associated with θ, this implies procyclical firm conduct and 

mark-ups as in Green and Porter (1984). Second, we can shed light on the source of 

bias that distinguishes the core conduct parameter θi* and the static conduct parameter 

θ when the ICC is no binding, i.e. ψ=0. If we wrongly assume a static game wrongly, 

what θ measures is not θi* but θi* plus a bias term. The bias term is a function of 

demand shock and cost shocks. In this case, market power will be underestimated or 

overestimated. 

 

Kim assumed that θi* is common to all firms, that is θi*=θ*, and treated θ* as a common 

parameter to be estimated. Instead, we do not impose a common behaviour and treat 
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firms’ behaviour as a random variable that always takes positive values as it is 

suggested in oligopoly theory. Kim’s suggestion can be incorporated into our model by 

allowing the random conduct variable θit be a function of some determinants. This is 

explored in the next section. 

 

5.2. Conduct determinants 

 

So far we have assumed several basic distributions for the asymmetric random term, 

viz. half-normal, truncated-normal, etc. We can also develop composed error models 

that include determinants of (the shape and magnitude) the one-sided random term.  

This allows us to analyze, for instance, the cyclical behaviour of firm conduct or 

evaluate bias in static market-power measures (see above), or identify clusters of firms 

with different strategic behaviour.  

 

Let’s us assume that the conduct random term follows a truncated-normal distribution. 

A general specification including a vector of conduct determinants, zit, can be written 

as: 

))(),(( ititit zzN σµθ +→     (36) 

where, in addition to other determinants of firms’ behaviour, zit might include, as 

suggested by theory, expected future demand and expected future costs. In this 

general specification the conduct determinants determine both the shape and 

magnitude of the one-sided random term, and their coefficients cannot be estimated 

using a method of moment. They can be estimated by generalizing the maximum 

likelihood techniques developed in Section 3.  

 

The model can be still estimated using a method of moments, however, if θit satisfies 

the so-called scaling property (see Wang and Schmidt, 2002). In this case θit can be 

written as a scaling function h(zit,ϕ) times a random variable uit that does not depend on 

zit, that is  

),(,)·,( σµϕθ +→→ Nuuzh itititit    (37) 

This property implies that changes in zit affect the scale but not the shape of uit. This 

type of models has a similar economic interpretation than that proposed by Kim (2006). 

Dynamic models predict that a firm’s behaviour is influenced by expected future 
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demand and expected future costs. This effect is capture by the scaling function 

h(zit,ϕ).26  

 

Although it is an empirical question whether or not the scaling property should hold, it 

has some features that we find attractive. The defining feature of models with the 

scaling property is that firms differ in their core collusive conduct, but not in the shape 

of the distribution of the dynamic conduct parameter θit. The question of whether the 

effects of the zit on firm behaviour are monotonic can be handled easily by the choice 

of scaling function. If one wishes to impose monotonicity, simply use a monotonic 

scaling function, such as the exponential scaling function exp(zit′ϕ). If not, use a non-

monotonic scaling function. As noted by Wang and Schmidt (2002), the interpretation 

of φ does not depend on the distribution of uit, and simple scaling functions yield simple 

expressions for the effect of the zit on the dynamic conduct parameter θit. For example, 

if we use the exponential scaling function, so that θit=exp(zit′ϕ)·uit, then the coefficients 

ϕ are just the derivatives of ln(θit) with respect to the zit.  

 

If we assume an exponential scaling function, i.e. h(zit,ϕ)=exp(zit′ϕ), the pricing 

equation to be estimated  is: 

ititititit ugfy ε+βϕα−βα= )·ˆ,,(~)ˆ,(     (38) 

where )'exp()ˆ,()ˆ,,(~ ϕβαβϕα ititit zgg ⋅= . Hence, except for the new vector of 

parameter ϕ, the model to be estimated is the same than (7), and both method of 

moments and MLE can be used. 

 

5.3. Heteroskedastic noise term 

 

If the symmetric noise term is heteroskedastic we still can get unbiased estimates of all 

parameters of the pricing equation (8), even if heteroskedasticity is ignored. However, it 

may bias the firm-specific conduct estimates. An unwarranted assumption of 

homoskedasticity in the noise-term causes a wrong application of the conditional 

expectation (29). Since this formula is developed under the assumption of constant 

variance of the noise-term, heteroskedasticity, if ignored, is improperly attributed to 

                                                
26 See Álvarez, Amsler, Orea and Schmidt (2006) for a survey of several models with and 
without the scaling property in a frontier framework. 
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either θit, orεit when we try to decompose an estimate of the composed error term into 

these two components. 

 

The procedure outlined in Section 3 can be generalized in order to accommodate for a 

heteroskedastic noise term. This is achieved by modelling the variance of the noise 

term as a function of firm-specific size-related variables. The generalized model can be 

estimated using either maximum likelihood techniques or a method of moments. 

 

We can make the distributional assumption that )),(,0(~ 22
εστε itit zlN . The likelihood 

function (27) can be generalized in the case in which the noise term is heteroskedastic 

to 
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(39)  

Maximizing the likelihood function )~(lnln itti vfL ∑∑=  with respect to the parameters 

generates estimates of ( )τµσσα ε ,,,, .  

 

The method of moments’ procedure is quite similar to that outlined in Section 3. In the 

first stage, equation (8) is estimated by linear squares or GMM. This provides an 

estimate of vit. Given that the distributional assumptions for the conduct term are not 

modified, the first three moments of θit are the same than in Section 3. For the 

truncated normal, they are given by equations (15), (16) and (17). Given the assumed 

distribution function for θit, the second moment of the composed error term can be 

rewritten as: 

 







θ⋅σ⋅

σµΦ
σµφ−σ⋅βα+στ=σ= ε )(

)(
)ˆ,(),()( 222222

ititvitit gzlvE    (40) 

The third moment is exactly the same than in Section 3. Hence, using the first-stage 

residuals, the two equations formed by the nonlinear constraint (20) and the third 

moment of the composed error term (21) still provide estimates of µ and σ. Using the 
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second moment of the composed error term, these estimates together yield an 

estimate of τ and 2
εσ  by regressing 
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on the log of 22),( εστitzl . This provides all the information required to estimate 2
vitσ , 

which is used in NLWLS in equation (12). This NLWLS estimates are then used 

estimate firm-specific conduct  

 

As in (28), the conditional distribution f( itθ~ | itv~ ) is distributed as ),( 2
** σµ+N , but now 

( ) ititititit v σσµ+σ−≡µ ε
~~ 22

* , and ( ) ( ) ( )22222222
*

~
ititititititit εεε σσσσσσσσ +⋅=⋅≡  where 

222 ),( εε στ=σ itit zl . Thus the mean of )~|~( itit vf θ  used to get firm-specific estimates of itθ~  
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If the conduct term follows a half-normal distribution µ=µit=0, the expectation (42) can 

be simplified as  
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 (43) 

In contrast to (28), now there is a new source of variation in estimated market power 

among firms, i.e. the noise term with non-constant variance. Hence, if two firms have 

the same residual, their estimated market power score will differ unless they also have 

the same noise component variance.  

 

5.4. Panel data specification 

 

So far we have assumed that the θit are independent (conditional on the zit) over time. 

This is widely recognized as an unrealistic assumption. For example, we expect market 

power behaviour to correlate positively over time, because firms that are involved in a 

collusive scheme this time period will probably also be colluding in other time periods. 
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Hence, the most plausible departures from independence would involve positive 

correlations over t, for a given i.  

 

Although independence is likely an unrealistic assumption, it is not clear how to relax it, 

i.e. how to allow correlation over time in the dynamic conduct parameter. However, 

under scaling we have the possibility of the following alternative model:   

iititit uzh )·,( ϕ=θ      (44) 

where ui is a time-invariant individual effect. Several comments are in order. First, this 

specification is a restricted version of (37) where we added the restriction uit=ui. 

Second, the specification in (44) can be viewed as a multiplicative version of the 

additive conduct decomposition of θit suggested by Kim (2006). In fact, the term ui 

and ),( ϕitit zh  can be viewed as the so-called (time-invariant) core conduct parameter 

θi* and the function of {ψ/(1+ψ)}·∂πit
b(·)/∂pit that is modelled as a function of their 

determinants, i.e. demand and cost shocks respectively. 27  

 

Third, a distinctive feature of the model is the interaction between the time-varying 

function ),( ϕitit zh  and the individual effect ui. As Han, Orea and Schmidt (2005) 

shown, a “fixed-effects” estimation of this type of models is not trivial due to the 

incidental parameters problem” i.e. the number of parameters grows with sample size 

(see, for example, Chamberlain, 1980). Models of this form have been proposed in the 

literature of production frontier functions. Orea and Kumbhakar (2005) have estimated 

a model with a specification of one-sided random term (the efficiency of production) 

equivalent to (44). Their model is in turn a slight generalization of those introduced by 

Kumbhakar (1990) and Battese and Coelli (1992) where zit=t. All of these papers 

considered a “random- effects” treatment and proposed specific (truncated normal) 

distributions for the ui, with estimation by maximum likelihood.  

 

A related point is that maximum likelihood estimates based on the assumption of 

independent observations are consistent even if the observations are not independent, 

                                                
27 The scaling property in (44) corresponds to a multiplicative decomposition of θit. An 
alternative that has sometimes been proposed in the literature on frontier production functions 
(Huang and Liu (1994), Battese and Coelli (1995), Simar and Wilson (2003)) is an additive 
decomposition of the form θit(zit,ϕ) = h(zit,ϕ) + τit. However, this can never actually be a 
decomposition into independent parts, because θit(zit,ϕ) ≥ 0 requires τit ≤ h(zit,ϕ). 
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so long as the (marginal) distribution of each observation is correctly specified. Thus, 

for example, MLE estimates from (27) will be consistent even if the conduct term θit is 

not independent over time, so long as the model is otherwise correctly specified.  

However, the estimated variances (or standard errors) of the estimated parameters, 

calculated under the assumption of independence, will not be correct if independence 

does not hold.  It is possible to calculate asymptotically valid “corrected” estimated 

variances that allow for non-independence of unspecified form. These points are 

known in the econometric literature. For example, see Hayashi (2000) and Álvarez, 

Amsler, Orea and Schmidt (2006). 

 

An important feature of all previous models that assume that θit is independent over 

time is that firm observed in two periods is treated as two different firms. This 

assumption does not allow us to estimate a firm-specific conduct score consistently 

since its variance does not vanish as the sample size increases. However, since the 

random conduct term in (44) is developed in a panel data framework (i.e. cov(θit, θit-1)≠0), 

it allows us to estimate market power levels consistently when T→∞. A detailed 

discussion of this issue can be found in Schmidt and Sickles (1984) and Greene 

(1993). 

 

5.5. Uncaptured differences 

 

The proposed approach can be viewed as belonging to the same family of Porter 

(1983), Brander and Zhang (1993), and Gallet and Schroeter (1995) who estimate a 

regime-switching model where market power enters in the model as a supply shock. As 

in our model, the identification of market power in these papers relies on making simple 

assumption about a specific component in the error term which is unobservable.  

 

To finish up, it should be noted that since the inference is based on a error component, 

uncaptured differences among firms and over time (e.g. unobserved changes in factor 

prices or shocks in technology) might wrongly interpreted as differences or changes in 

conduct due to both phenomena shift the supply relationship. Hence, estimating market 

power with a composed error model requires capturing most of the variables which 

enters in the supply relationship. 
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6. Empirical illustration: the Spanish banking sect or 

 

In this section we illustrate the proposed approach using a balanced panel data set 

from the Spanish banking industry for the period 1993-1998. To accomplish this, we 

specify a model where banks sell differentiated products and choose price so as to 

maximize their profits comparing the benefit of a deviation from collusion with the 

expected future loss from the deviation. The basic empirical model to be estimated is 

provided by the equation (5), that is: 

 [ ] [ ] ititititititititit dmcpbmcpq εθβαβα +⋅−−−= )()()()(

 

  (45) 

Since there are more than one competitor, θit can be interpreted as the average 

conduct of bank i with respect to all its rivals and dij,t is now an aggregate measure of 

all cross derivatives of bank i demand. Let’s us assume that θit satisfies the scaling 

property. In particular, here we assume that θit can be written as an exponential scaling 

function, i.e. h(zit,ϕ)=exp(zit′ϕ),  times a random variable uit that follows a half-normal 

distribution, that is  

),0(Nu,u)·'zexp( itititit σ→ϕ→θ +    (46) 

This type of models has a similar economic interpretation than that proposed by Kim 

(2006). Dynamic models predict that a firm’s behaviour is influenced by expected future 

demand and expected future costs. This effect is capture by the scaling function. Note 

that this model combines the traditional structural econometric market power models 

and the traditional frontier approach to measure firms’ inefficiency.  

 

The structural model to be estimated is formed by a demand function and the pricing 

equation (45)-(46). Following Nevo (2001) and Jaumandreu y Lorences (2002), we first 

estimate the demand side parameters and, given the estimated demand surface, we 

then estimate the pricing relationship. Estimating the demand equation separately from 

the pricing equation (i.e. the supply side) does not affect the consistency of the 

estimates. 

 

6.1. Empirical specification of the demand function  

 

The functional forms for the own-demand derivatives and cross-demand derivatives 

appearing in the pricing equation are derived from a nested logit model. This model is 
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based on the discrete choice random utility framework outlined in Berry (1994).28 This 

framework enables us to estimate demand for differentiated products using firm-level 

data on sales, prices and other attributes.  

 

The approach based on discrete choice models was employed in the banking industry 

in several papers. For instance, Dick (2002) estimates a structural demand model for 

commercial bank deposit services for the US. Based on logit model estimates, the 

results indicate that consumers respond to deposit rates, and to a lesser extent, to 

account fees, when choosing their deposit's bank. Also with bank-level data, Nakane, 

Alencar, and Kanczuk (2005) model the demand for time deposits, for an aggregate of 

demand and passbook savings deposits and for loans in Brazil with a multinomial logit 

specification. Gollier and Ivaldi (2005) estimate a logit model altogether the pricing 

equation in order to measure the unilateral effects of merger in the Portuguese 

Insurance Market.   

 

To get the own-demand derivatives and cross-demand derivatives we estimate a 

nested logit model. For historical reasons, we assume two different types of banks: 

private banks and saving banks. Loans within the same group are closer substitutes 

than loans from other groups. In this framework, consumers have a choice of 

purchasing a loan to one of the sample (private or saving) banks or purchasing to a 

bank outside the sample. 

 

Given the set of available banks, consumers are assumed to select the bank that gives 

them the highest utility. Given the distributional assumptions on consumer tastes and 

functional form for utility, we can aggregate over individual consumer purchases to 

obtain predicted aggregate market share si for bank i: 
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The first term in this expression is bank i’s market share in its market segment, while 

the second is the market share of a market segment g in the overall loans market. δit is 

the utility level that product i yields to consumers, which depends on the price of the 
                                                
28 In the industrial organization literature, Berry, Levinsohn, and Pakes (1995), Nevo (2001), 
Irwin and Pavcnik (2004) and Ivaldi and Verboven (2005) applied discrete choice models to the 
analysis of market power using firm-level data. 
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product i, a vector of observed characteristics of bank i, and an error term ξit reflecting 

unobserved characteristics: 

itititit px ξαβδ +−=      (48) 

The parameter ρ lies between 0 and 1 and measures the substitutability between 

products within a group. The higher the ρ, the more correlated the consumer tastes are 

for product within the same market segment and the competition among products is 

stronger within than across market segments. When ρ=0, consumer tastes are 

independent across all banks’ loans (i.e. there is no market segmentation between 

private banks and saving banks). In this case, we have the standard logit model in 

which products compete symmetrically.  

 

Since it is assumed that the outside product yields zero utility, δOt=0 and DOt=1. Berry 

(1994) showed that rearranging the above equation yields the following demand 

equation: 

ittgiititOtit SpxSS ξραβ ++−=− ,|lnlnln    (49) 

where Sit is observed market share of product i, SOt is the observed market share of the 

outside product, and Si|g is the observed market share of product i within its market 

segment g. For the model to be consistent with (random) utility maximization, α has to 

be positive and ρ has to lie between 0 and 1. The total quantity sold of product i qit is 

simply given by the observed market share of product i, Sit , times the total market size, 

M. 

 

The expressions for own and cross-price elasticities of demand derived from the 

market shares are as follows: 
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So the expressions for own and cross-price derivatives of demand are as follows: 
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6.2. Empirical Results 

 

The data cover loan prices, sales, and characteristics by the most important private 

and savings banks from 1993 to 1998 in Spain. Table 1 presents the descriptive 

statistics of the data.  

 

First we estimate the demand equation using bank level data. The price is the real 

effective loan interest rate, which is the preference interest rate that each bank 

communicates to the Bank of Spain, adjusted by the IPC index, plus a commission fee 

ratio. As a measure of proximity we also include the size of the network of branches 

measured by their number. There are three issues in estimating the market share 

equation (49). First, although the econometrician does not observe loans quality ξit, the 

banks likely set the price to reflect the product quality. The bank prices are, therefore, 

likely correlated with unobserved quality. Second, the within-group market share Si|g,t 

are also likely correlated with ξit. We instrument for the two variables with two types of 

instruments: cost-shifters (such as the interbank rates and managerial cost) and the 

shares and prices lagged one period. Cost shifters affect product prices, but are 

uncorrelated with loans i’s unobserved quality.29 The demand equation is linear in all 

parameters and the error term, so it was estimated by two-stage least squares (IV).   

                                                
29 Similarly, rival banks’ characteristics (e.g. branch network) influence the market share and 
prices of rival bank, and through strategic interaction, also affect the pricing decisions and 
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Table 2 presents the estimation results. The first two columns report the OLS estimates 

of the demand parameters and the last two columns report two-stage least squares 

estimates (IV). Accounting for the endogeneity of price and within market segment 

market share affects the estimated parameters. For example, the OLS estimate of the 

price coefficient is -0.0186, while the magnitude of coefficient on price increases (in 

absolute value) in the IV regression (-0.2723). The estimated value of ρ is 0.43, which 

suggests that within private banks’ loans market segment are better substitutes for 

each other than loans across the private-saving market segments.  

 

This substitutability of products is quantified in Table 3 that presents the means of the 

own and cross price elasticities of demand. The average demand elasticity decreases 

in absolute value over time, averaging about -3.47 in 1993 to-2.36 in 1998. These 

estimates suggest that a 1% increase in the price lowers a bank’s market share by 

3.47% (2.36%) in 1993 (1998). Thus, the Spanish loans market appears to have 

become less price sensitive over time. Within a year, the own-price elasticities also 

differ across banks, for example, ranging from -3.17 for bank 153 to -1.43 for bank 124 

in 1998. In addition, the estimates of the cross-price elasticities reported in column 2 

(for products in the same market segment) and 3 (for product in different market 

segments) suggest that loans within each market segment are closer substitutes for 

each other than loans across the segments. For example, the average cross-price 

elasticity 1998 suggests that a 1% increase in the price of a bank leads on average to 

0.11% increase in the market share of the banks’ loans in the same segment and only 

0.03% increase in the market share of the banks’ loans in a different market segment.  

 

Once we have estimated the demand parameters, we computed each bank own and 

cross derivatives using both (44) and (45). Next, assuming that uit follows a half-normal 

distribution, the pricing equation is estimated assuming, as it is customary in this 

literature, that banks’ marginal costs are constant and independent of the level of 

operation. We specify a bank’s marginal cost, mcit(α), as the sum of both financial cost 

and managerial cost. On the one hand, interbank rates are the right variable for the 

marginal financial cost of funds under the common assumption of separability of loans 

and deposits (see, for example, Freixas and Rochet, 1997). On the other hand, we 
                                                                                                                                          
market shares of the bank i in question. Since, however, they are not econometrically correlated 
with bank i’s unobserved quality ξit. We have used both rival bank branches and prices as 
instruments. But they did not work well. 
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assume that most managerial cost are fixed and are function of the size of the network 

of branches. We include also a private-bank dummy variable to account for differences 

between private banks and savings banks. 

 

Regarding the dynamic conduct parameter, θit, we modelled the scaling function 

exp(ϕ1xt+ϕ2wt) as a function of demand shock, xt, and cost shocks, wt. To serve as a 

demand shock, xt, we include current industry output divided by expected future output. 

As a proxy for future output, industry output at t+1 is used. For the cost shock, wt, we 

use expected future cost rather than contemporary cost. The future cost shock is 

approximated by the interbank rate at t+1. If only static profit maximization matters, the 

parameters ϕ1 and ϕ2 should be equal to zero. We specify xt and wt in a mean deviation 

form.  

 

The pricing equation, which contains 9 parameters, is estimated by ML. It is fitted on a 

data set covering the period 1994-1998. As the real loan interest rate is endogenous 

we have previously instrumented this variable.30 Estimating results are gathered in 

Table 4. Most parameters are significant. The parameter of the interbank rate is 

positive, but less than one, which is the value we expected. 31 The constant term for 

private banks is lower than that for savings banks. The number of branches held by 

each bank has a negative effect on marginal cost, as found by Gollier and Ivaldi (2005) 

for Portuguese insurance firms. 

 

Regarding both random variables, note that λ=σu/σv is statistically significant. Since 

λ=0 implies that θit=0 we can use this parameter to test Bertrand behaviour. Our results 

indicate thus that we can reject that bank’s conduct is consistent with Nash-Bertrand 

behaviour. Remember that, unlike previous empirical models, our model allows for firm-

specific conduct parameters, so we can identify those banks which are more (less) 

competitive. To do that, we compute a bank-specific competitiveness level measure by 

comparing bank’s performance with a hypothetical Bertrand equilibrium. In particular, 

this measure uses Bertrand as “the” competitive framework, and can be calculated as: 

                                                
30 As instruments we have used the number of branches of other competitors in the same 
market segment and the interest rate of all the other competitors. 
31 This means that the interbank rate is not a good proxy for financial marginal cost during the 
lifetime of all actual loans. For new loans one lead seems a sensible specification for this cost 
during a period in which variable interest loans have generalized (Jaumandreu, Lorences and 
Orea, 2005). Jaumandreu and Lorences (2002) use, however, a polynomial in anticipations for 
a period in which fixed rates loans were prevalent. 
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))·'exp(exp()exp( itititit uzCL
∧∧∧

−=−= ϕθ    (56) 

where uit is estimated from the overall error term using a modified version of Jondrow 

et. al. (1982).  

 

If CLit=1 firm’s conduct is consistent with static Nash-Bertrand behaviour. If CLit<1, its 

value indicates how far the conduct is from a “competitive” outcome. The estimated CL 

measure for each bank in 1996 (the mid of the sample period) are shown in Figure 7. 

We see that while the performance of most of banks is quite close to the competitive 

outcome (i.e. their CL measure is close to 1), there are a few banks that their CL 

measure are about 0.6. This suggests that imposing common conduct behaviour to all 

banks would yield biased results. 

 

[Insert Figure 7 here] 

 

Regarding the time path of banks’ behaviour, both ϕ1 and ϕ2 parameters are negative 

and statistically different from zero. This result indicates that the dynamic conduct 

parameter θit is countercyclical to current demand shock and expected future cost 

increase. Figure 8 shows that loans market is increasing while interbank rate (a 

measure of financial cost) is decreasing. If expected future cost decreases, then the 

expected loss from the deviation will increase.  

 

[Insert Figure 8 here] 

 

This provides firms with an incentive to converge towards full collusion and, hence, the 

collusive market price must not be lowered to prevent the deviation. Figure 9 seems to 

confirm this conclusion. Since expected demand (cost) shocks are positive (negative), 

there is a deterioration of competition from 1994 to 1998. 

 

[Insert Figure 9 here] 

 

 

7. Summary and main conclusions 
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Measuring the degree of competition in oligopolistic markets is a key activity in 

empirical industrial organization. Earlier studies focused on estimating conduct 

parameters that distinguish collusive behaviours from non-collusive behaviours. All the 

structural econometrics models treat the firm’s behaviour as a parameter to be 

estimated altogether with other cost and demand parameters. Dynamic models 

suggest the conduct parameter is random, changes over time and varies across firms. 

Obviously, allowing conduct parameters vary both by firm and observation results in an 

overparameterized model. The empirical models proposed in the literature avoid this 

problem by putting some structure on the way the conduct parameter varies across 

firms and time.  

 

Instead of treating firms’ behaviour as a (restricted) parameter to be estimated, we 

propose treating firms’ behaviour as an asymmetric random variable. Therefore, our 

approach relies on the estimation of a “composed error” model where the stochastic 

part is formed by two random variables, i.e. the traditional noise term, capturing 

random shocks, and a random conduct term, which measures market power. This 

model allows us to get firm-specific market power scores even though when we cannot 

take advantage of the panel structure of the data (e.g. the time dimension is not long 

enough). 

 

While some papers have obtained firm-specific conduct parameter using panel data 

set, they have not explicitly analyzed the skewness and kurtosis of the conduct random 

term. In addition to provide firm-specific market power estimates, this kind of analysis 

provides useful information about the nature of the competition among firms in a 

particular market. As we aware, skewness or kurtosis of conduct parameter in 

oligopolistic industry settings are not examined explicitly in most of the previous 

empirical papers. 

 

We outlined also how to estimate the model using a method of moments approach and 

MLE, and discuss some econometric issues regarding estimation under dynamic 

behavior, conduct determinants, noise heteroskedasticity and panel data specifications. 

The outlined methods roots on the frontier production function literature. The main 

contribution of the proposed approach is not the way that a traditional pricing equation 

is estimated, but the way the asymmetry of the composed error term is exploited in 

order to get firm-specific market power estimates. In particular, once all parameters 
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describing the structure of the pricing equation and an average-industry market power 

are estimated using well-known econometric techniques, distributional assumptions are 

invoked to obtain consistent estimates of the parameters describing the structure of the 

two error components. Conditional on these estimates, market power is estimated for 

each firm by decomposing the estimated residual into a noise component and a 

market-power component. 

 

We estimated this model using a balanced panel data set from the Spanish banking 

industry for the period 1993-1998. Our preliminary results show that imposing common 

conduct behaviour to all banks would yield biased results. In addition, we find a 

deterioration of competition during this period since expected demand increase and 

expected decreases in costs. 
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Table 1. Descriptive statistics 

Variable Definition Units Mean  Std. Min Max 
Preference interest 
rate1 rit % 8.52 2.07 4.00 12.80 

Commission fee ratio2 fit % 0.70 0.36 0.16 1.90 
Consumption price 
index rate3 ipcit % 3.37 1.29 1.41 4.93 

Real effective loan 
interest rate 

pit=-rit-fit-
ipcit 

% 5.86 1.17 3.11 8.46 

Within-group market 
share5 

Si|g,t % 7.1 7.0 1.0 26.9 

Outside Loans share5  SOt % 37.0 1.8 33.8 39.5 
Branches5 Br Thousand of offices 0.80 0.77 0.06 3.69 
Interbank rate4 iit % 7.65 2.46 4.00 10.90 
Real interbank rate riit =iit- ipcit % 4.28 1.16 2.59 5.97 

Industry output5 Qt 
10000 of million 
Euros of 1998 3.47 0.43 3.07 4.25 

Notes:  
1 Bank of Spain. 
2 fit=100·(Commission Fees)/(Loans+Deposits), Banks’ Annual Reports 
3 National Statistics Institute of Spain 
4 Interbank market for non-transferable deposits, 1 year, Bank of Spain 
5 Banks’ Annual Reports 
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Table 2. Demand parameter estimates 
Variable Parameter Robust-t Parameter Robust-t 
Const -0.9811 -7.3439 -0.9234 -1.7040 
pit -0.0186 -1.5043 -0.2723 -2.2769 
lnSi|g,t 0.7595 23.1923 0.4317 3.5582 
brit 0.2470 6.0099 0.6949 3.7679 
 Method: OLS  Method: IV  
 Dep. Var.: lnSit-lnSOit Dep. Var.: lnSit-lnSOit 
   Sargan Test: 1.64 (1) 
   Instruments: Const, it, lnSi|g,t-1, pit-1, 

mcostit 
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Table 3. Estimated own and cross demand elasticitie s 
Price elasticities 

Cross price across 
segments Cross price same segment Year 

Own price 
Savings 
Banks 

Private Banks Savings Banks Private Banks 

1993 -3.470 0.037 0.052 0.157 0.160 
1994 -2.292 0.029 0.033 0.118 0.100 
1995 -2.619 0.032 0.037 0.129 0.116 
1996 -2.778 0.033 0.045 0.130 0.136 
1997 -2.552 0.030 0.042 0.116 0.126 
1998 -2.365 0.031 0.039 0.115 0.117 
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Table 4. Parameter estimates of the pricing relatio nship 
 Parameters Estimates Est./s.e. 
Marginal cost     

Constant α0 1.104*** 15.768 
Branches α1 -0.076*** -5.352 
Private Bank α2 -0.099*** -4.433 
Interbank real rate α3 0.446*** 37.313 

Dynamic conduct determinants    
Current demand shock/Expected demand ϕ1 -8.261* -1.286 
Expected cost shocks ϕ2 -0.414*** -4.520 
Private Bank ϕ3 0.264** 1.688 

Random variable variances    
σ=σu+σv  0.088*** 4.610 
λ=σu/σv  4.033** 1.889 

    

Mean Log-likelihood: 0.957562    

Number of observations: 140    
    
 *** (**) (*) indicates that the parameter is statistically significant at 1% (5%) (10%) 
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