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Abstract  
A feature of hospitals is that they face uncertain demand for the services they offer.  
To cover fluctuations in demand they need to maintain reserve capacity in the form 
of beds, equipment, personnel etc in order to minimize the probability of excess 
queuing or turning away patients, creating a trade-off between reserve capacity and 
economic costs. Using a simple theoretical framework we show how the reserve 
capacity established can depend on institutional characteristics that can affect the 
objective of the hospital.  In particular, we show that private and public hospitals can 
provide different levels of reserve capacity.  In an empirical application using a panel 
data set of Spanish hospitals over the period 1996-2006 we model reserve capacity 
using a distance frontier approach. Our results show that private hospitals do not 
generally contract as much reserve capacity in response to demand uncertainty, 
although for some services they contract more capacity than public hospitals.   
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1. INTRODUCTION 

 

A salient feature of hospitals is that they face uncertain demand for the services they 

offer.  In order to be able to cover fluctuations in demand they will need to maintain 

reserve capacity in the form of beds, equipment, personnel etc in order to minimize 

the probability of excess queuing or turning away patients.  As hospitals contract to 

be able to meet uncertain demand in all but exceptional circumstances, they can be 

considered as producers of a given provision-of-service probability.  As realized 

demand will therefore generally be less than service capacity, this implies that 

hospitals operate with some excess capacity.  

 

The influence of demand uncertainty on excess capacity and thus on hospital costs 

has received a good deal of attention in the literature since the seminal papers of 

Joskow (1980) and Friedman and Pauly (1981).  The idea of service firms producing 

provision-of-service probabilities, and only incidentally observed output, was first 

characterized by Duncan (1990).  This was first adapted to hospitals in a study by 

Gaynor and Anderson (1995) which analyzed the effects of demand uncertainty on 

hospital costs using a cost function, an approach followed in later studies by Carey 

(1998) and Hughes and McGuire (2003).  In a recent paper, Lovell et al. (2009) 

analyzed this issue using a distance function approach which also allowed the 

possibility of expense preference behaviour to influence costs.  All these papers find 

that demand uncertainty has a significant role to play when defining hospitals’ 

potential output.   

 

This literature shows that reserve capacity is, partially at least, the consequence of 

rational behaviour on the part of hospital managers to insure against demand 

fluctuations.  However, providing protection against demand variability requires 

additional inputs to be contracted and this is costly, creating a trade-off between 

service capacity and economic costs.  In the presence of  any rational optimizing 

behaviour, these costs will influence the extent of protection against demand 

variability and in particular we would expect that reserve service capacity diminishes 

with the cost of providing the service.  
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The focus of this paper is on the reaction of hospitals to demand uncertainty and how 

production costs affect this reaction.  To do so, we use tools from the production 

economics literature.  In particular, we adopt an output distance frontier framework 

to model (unobserved) reserve capacity as a technical inefficiency term and try to 

determine to what extent it is explained by the existence of demand variability and 

the economic costs of maintaining this reserve capacity.1   

 

Our theoretical setting is one where reserve capacity is a consequence of a rational 

decision in a context where there is a trade-off between protection against demand 

fluctuations and economic cost.  In this framework, our hypothesis is that decision 

makers more worried by economic results (private hospitals) will react to a different 

extent to increases in demand uncertainty than decision makers  for whom economic 

profits are not a primary objective (public hospitals).  We analyze therefore whether 

the reaction to demand uncertainty is different between public and private hospitals.  

In our empirical work we use a broad dataset of Spanish general hospitals to test, on 

the one hand, for the influence of the cost of providing the service on the size of the 

reserve capacity.  We then analyze the differences between private and public 

hospitals in how they react to uncertainty in the demand for different services.  To 

our knowledge, this is the first paper to address both issues.  

 

The paper proceeds as follows.  Section 2 deals with the theoretical background to 

our analysis, where we discuss how reactions to demand uncertainty will have the 

effect that hospitals will generally produce below their production possibilities 

frontier and the tool with which we measure differences between potential and actual 

output, namely the output-oriented distance function.  Section 3 discusses the data 

we use in our empirical analysis.  The empirical specification of the distance frontier 

and the results of the estimation are presented in Section 4.  Section 5 concludes.   

 

 

 

                                                      

1 The technical inefficiency term relates the maximum potential production with the actual 
one. See Coelli et al (2005) for a good overview of efficiency and productivity analysis.  
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2. DEMAND UNCERTAINTY, HOSPITAL PRODUCTION AND 

TECHNICAL INEFFICIENCY 

 

Hospitals will try to ensure that they have sufficient resources available to satisfy 

random demand at all times, except in extraordinary circumstances.  With this in 

mind, Duncan (1990) provides a stylized analysis of service firm costs in the 

presence of stochastic demand, in a context where “… what the firm incurs cost to 

produce is the option, the capacity, or the readiness to provide service at a certain 

level and only incidentally the observed output.”  In this scenario, hospitals will 

produce a provision-of-service probability, , implying that it is prepared to accept 

all clients up to capacity and produces so that capacity exceeds demand with 

probability .    

 

To derive his cost function, Duncan (1990) begins with a firm who faces a 

production function, .  Demand for the firm, d, is a random variable with 

conditional distribution function , where  represents all relevant 

information that can be used to predict the probability that demand will be exceeded.   

 

The probability that demand falls below service capacity is: 

  (1) 

Now, if G is invertible, instead of  we can write .  This 

production relation describes the production behaviour of the firm who produces so 

that capacity exceeds demand with probability .  Under the assumption that the 

hospital chooses inputs before demand is realized with the constraint that demand is 

met with probability , the cost minimization problem of the hospital gives rise to 

input demand functions of the form 

     (2) 
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where w are the input prices and where it is clear that the inputs are chosen, ex ante, 

as a function of the target service capacity, .  Clearly, the greater the 

target service capacity, the greater the input use.  

 

In the above framework, the provision-of-service probability β and hence the target 

service capacity, , is taken as given. However, the provision-of service probability 

is a decision taken by a rational agent that follows some objective, which can depend 

on the institutional nature of the hospital (public or private). 

 

For a given distribution of demand, we assume that hospitals choose capacity as a 

function of the cost of inputs and the disutility associated with turning away patients.  

Input costs will influence the hospitals’ choice of capacity insofar as they prevent the 

hospital from choosing unlimited capacity, i.e., the turn-away probability cannot be 

zero, and this is true regardless of whether the hospital is public or private.  The 

disutility from turning away patients or obliging them to queue for certain services 

will depend, however, on the type of hospital and the type of service in question.  We 

illustrate this by comparing the optimization problems facing two extreme cases: a 

private for-profit hospital and a public hospital which maximizes social welfare.   

 

In the case of the private hospital, capacity will be chosen to maximize profits, so its 

objective function can be expressed as: 

 

where P is the output price,  is the density of demand and C represents costs.  It 

is assumed that the hospital capacity, , is chosen and put into place before the 

demand for the service is materialized. Thus, the expected output is the expectation 

of a censored variable (Greene, 2008) because the hospital cannot produce an output 

level higher than ..  This gives rise to the following first-order condition: 

      (4) 
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At the other extreme, it is assumed that the public hospital is a social welfare 

maximizer who chooses capacity to maximize the utility function: 

 

where  is the probability that service capacity exceeds demand. Note that it 

is assumed in this function that social welfare does not depend on the output level.  

Given the hospital capacity installed (), social welfare is maximized when the 

demand for hospital services is null (i.e., it is better for citizens to be healthy and not 

to need hospital services). Citizens’ utility thus depends on the probability of being 

attended if it were necessary.  On the other hand, hospital capacity must be paid for 

and this cost is expected to negatively affect social welfare.  The first-order condition 

to maximize social welfare is: 

    (6) 

Comparing the first-order conditions, it can be seen that in both cases the choice of 

capacity depends on the distribution of demand.  The private hospital chooses 

capacity so that the ratio of marginal cost to price equals the turn-away probability 

.  To see the implications of the first-order condition for the public 

hospital, we can simplify matters by holding the right-hand side constant i.e., assume 

that marginal cost and the marginal (dis)utility of cost are constant.  Then, as the 

utility gained from being able to meet demand for a given output, , 

increases, capacity rises, corresponding to a lower value (height) of the density 

function.  For a symmetric distribution for demand, say a normal distribution, this 

means that chosen capacity increases.  If utility is not much affected by being able to 

cover demand, on the other hand, the chosen capacity will be lower.  Thus, the 

provision of service probability  for the public hospital will depend on the 

parameters of the utility function and in particular on the way the probability of 

meeting demand for a given service and the cost of providing capacity to meet that 

demand affect utility.  It is worth noting that a comparison of the first order 

conditions does not permit us to conclude which type of hospital (public or private) 

provides a higher service capacity when faced with the same demand distribution. 
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For some services the public hospital may have more capacity than the private one, 

and for others it may have less.  Indeed, this will turn out to be one of the main 

findings of our empirical work.  

 

The implication of this is that public hospitals may choose a different service 

capacity than a private hospital when faced with similar costs and distributions of 

demand for the service.  Hospitals that choose smaller turn-away probabilities will 

use larger quantities of inputs to produce the same expected output and will be 

operating further below their production possibilities frontier with a higher excess of 

capacity.  If demand uncertainty is not taken into account, these hospitals will seem 

less efficient than others in providing the services demanded by the citizens.  The 

tools from the production efficiency literature thus turn out to be extremely useful 

when analysing the effects of demand uncertainty on reserve capacity.  

 

We use the output-oriented distance function, which is a convenient tool with which 

to measure the difference between potential and observed output, usually denoted as 

technical inefficiency, in a multi-output context such as hospital production (see 

Kumbhakar and Lovell, 2000; Coelli et al, 2005).2  The output distance function is 

defined as 

   (7) 

where  is the output set and which represents the set of output vectors, y, that 

can be produced using the input vector, x.   is nondecreasing, positively 

linearly homogeneous and convex in y, and decreasing in x (see, e.g. Färe and 

Primont, 1995).   

 

Figure 1 below shows the production situation of two hospitals facing the same 

uncertain demand as represented by the conditional distribution function .  

The hospitals choose two different probabilities for capacity exceeding demand, β0 

                                                      

2 Recent papers which have used output distance functions to measure hospitals’ efficiency 
include Ferrari (2006) and Daidone and D’Amico (2009).  For surveys on stochastic frontier 
analysis in health care, see Worthington (2004) and Rosko and Mutter (2008). 
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and β1, where β1 > β0.  to achieve this, the first hospital uses an input vector x0 that 

generates a production possibilities frontier PPF0, while the second hospital chooses 

the input vector x1 giving rise to the production possibilities frontier PPF1.  Now, 

assume expected demand corresponds to point A.  Given that capacity has been 

installed in order to be able to produce a level of output greater than expected 

demand, both hospitals are expected to operate below their PPF, which corresponds 

to the definition technically inefficiency (Farrell, 1957).  The distance functions, 

which measures the ratio between actual and potential output, will take values less 

than or equal to 1.  The distance function for the first hospital will take  an expected 

value .  The second hospital is expected to produce further below its 

PPF and appears to be more inefficient: the expected value of the distance function is 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Technical efficiency and uncertain demand 

 

Figure 1 could easily be extended to show the effects of an increase in demand 

uncertainty. Suppose expected demand remained unchanged but that the variance of 
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PPF0: {  y | Prob(d ≤ y|d-1) = β0 }  

PPF1: {  y | Prob(d ≤ y|d-1) = β1 }  
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demand increased.  To maintain the target provision of service probability β the 

hospital would need a greater capacity, shifting its PPF outwards.  This will increase 

its expected technical inefficiency, reflected by a lower value of the distance 

function.   

 

In our empirical section we will estimate an output distance function in order to 

determine the effect of demand uncertainty on technical inefficiency.  Output-

oriented technical inefficiency can be introduced in (7) by writing: 

      (8) 

where � is a vector of parameters to be estimated and  represents output-

oriented technical inefficiency: when , the distance function takes the value 1, 

representing technically efficient production, whereas values of  implies 

technical inefficiency and the distance function will take values less than 1.  To 

introduce the influence of demand uncertainty and costs on technical inefficiency, we 

specify an appropriate functional form for  and model  as a one-sided 

error term with the following distributional assumptions: 

  ,       (9) 

i.e.  is assumed to have a non-negative half-normal distribution with a modal value  

of technical inefficiency of zero and whose variance depends on a series of 

explanatory variables, z, with  being a set of parameters to be estimated (see 

Caudill, Ford and Gropper, 1995).  In line with the discussion above, it is expected 

that the greater the demand uncertainty facing the hospital, the greater the reserve 

capacity for a given provision-of-service probability and the greater the observed 

technical inefficiency.  On the other hand, for a given level of demand uncertainty, 

an increase in input costs is expected to reduce the service capacity of the hospital 

and the subsequent inward shift of the PPF will reduce observed inefficiency.  In this 
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model, increases in the variance represent increases in technical inefficiency levels 

and vice versa.  The vector of explanatory variables, z will therefore include 

variables capturing demand uncertainty and economic cost, and to capture possible 

different objectives between public and private hospitals it will also include dummy 

variables distinguishing between them.  In the next section we describe our data set 

and how demand uncertainty is estimated. 

 

 

3. DATA  

 

The data have been obtained from the “Estadística de Establecimientos Sanitarios en 

Régimen de Internado” (EESRI) which have been carried out annually by the 

Spanish Ministry of Health and Consumption.  The sample is an unbalanced panel 

that includes public and private hospitals observed over the period 1996-2006, with 

the number of hospitals ranging from 788 in the first year to 746 in the final year, 

corresponding to a total of 8,414 observations.  With the purpose of homogenising 

the sample, we use only what are categorized as “general hospitals”, excluding 

specialized ones, reducing the sample to 4,841 observations.  

 

We aggregate the production of the hospital into three outputs: non-intensive care 

discharges (yIN)3, outpatient visits (yOUT)
4 and intensive-care discharges (yICU).  These 

services are provides by using five basic inputs: beds (BED), care graduates (GRAD), 

care technicians (TECH), expenses on sanitary material and others (SUPP) and 

buildings and equipment (CAP).  Details of the output and input variables are 

provided in Table 1. 

 

Table 1.  Description of output and input variables 

  

                                                      

3 The non-intensive care discharges are weighted by UPAs, or “weighted care units” which 
depend on the number of days corresponding to a given service.  
4 Second and successive outpatient visits are assigned a weight of 60% that of the first visit.  
4 There are no waiting lists for intensive care units. 
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Outputs 

yIN Weighted sum of discharges in general medicine, psychiatry, 

tuberculosis, long stay, rehabilitation and others, surgery, paediatric, 

gynaecological surgery, obstetrics, paediatric medicine and 

neonatology, burns and intensive neo-natals.  

yOUT Weighted sum of first and successive visit and emergencies 

yICU Discharges in intensive care units 

  

Inputs 

BED Endowment of beds.  

GRAD Care graduates (doctors, pharmacists and other graduates). 

TECH Care technicians (nurses, matrons and others) 

SUPP Expenditure on sanitary material, food, clothing, fuels and others (euro, 

year 2006).  

CAP Investments, repairs and amortization of fixed assets (euro, year 2006) 

 

To determine the effect of demand uncertainty on efficiency, we need an estimate of 

demand variability.  We consider that the demands for hospital services are the 

services effectively provided by the hospital (actual discharges and visits and 

emergencies) plus the corresponding waiting lists.  The demands for each output are 

denoted ,  and .5  

 

When estimating the demand equations, we take into account the fact that demand 

characteristics may differ from one region to another.  We therefore estimate a set of 

three equations for each Autonomous Community, which is the most disaggregated 

geographical area in the sample. For each Autonomous Community we estimate 

separate demand equations for each hospital service, using the lagged values of 

output to predict demand.  The demand equations take the form: 

         (10) 
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where subscript i refers to output, j to the individual hospital and t to the period.  Dt 

are year dummy variables, and the ’s are parameters to be estimated where  is 

the hospital fixed effect which accounts for unobserved heterogeneity. 

 

Once the demand equations are estimated we use the absolute value of the residuals, 

, to estimate the standard errors of the demands.  As before, the equations are 

estimated for each Autonomous Community, and we use the same variables as in the 

demand equation:  

         (11) 

where the ’s are parameters to be estimated and  is an error term.  Again,  

represents a fixed effect which captures unobserved factors which influence the 

variability of the demand facing each hospital.   

 

The fitted values from the set of equations (11), which we denote ,  and 

, are our estimates of the standard deviations of the three hospital services and 

will be included as arguments in the estimation of the hospitals’ technical efficiency. 

 

As an alternative specification, we also aggregated the individual demands into an 

overall demand using the UPA weights and estimated its standard deviation 

following the procedure outlined above, i.e., estimating a single demand equation for 

each Autonomous Community.  We then re-estimated the distance function 

modelling the technical inefficiency term as a function of this standard deviation of 

aggregate or overall demand, .   

 

To capture the effect of economic costs on technical inefficiency, we use average 

hospital labour costs, SAL. These are calculated by dividing the total salary 

expenditure by the total number of workers.  Finally, to distinguish between public 

and private hospitals we will use a dummy variable, PRIV, which takes the value 1 

when the hospital is private.   
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Regarding the sample used to estimate the distance function, note that when 

estimating the demand equations we lose the first year’s observations for each 

hospital, a total of 455 observations.  A number of hospitals that did not produce all 

the services corresponding to our three outputs were also eliminated, reducing the 

sample by a further 2,051 observations.  Since we only consider for-profit private 

hospitals, we eliminated another 140 observations corresponding to private non-

profit hospitals.  Finally, we eliminated observations with abnormally high or low 

total salary costs due to misreporting and some hospitals for which the number of 

care technicians changed drastically in certain periods despite there being little or no 

change in the remaining inputs, a total of 42 observations.6  After eliminating these 

observations, the final sample used for estimating the distance function consisted of 

2,136 observations corresponding to the years 1997-2006.  The number of public 

hospitals included ranged from 157 in 1997 to 161 in 2006, while the number of 

private for-profit hospitals was 39 in 1997 and 70 in 2006.  Some descriptive 

statistics of the output and input variables used in the estimation of the distance 

function as well as the explanatory variables of technical inefficiency are provided in 

Table 2.  

 

Table 2. Descriptive statistics of production and efficiency variables 

 

Variable Mean Std. Dev. Min Max 

     

Distance function 

yIN 21788 17233 111 107612 

yOUT 43621 41414 58 237297 

yICU 947 1137 1 11803 

BED 434 376 7 1927 

GRAD 243 207 17 1539 

TECH 411 428 10 2305 

SUPP 1051 1234 7 16925 

CAP 4801 6418 79 119295 

     

                                                      

6 However, it should be highlighted that these anomalous observations for salaries and care 
technicians represent a very small proportion of the sample and that their elimination or 
inclusion did not change the results of our estimations in any significant way.  
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Technical efficiency  

 0.068 0.072 -0.071 0.811 

 0.104 0.098 -0.079 1.111 

 0.214 0.219 -0.061 2.529 

 (aggregate demand) 0.074 0.066 -0.029 0.701 

SAL 25380 8483 2296 53518 

PRIV 0.32 - - - 

     

Number of observations 2136    

 

Table 2 includes the demand uncertainty variables obtained from estimating the 

demand equations (10-11).  The demand equations worked quite well in that they 

high predictive power.  For the equations using aggregate demand, the average  

for the 17 different estimations corresponding to each Autonomous Community was 

0.98.  For the individual demand equations, the average  were 0.98 for both  

and  and 0.90 for .  Closer inspection of Table 2 reveals that the predicted 

standard error of demand, obtained from estimating (11), was in negative in some 

cases.  This occurred for 140 observations of the 2139 in the sample.  As the 

estimates of the parameters in the distance function and the technical efficiency term 

did not change when these observations were excluded, we decided to include them 

in our final sample.  

 

 

4. EMPIRICAL SPECIFICATION AND RESULTS 

 

It remains to specify a functional form for the distance function (8) and the 

inefficiency term (9).  We estimate the technology using a (minus) translog output 

oriented distance function.7  Linear homogeneity in outputs has been imposed by 

dividing by yIN, so the distance function is specified as:  

                                                      

7 That is, the distance function has been multiplied by -1.  This is done to give a more 
intuitive interpretation to the sign of the estimated parameters and is fairly common practice 
when estimating output distance functions – see, for example, Coelli and Perelman (2000). 
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        (12) 

where the ’s are parameters to be estimated and .  The 

independent variables were divided by their geometric mean. 

 

The error term is a composed error term where  is assumed to be normally 

distributed.  In accordance with (9),  is assumed to follow a half-normal 

distribution where its variance, , depends on the demand uncertainty and 

cost variables.  In particular, we model this variance as a linear function of the 

estimated standard deviations of the demands for the three outputs 

( ) from equations (11), the average labour costs (SAL), and the 

interaction of the private hospital dummy variable with the standard deviations of the 

demands, : 

   (13) 

The output distance frontier was estimated using Stata 10 and the estimated 

maximum likelihood parameters are presented in Tables 4 below.  Table 4 shows the 

estimates of the frontier distance function using the standard deviations of the 

demands for each individual service.  The estimates from the alternative model 

where technical inefficiency was modelled using the standard deviation of overall 

demand were almost identical and are reported in an Appendix.  

 

The model works quite well.  In particular, all the first order parameters have the 

expected sign and are highly significant which implies that the estimated technology 

complies with the theoretically expected monotonicity conditions.  

 

Table 4.  Estimate of distance function: Demand by categories 
 

Variable Coeff. S.E. t-stat. 
 

Variable Coeff. S.E. t-stat. 

         

Constant 9.879 0.015 638.5  ln(BED)⋅ln(TECH) 0.067 0.055 1.23 
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ln(yOUT) -0.254 0.011 -23.52  ln(BED)⋅ln(SUPP) -0.007 0.029 -0.24 

ln(yICU) -0.059 0.008 -7.15  ln(BED)⋅ln(CAP) 0.090 0.022 4.12 

ln(BED) 0.259 0.018 14.69  ln(GRAD)2 0.158 0.047 3.39 

ln(GRAD) 0.295 0.020 14.87  ln(GRAD)⋅ln(TECH) 0.060 0.039 1.52 

ln(TECH) 0.192 0.019 10.09  ln(GRAD)⋅ln(SUPP) -0.136 0.034 -3.99 

ln(SUPP) 0.040 0.009 4.30  ln(GRAD)⋅ln(CAP) -0.052 0.020 -2.67 

ln(CAP) 0.051 0.006 8.00  ln(TECH)2 -0.029 0.060 -0.48 

ln(yOUT)
2 -0.050 0.011 -4.76  ln(TECH)⋅ln(SUPP) 0.037 0.027 1.34 

ln(yOUT)⋅ln(yICU) -0.008 0.014 -0.55  ln(TECH)⋅ln(CAP) -0.085 0.021 -4.13 

ln(yICU)⋅ln(yICU) -0.047 0.010 -4.91  ln(SUPP)2 -0.003 0.009 -0.36 

ln(yOUT)⋅ln(BED) 0.114 0.024 4.67  ln(SUPP)⋅ln(CAP) 0.060 0.010 5.96 

ln(yOUT)⋅ln(GRAD) 0.100 0.019 5.22  ln(CAP)2 -0.037 0.010 -3.75 

ln(yOUT)⋅ln(TECH) -0.051 0.026 -1.96  D1998 0.004 0.017 0.25 

ln(yOUT)⋅ln(SUPP) -0.094 0.020 -4.77  D1999 -0.007 0.017 -0.42 

ln(yOUT)⋅ln(CAP) 0.035 0.011 3.13  D2000 0.021 0.017 1.21 

ln(yICU)⋅ln(BED) -0.117 0.021 -5.61  D2001 0.040 0.017 2.30 

ln(yICU)⋅ln(GRAD) 0.004 0.019 0.23  D2002 0.050 0.017 2.92 

ln(yICU)⋅ln(TECH) 0.055 0.019 2.83  D2003 0.025 0.017 1.42 

ln(yICU)⋅ln(SUPP) 0.034 0.014 2.37  D2004 0.011 0.017 0.65 

ln(yICU)⋅ln(CAP) 0.008 0.010 0.79  D2005 -0.002 0.018 -0.12 

ln(BED)2 -0.017 0.075 -0.23  D2006 -0.015 0.018 -0.82 

ln(BED)⋅ln(GRAD) -0.058 0.041 -1.41      

         

No. observations: 2136        

 

The estimates of the parameters of the variables used to model the variance of the 

asymmetric error term are presented for both models in Table 5.  The results conform 

to our expectations.  Beginning with aggregated demand (Model 1), the coefficient 

on the demand uncertainty variable is positive and significant.  This implies that 

demand uncertainty positively affects the variance of the asymmetric error term 

showing the voluntary creation of a “buffer” to deal with demand uncertainty: the 

higher the demand uncertainty, the larger the buffer needed, and hospitals will be 

further beneath the PPF on average.  Costs, as represented by the salary variable, 

negatively affect the variance of the asymmetric error term showing that when the 

hospital services become more expensive, the hospital decision-maker reduces the 

buffer devoted to dealing with the demand uncertainty.  Finally, the coefficient on 
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the interaction of the dummy variable for private hospitals and demand uncertainty is 

negative and significant, indicating that private hospitals react to demand uncertainty 

to a lesser degree than public hospitals in the sense that they do not install as much 

excess service capacity.  The fact that adding both coefficients results in a positive 

significant value implies that private hospitals do install some extra service capacity 

in reaction to demand uncertainty, but less than the public ones.  

 

    Table 5. Determinants of variance of technical efficiency 

Model 1 
Uncertainty in Total Demand 

 Model 2 
Uncertainty in Demand by 

Categories 

Variable Coeff. S.E. t-stat.  Variable Coeff. S.E. t-stat. 

    
     

Constant 13.715 1.355 10.12  Constant 8.811 1.494 5.90 

SAL -1.693 0.135 -12.50  SAL -1.275 0.148 -8.60 

 9.467 0.824 11.49   6.916 0.894 7.74 

PRIV

 

-4.565 1.055 -4.33   1.560 0.768 2.03 

      2.287 0.304 7.53 

     PRIV  -2.629 1.318 -1.99 

 
    PRIV

 

2.729 0.906 3.01 

 
    PRIV

 

-1.402 0.421 -3.33 

         

 

Turning to the model where demand uncertainty for individual services is specified 

(Model 2), the cost variable is again negative and significant.  Demand uncertainty in 

each of the three services causes hospitals to increase their service capacity, in line 

with the previous model, but the interaction terms shed more light on the differences 

in behaviour of the two types of hospital.  Recalling the discussion surrounding the 

first-order conditions of the public hospital (6), the disutilities associated with 

turning away patients may be different depending on the service in question and the 

reserve capacity will vary accordingly.  Our results highlight these different 

disutilities between private and public hospitals.  The coefficients on the interaction 
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terms with private hospitals for inpatient and intensive care services are negative and 

significant, implying that private hospitals do not provide as much extra capacity as 

public hospitals to deal with uncertainty in these services.  However, the interaction 

term with outpatient services (visits and emergencies) is positive and significant, 

highlighting that private hospitals install more capacity than public hospitals to deal 

with outpatients.   

 

These results imply that public hospitals place a much higher value on meeting 

demand for inpatient and intensive care services than they do on outpatients.  Private 

for-profit hospitals, on the other hand, are shown to be much more preoccupied with 

being capable of providing outpatient services.  This is in accordance with the nature 

of these hospitals in Spain.  Public hospitals provide universal service and from a 

social welfare perspective they should be equipped to deal with pressing cases as 

quickly as possible.  A private for-profit hospital will not suffer the same outcry as 

patients can be referred to another hospital (private or public) if they do not have the 

resources to deal immediately with such cases.  Regarding outpatient services, 

patients have the option of receiving these for free from the public system or paying 

though the private system.  Clearly, the disutility from turning away patients in these 

cases (consultancies, minor surgery etc.) in the sense of obliging them to join waiting 

lists is much lower for the public system than for inpatient and intensive care 

services.  One of the main selling points of private for-profit hospitals on the other 

hand, is that they can attend patients immediately; permitting them to avoid what 

could be a long wait in a public hospital.  It is in their interest to be able to provide 

such a service for the patient, which, it should be noted, is cheaper for the patient 

than the other two services and also much less costly for the hospital to produce than 

the other outputs. 

 

Finally, using the estimated parameters from the models we calculate indices of 

technical efficiency (percentage of actual to potential output) for public and private 

hospitals as a function of estimated demand uncertainty.  From the estimated 

distributions of the standard deviations of the demands for the three hospital services 

we choose three types of demand uncertainty - low, medium and high - 

corresponding to the first quartile, median, and third quartile of the demand 
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distributions for each service.  The indices are presented in Table 6, which shows 

how the estimated technical efficiency indices for both public and private hospitals 

decrease as demand becomes more uncertain.  The greater reaction of public 

hospitals to demand uncertainty is reflected in a more pronounced fall in the 

efficiency indices compared to private hospitals as demand uncertainty increases.  

 

Table 6. Technical efficiency indices according to demand uncertainty 

    Degree of demand uncertainty 

 Low. Medium High  

    

Public 86.71 84.04 78.46 

Private 87.12 85.01 81.06 

     

 

Figure 2 below shows this in more detail, tracing the evolution of the efficiency 

indices as the demand uncertainty increases over all deciles.  Again, when demand 

uncertainty is low the efficiency indices are almost at the same level, and as 

uncertainty rises, public hospitals react by increasing capacity to a greater extent than 

private hospitals with a correspondingly greater fall in measured technical efficiency.  
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Figure 2.  Technical efficiency indices and demand uncertainty 

 

This has important implication for studies which attempt to compare the efficiency 

performance of public and private for-profit hospitals.  A finding that one type of 

hospital is more efficient than another may be due to a rational decision to provide a 

different degree of protection against demand fluctuations, and not to pure 

inefficiency due to suboptimal management..  At a time where there is a heated 

policy debate over the efficiency of the public system and the idoneity of different 

management and ownership structures, a comparison of relative efficiencies should 

take into consideration the objectives of each type of hospital if a fairer and more 

accurate picture of performance is to be provided.  

 

 

5. CONCLUSIONS 

 

In this paper we have investigated the effect of demand uncertainty and the cost of 

the service on hospitals’ decisions to contract reserve service capacity.  The desire of 

hospitals to maintain reserve capacity to meet uncertain demand will make them 

appear technically inefficient as demand generally falls below capacity.  Using a 

simple theoretical framework we show how the disutility associated with turning 

away patients for a given service can lead public hospitals to provide a different 

reserve capacity to private for-profit hospitals.  We model reserve capacity as the 

technical inefficiency term of a stochastic output-oriented distance function and 

compare the reaction to demand uncertainty for a sample of Spanish public and 

private for-profit general hospitals.  The parameters on the variables characterizing 

the efficiency term show that maintaining some degree of excess capacity is 

compatible with a rational optimization objective that takes account of the desire to 

meet uncertain demand, on the one hand, and the cost of providing the corresponding 

reserve capacity on the other. Our results show that private hospitals react to a lesser 

extent to demand uncertainty as a whole than public hospitals, which is consistent 

with the fact that Spanish public hospitals are obliged to provide universal service.  

When we analyze demand uncertainty in different hospital services, we find that 

public hospitals react to demand in inpatient and intensive care services by installing 
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more reserve service capacity than private hospitals.  For outpatient services, on the 

other hand, private hospitals react to a greater extent than public hospitals.   

 

Our results show that it may be misleading to attribute a higher measured technical 

inefficiency of public hospitals to worse technical management if demand 

uncertainty effects are not taken into account.  It is important to take the behavioural 

objectives of each type of hospital into account as these will affect the reserve 

capacity decision.  Researchers carrying out empirical work comparing the efficiency 

of public and private hospitals should therefore be careful to take this into account. 

 

Finally, an interesting question which can be raised is whether the health system as a 

whole has sufficient excess capacity to be able to deal with the closure of hospitals in 

the short-run due to planned or unplanned “shocks” in the supply of hospital services 

(see, for example, Ferrier et al, 2009).  If citizens are worried about the probability of 

being attended if necessary but managers are worried about the profits that hospital 

make by selling services, the reserve capacity provided will generally be different 

from the optimal one.  Policy planners will need to ensure an institutional framework 

that reconciles managers’ objectives with citizens needs.
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APPENDIX  

 

Table 4A.  Estimate of distance function: Model 1 (overall demand) 
 

Variable Coeff. S.E. t-stat. 
 

Variable Coeff. S.E. t-stat. 

         

Constant 9.894 0.016 604.5  ln(BED)⋅ln(TECH) 0.088 0.058 1.53 

ln(yOUT) -0.258 0.011 -22.93  ln(BED)⋅ln(SUPP) -0.018 0.030 -0.61 

ln(yICU) -0.051 0.009 -5.97  ln(BED)⋅ln(CAP) 0.111 0.023 4.90 

ln(BED) 0.254 0.019 13.74  ln(GRAD)2 0.185 0.047 3.95 

ln(GRAD) 0.286 0.021 13.68  ln(GRAD)⋅ln(TECH) 0.046 0.042 1.11 

ln(TECH) 0.216 0.020 10.75  ln(GRAD)⋅ln(SUPP) -0.157 0.035 -4.44 

ln(SUPP) 0.032 0.010 3.30  ln(GRAD)⋅ln(CAP) -0.061 0.020 -3.02 

ln(CAP) 0.051 0.007 7.52  ln(TECH)2 -0.022 0.064 -0.34 

ln(yOUT)
2 -0.063 0.010 -6.11  ln(TECH)⋅ln(SUPP) 0.060 0.029 2.05 

ln(yOUT)⋅ln(yICU) 0.017 0.013 1.27  ln(TECH)⋅ln(CAP) -0.106 0.022 -4.89 

ln(yICU)⋅ln(yICU) -0.055 0.009 -5.99  ln(SUPP)2 -0.007 0.010 -0.75 

ln(yOUT)⋅ln(BED) 0.157 0.024 6.67  ln(SUPP)⋅ln(CAP) 0.061 0.011 5.78 

ln(yOUT)⋅ln(GRAD) 0.061 0.019 3.22  ln(CAP)2 -0.033 0.011 -3.13 

ln(yOUT)⋅ln(TECH) -0.067 0.026 -2.59  D1998 0.010 0.019 0.51 

ln(yOUT)⋅ln(SUPP) -0.093 0.020 -4.73  D1999 -0.007 0.018 -0.40 

ln(yOUT)⋅ln(CAP) 0.044 0.011 3.90  D2000 0.018 0.019 0.98 

ln(yICU)⋅ln(BED) -0.109 0.021 -5.31  D2001 0.039 0.019 2.10 

ln(yICU)⋅ln(GRAD) 0.020 0.019 1.02  D2002 0.050 0.019 2.68 

ln(yICU)⋅ln(TECH) 0.038 0.020 1.97  D2003 0.025 0.019 1.34 

ln(yICU)⋅ln(SUPP) 0.043 0.014 3.02  D2004 0.013 0.019 0.71 

ln(yICU)⋅ln(CAP) 0.007 0.010 0.71  D2005 -0.002 0.019 -0.12 

ln(BED)2 -0.071 0.076 -0.93  D2006 -0.013 0.019 -0.66 

ln(BED)⋅ln(GRAD) -0.049 0.042 -1.17      

         

No. observations: 2136        

 


