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Abstract

The main aim of this paper is to develop an ecomeon@pproach to estimation of marginal
costs of improving quality of service. We impleméris methodology by way of applying it to
the case of the UK electricity distribution netwarhe estimated marginal costs allow us to
shed light on the effectiveness of the current biéentive regulation to improve quality, and to
derive optimal quality levels and welfare losses tusub-optimal quality levels. The proposed
method also allows us to measure the welfare effiettte observed quality improvements in the
UK between 1995 and 2003. Our results suggestithie the incentive schemes established by
the regulator to encourage utilities to reduce oetvenergy losses leads to improvement in
sector performance, they do not provide utilitieghwsufficient incentives to avoid power
interruptionsWe find that the observed improvements in qualitsirty the period of this study
only represented a 30% of the potential customéfiaveegains, and hence there is still a large
range for quality improvements.
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1. Introduction

Since the 1990s, many regulators of infrastruanuestries around the world have
implemented incentive-based regulation modelsrthatic market mechanisms and promote
efficiency improvements in natural monopolies. Sachemes have in particular been adopted
in the regulation of electricity transmission arnstribution networks Jamasb and Pollitt,
2001). Service quality is an important attribute ofattesity distribution for residential,
commercial and industrial customers as many funstaf the modern society depend on
electricity. The incentive schemes incentivizenieéwvork utilities to undertake cost savings.
However, the striving for cost savings may resulbiver service quality as maintaining or
improving upon a given level of quality of servisecostly (see Ter-Martirosyan, 2003). The
likely effects of traditional incentive regulati@m service quality has recently attracted
regulators’ interest and a number of electricityulators have made considerable effort to
design incneitve regulation mechanisms for qualftgervice in electricity transmission and
distribution networks (see Yu et al., 2009a).

In an ideal competitive electricity market, theiseeconomic optimum occurs at a quality level
where the sum of the total cost of quality provisity the network and the total quality induced
costs to consumers is minimized. However, in trseabe of (incentive) regulation, distribution
companies may operate at sub-optimal quality anthscost levels. In principle, the companies
should be incentivized to provide the optimal qudkvel — i.e. where the marginal benefit of
an extra unit of quality received by the custonsezqual to its marginal cogijphia et al.,

2009H. As shown in Figure 1, ineffective incentives htigesult in under-supply or over-supply
of quality, and higher or lower than optimum levefgjuality will result in welfare losses.

[Insert Figure 1 here]

Sappington (2005¢oncludes that there are no simple policy solation effective regulation of
quality of service but they depend on the infororatvailable to the regulator on consumer
preferences and production technologies. Indeedesigning quality-incorporated regulatory
mechanisms, regulators are faced with the taslet@rohining a market demand curve for
service quality (i.e. the price customers are agjlio pay for quality) and marginal cost of
quality improvements. On the demand side, sevérdies have attempted to quantify the value
of service reliability using the direct costs in&a by customers from service interruptions
(Allan et al., 1999; Kariuki et al., 1996r estimation of the consumers willingness-to-pay
(WTP) to avoid power interruption¥'( et al. 2009a On the cost side, while previous papers
have incorporated WTP and quality of service vaeslin non-parametric regulatory
benchmarking@iannakis et al., 2005; and Yu et al. 2009a, 2p0®larginal cost of quality
improvements were not explicitly estimated. While hon-parametric approach to measure
firms’ efficiency does not provide information alddie production characteristics or cost
frontier, except for the returns to scale naturtheftechnology, aggregate inefficiency scores
that include inefficient quality allocation can bletained.



Previous studies have showed that utilities respormpiality of service incentivesgmasb and
Pollitt, 2007; Tangeras, 200However, in order to provide regulated utilitigh proper

reward and penalty for service quality it is crietahave information on other technology
characteristics and in particular on marginal co$tguality improvement. Indeed, the marginal
cost of quality improvement can be viewed as a fdveeind for setting incentive targets, as
basing rewards or penalties merely on marginalfitesfémprovement may provide utilities
with overly generous incentive for socially effiotequality improvement. Hence, the aim of this
paper is to estimate econometrically marginal cokisproving quality services of the UK
electricity distribution utilities, and to shedHtigon the effectiveness of the current incentiges t
improve quality. Moreover, estimates of marginatsandicate how far the utilities are from
their optimal quality level (given the marginal lefihof quality improvement) and allow for
computing welfare losses due to sub-optimal qualite also measure the effect on welfare of
quality improvements in the UK.

Section 2 introduces the empirical model and dsesiseveral theoretical and econometrical
issues concerning the estimation of marginal c@sstion 3 describes the data and variables
used in the empirical exercise. Section 4 predbrtparameter estimates using different
specifications and estimators. Section 5 summatimesesults, and presents the main
conclusions.

2. Specification of the empirical model

In this section we specify an empirical model toneate marginal costs of improving quality
service and apply this to case of the UK electridistribution companies.

An important issue to address is that, while adeurdgormation about operational and capital
costs and quality services might be availablegttdanatory variable i.e. the marginal cost of
quality improvements, is not observed. Howevehalgh we cannot estimate the marginal cost
function directly, it may be inferred from previoestimations of the utilities’ cost function.

This means that while we can estimate “reasonably/ the cost level of a particular utility, the
inferred marginal costs are less accurate — ieectimfidence intervals and prediction errors are
larger than in the cost functidn.

Thebasiccost function to be estimated can be written as:
InC=InC(y,n,e,q,t) 1)

whereC is a measure of utility costgjs the energy delivered,is thenetwork lengthe stands
for network energy losses, aqds a measure of service quality (measured by usemers

! In technical terms, this means that while transind quadratic cost functions can be viewed asnseco
order approximations to the underlying, and truest ¢unction, their first derivatives (i.e. elagiis or
marginal cost) are only first-order approximatido®lasticities or marginal costs.



minutes lost), antlis a time trend.We include network length to reflect the size efvice area
and network and has been used (as an output obrietf)by Ofgem in benchmarking of the
utilities’ operating costs. An alternative way toit& the cost function (1) is:

InC=InC(n,d,eq,t) 2

whered=y/n is a measure of network densitifunctions (1) and (2) are equivalent. But the
interpretation of some coefficients changes, f@aneple, while energy delivered in equation (1)
is expressed in absolute terms, in equation (8)ékpressed in relative terms. The advantage of
(2) is that it makes easier to measure both ecamaofiscale and economies of density.

We use the sum of operational and capital expermdit(l otex) as the dependent variable.
Improving quality of services involves operatingt(Opex) and capital cost (Capex) for the
utilities. Due to the presence of possible trade-bétween Opex and Capexinnakis et al.
2009, utilities might adopt different strategies toxduine operating and capital inputs to
improve service quality. These strategies mighaffiected by the regulatory incentives. For
example, in the UK a firm receives greater bendfiis saving Opex than by an equal amount
of Capex reductionifgem, 2003p Hence, in order to examine existence of diffestrategies
in the UK utilities to improve quality, and to asizén whether the current regulation has
distorted the allocation of operating and capitalits we also consider Capex and Opex as
dependent variables. In a previous study {seeasb et al., 20)1We added the cost of energy
distribution losses to the Totex. Here we use gnkxggese, as a cost determinant as we are
interested in estimating its effect on total cdatealucing distribution losses.

Both n andd allow us to distinguish between economies of saatkeconomies of density. The
first type is related to system expansion at conistansity, e.g. urban fringe expansion. As

network density is held constant, this type of exguan requires enlarging the current network
to meet extra demand. These economies that inuatveases in demand and network can be

2 Customer numbers() and units of energy deliverey) @re the most commonly used outputs in
benchmarking of distribution network utilitie§ignnakis et al., 2005; and Yu et al. 2009a, 2).0Bbese
output variables are important cost drivers antligrfce the pricing of distribution services. Howevtbe
statistical correlation between these two outpaitgery large in the present application (over 97%j}his
case we have four options. The first is to estinttagecost function with both outputs, as in sonevigus
studies. With this strategy not only we are noticgpvith a significant collinearity problem, butsalcu
cannot be interpreted as an output because, ginagmrebergy delivered is the product of customerbmamm
times per capita demand, the derivative of cost véspect t@u captures a substitution effect, i.e. the
effect of an increase in the number of customedssiamultaneously a reduction in per capita demand.
The second option is to drop energy delivered ptaeatory variable. This would create an endoggneit
problem in the present application as network enkrgses depend on total demand and changes in tota
demand caused by changes in per capita demantnaWabelong to the error term- are correlated with
energy losses. Hence, if we estimate a cost fumttjojust including customer numbers as output, the
parameter of energy losses will be overestimatéd.tiird option, followed in this paper, is to drop
customer numbers as output. This does not imphatieaignorecu as it is already included iy and the
main driver of change in energy delivered is byciarOn the other hand, gsncludes per capita
demand, we do not have an endogeneity problemfdiiréh option is to add per capita demand as an
additional cost driver, but given the small sizeoof sample and that the coefficient of this vdgakas
always statistically insignificant, we drop this.

% Network density is often measured as the raticusfomer numbers to network length. As the
correlation between customer numbers and ener@gyeded is almost 100%, our density measure can be
loosely interpreted as the number of customersipevork kilometer.



measured by (partial) elasticity of cost with redge network lengthy. The second type
involves simultaneously expanding the output amdise density, i.e. expansion in the existing
serviced area where additional network is not megLiiThese economies can be measured by
the (partial) elasticity of cost with respect thetwmork densityd. It is expected that the
economies in distribution are mostly from increadedsities.

Yu et al. (2009bjreated the social cost of customer minutes lost eost to be minimized
together with private cosfiVe treat social and private costs somewhat diftgreand include
customer minutes logy, as a determinant of private costs. This allowtusbtain a measure of
the private marginal costs of quality improvemenitge multiply the per-customer minutes lost
by the number of customers, in order to scale #imble and include it as a determinant of
costs.

The coefficient of the time trend is normally imiegted as capturing the cost effect of
improvements in technology. In this paper we ubeoad definition of technology as the
estimated cost function likely reflects both thelertying (physical) technology and the
(consequences of the) regulatory regime that ciemditutilities’ performance. In this sense, the
time trend coefficient may also reflect improvenseint cost efficiency in response to regulatory
incentives.

Unfortunately input price data for operating angdit inputs is not available. By convention,
many papers using non-parametric techniques serite of operating and capital inputs to
unity. If we followed the same strategy in a paraiadramework (i.e. including invariant input
prices), we would not able to distinguish theieetffrom those of other explanatory variables.
In general, we expect that the price effect of appenal and capital inputs is captured by the
time trend as many industrial prices tend to ineeegradually over time, i.e. as with a time
trend. Hence, the coefficient of the time trendmilge capturing the net effect of improvements
in technology or cost efficiency and input priceBanges).

Another issue is to control for the effect of difaces among utilities in environmental factors,
such as the weather, geography, etdamasb et al. (201®e show that weather conditions
should be included as determinants of distributiosts as they have shown a statistically

* This requires an estimate of customer willingriespay (WTP) for quality improvement. S¥e et al.
(2009a)for more details about how WTP can be estimatedpaoblems of obtaining accurate
measurement.

® Indeed, note that actually customer minutes ps§ the “inverse” of a real quality measure. If ea
this quality measure &3, the marginal cost of quality improvements carcbmputed as:

_ac()_ac() 2
0Q  dq 0Q

If the relationship betweemandQ can be represented by the linear funct@A-q, whereA can be
viewed as the maximum quality level, the above mmalgost reduces to:

_0C()
0q
In order to get a positive marginal cost of quallitypprovements, the derivative of the cost functioth

respect taj should be negative. It is argued before thatright not be the case ggost might be
negatively and positively correlated.

MC

MC =



significant effect on costs, and because ignotirgetffect of weather on distribution costs
might bias the parameter estimates of other retexemmbles. This endogeneity appears
because bad weather conditions tend to increase latsalso lead to lower quality services.

This case is presented in Figure 2 where we dramhiypothetical cost functions, one for good
weather and other bad weather. If the random datargtion process behind service quality
were completely independent of weather, we woule labservations along both cost
functions. However, bad weather conditions tengktluce service quality. As shown in Figure
2, this implies that most observations with badtiveaare associated with low quality, and
most observations with good weather are assocwtachigh quality. Therefore, estimating a
cost function without weather variables would yidlwvnward biased parameter estimates for
the coefficient associated with service quality.ad®sult, in order to estimate consistently a
cost function for the sector, weather variablesughbe included as cost determinants. In
absence of this information, an instrumental vaeiastimator should be used.

[Insert Figure 2 here]

In order to estimate consistently a cost functiothie electricity distribution sector, we include
weather data as cost determindrit4ore specifically, we simply add the weather vialés to

the cost function as in Jamasb et al. (2010) wédaoat reject separability and a linear
functional form for the weather variables. Our dosiction can then be written 4s.

InC=InC(n,d,eq,t)+g(w) 3)

whereg(w)is a linear function and/ is a set of weather variables that might affestxo
According to (3), the vertical distance betweerhlmiod and bad weather cost functions in
Figure 2 is now captured lgfw), and consequently the simultaneity biases shamhd n
disappear.

A final issue is that there is a feed-back betwsswice quality and cost, making it difficult to
formulate hypotheses with respect to the effecfuallity on cost. This is illustrated in Figure 3,
where an increase in power interruptions causeskbgre weather conditions or equipment
decay require corrective costs associated witlstiyes needed to replace the damaged
equipment and to restore power. As a result, weebg positive (negative) correlation between
the number and duration of power interruptions lituaervices level) and cost. At the same
time, Yu et al. (2009bgargue that, over time, utilities might adapt tleperating and investment
practices to prevent power interruptions. As altesie also expect a positive correlation
between quality of service and cost. Hence, qualfiervice is likely negatively correlated

with corrective costs, but positively correlatedmpreventative costs.

[Insert Figure 3 here]

® We also show idamasb et al. (201Bpw to proceed when weather information is noflakke in an
instrumental variable framework.

’We do not use weather composites astiret al. (2009bjs we found that statistical weather
composites do not have any cost effect even theagte of their components have a significant efiect
costs. Moreover, the inclusion of weather compediid not allow us to estimate consistently the
marginal cost of quality improvements.



We attempt to distinguish between the types of bpdtiking into account that each cost
maintains a different relationship with qualitys#rvice (number and duration of power
interruptions) over time. In other words, some sast likely correlated with contemporaneous
interruptions, while other costs with future or egfed interruptions. These (inter)temporal
relationships are represented in Figure 4. Theadigissumes that corrective costs are logically
explained just by contemporaneous power interraptioi.e. number of minutes lost per
customer for planned and unplanned interruptiosing three minutes or longg=CML.2 On
the other hand, the distribution utilities wereantivized to reduce both the number and
duration of interruptions during the period anatymethe present paper. In 1999, the
distribution performance standards were introduaed,the third price review period (2000-
2005) introduced an incentive scheme of penaltielsrawards focuses on improving rather
than maintaining the level of qualityGiven this incentive scheme, it is reasonablessume

that each utility has invested in specific equiptarery period to prevent power interruptions
in the future'® Obviously, these preventative costs might have alsontemporaneous effect on
g, resulting in the contemporaneous relationshigvben total cost and customer minutes lost
being indeterminate as the relationshigafith preventative cost is negative, while it is
positive with corrective costs.

[Insert Figure4 here]

Before describing the implications of this thearatiframework for the specification of the cost
function (3), we test whether it is supported by dlata. If the above framework is corrécthe
dependence af on contemporaneous expenditures is likely noissielly significant because
not all new equipment to prevent power interruptiane available at the beginning of the
period and the negative, although weak, effeaj ohpreventative costs offsets the positive
effect of corrective cost; anij customer minutes lost reductions should depengbshrather
than contemporaneous expenditures.

In order to test these hypotheses we estimateaawedels using=CML as a dependent
variable, and past and contemporaneous valuestek Bs explanatory variables. A summary
of the results are shown in Tablé*1n all models, Totex lagged one period is always
statistically significant, indicating that chande$| depend indeed on past expenditures, as
predicted by the framework outlined above. Noteydwer, that Totex lagged two periods is not

® From 2005/06 Ofgem adds 50% of planned interruptions to planned interruptions as consumer surveys
showed that electricity consumers are less affected by the latter.

? It is noteworthy that Ofgem assigned a higher itiverpercentage to customer minutes lost rather tha
number of customers interrupted targets, which shibw relative importance of reducing the length as
opposed to the number of interruptioiYsi (et al., 2009a

“In this sense, it is important to recall that poex studies have showed that utilities have respoi
quality of service incentives@dmasb and Pollitt, 2007; Tangeras, 2009

1 The details of these estimations are availablenupquest. In order to control for the effect ofatieer
conditions on CML we included weather variableallrodels. A fixed-effect (FE) estimator was used
as we are interested in temporal changes (i.einwfithm variations) rather than differences amohg t
utilities. The R-squared statistic is always vary (<11%), indicating the existence of other fastoot
accounted by weather variables and past and coor@amgous values of Totex influencing CML.



statistically significant, even when other costialles are not included in the model. Also, as
expected, the contemporaneous value of Totex duidsave a significant effect on current

[Insert Table 1 hereg]

The results in Table 1 seem to support the theaidtiamework described in Figuré4Next

we examine the implications of this theoreticahieavork on the specification of the cost
function (3). In particular, we can hypothesizenirBigure 4 thatt) corrective cost depends
exclusively on contemporaneous customer minutésdpi) preventative cost depends on
expected customer minutes Idg); Totex depends on both contemporaneous and expected
customer minutes lost;andiv) while the effect of contemporaneous customer resigston
Totex might be both positive or negative, the dftédexpected customer minutes lost on Totex
should be negative and larger in absolute terms.

In summary, if the above framework holds, the ¢asttion in (3) should be written as:
InC =InC(n,d,e,q,Eq,t) + g(w) 4

whereEqis the expectation ihabout customer minutes losttirl. In this specification, the
derivative of cost with respect Exj allows us to measure, once we change its signetie
marginal cost of quality improvements as this daiixe is not “contaminated” by corrective
cost effects? The sign of the derivative of cost with respeat ie unknown as it captures both
corrective and preventative effects.

The magnitude of power interruptions in the futisraot observed by the utilities (but it is
observed by the researchers). For this reasondheisions are likely based on expected values.
These expected values are in turn conditioned é¥itim-specific targets set by Ofgem to
incentivize improvements in service quality. Th@ested values, however, are not observed by
the researchers. Hence, we replagéy q att+1, that is,

InC; =InC(n,,d,,&,,0d;,0...1) + I(W, ) + & (5)

where subscrigtstands for utilities, subscripstands for time period, argdis the classical
error term. We expect the classical errors-in-\aeis attenuation bias where the coefficient of
the variable measured with error is biased toward gVooldridge, 200p Therefore, the
marginal cost of quality improvement estimated ggB) can be viewed as a lower-bound of
the real marginal costs.

3. Estimation strategy

'2 Since preventive and corrective costs might be applied for reducing energy losses, we haveegrri
out a similar analysis for energy losses as dep#ndgiable. However, none of the coefficients aéfp
and contemporaneous values of Totex were stallgtgignificant.

" The difference between expected and future customautes lost is explained below.

14 One can argue that some corrective costs mighe hgreventative effect. In this case, however, its
relationship with future customer minutes lostfishe same sign as tipeire preventative costs.



In addition to including weather variables as aeterminants, a fixed-effect type estimator is
used to control for unobserved heterogeneity anfiomg that might be correlated with the
explanatory variables. The traditional fixed-effé€E) estimator in the present application may
be inappropriate as many crucial determinantsitifyutosts, such as the energy delivered, the
number of customers, or the network length areigters or rarely variant variableSlumper

and Troeger (200ointed out that the FE estimator may be inappatpbecause the
information between firms is mostly ignored, and #stimates of rarely changing variables are
inefficient. In order to address this issue, theyppse using the Fixed Effect Vector
Decomposition (FEVD) method. They show, through@nké Carlo analysis, that FEVD has a
better performance than OLS, Random Effect Estimatud the Hausman—Taylor Estimator if
time variant and time invariant variables are datesl with fixed effects.

If we use the traditional FE estimator to estin@miecost function, the model to be estimated
can be re-written as follow:

INC, =[a+ B +d,]|+n +&, 6)

In this equation we have re-label the cost explamatariables according to their time (within-
firm) variability: x; stands for variables that vary notably over tiswgch as prices or service
quality), andz; stands for rarely variant variables or time-ingati(e.g. number of customers or
network length). The key characteristic of the BEneator is that it eliminates the concern
about any individual fixed error termy,, by focusing solely on how much companies varyfro
their time-means. This is known as the within-fivariation and shown in equation (7):

InC, —-InC; :ﬂ(&t—iij+5(z"—2j+sn—§i )
where
_ 1 T _ 1 T o 1 T o 1 T
InCi:—E InC, , xi=—§ S zi=—§ o £i=—§ &
L= TEN TEA TE

By eliminating the unobserved fixed effegt, unbiased estimates of theariables can be
obtained even if the explanatory variables areetated with the fixed error effect. Since the FE
model focuses solely on explaining the within-fivariation, and all of the between-firm
information is mostly ignored, it is not possibiedbtain reliable estimates on variables that
have low within-firm variation using a FE estimatbtoreover, in the extreme case thatz;,

the FE estimator is not able to distinguish theafbf time-invariant explanatory variables

from the fixed effects. The coefficients of persigtvariables or rarely variant variables usually
become statistically insignificant as their effacé being also captured by the fixed effects.

However, in our present application rarely varigaiables such as the energy delivered, the
number of customers, or the network length areiargost determinants, and their parameters
should be estimated properly. In order to addieissgssue Plumper and Troeger (2007)
proposed using the FEVD estimator, based on tmedbFE estimator. The FEVD is a three-
stage estimator. In first stage, the fixed effeeistor decomposition procedure carries out a

10



standard FE model to obtain estimates of the feféetts. These can be obtained using the
following expressior®

f =InC-Bx-57 (8)

The estimated fixed effects using (8) are not Hraesas the true unobservable heterogeneity
outlined in equation (6) as they also contain ttiercept, the eliminated information contained
in time-invariant variables, as well as the medeat$ of the rarely variant variables. For this
reasonPlumper and Troeger (2003)iIggest decomposing in a second stage the eddifvete
effects into a part that is observable and a paitis not. The decomposition takes place using
both time-invariant and rarely invariant variablespredict the estimated fixed effects obtained
from stage one:

n=g+ez+w (9)

The error termw; in equation (9) captures the true unobservablepom@nt);. In the third
stage, the full model (time variant, time invariaiairely changing variables) is estimated by
OLS, including the unexplained part of the deconspldixed effect vector obtained in the
second stage:

InC, =[a+px, +a,]+i@ +¢, (10)

4. Data and sample

We utilize the same dataset as in Yu et al. (20@8)Jamasb et al. (2010) on 12 distribution
networks in the UK for the 1995/96 to 2002/03 peridhe cross-sectional and time dimension
of our panel data set is conditioned by availabdit weather data. Two companies were
excluded as complete data records of weather indevice areas were not available. In
addition, we excluded the 2003/04 data from thdyarsg which had been subject to adjustment
in order to control for weather related atypicatsd’

Two weather stations in the service area of thepamies were selected to represent each firm
and the averages of their measurements was tdk®ro(weather stations were not available,
one weather station was used). All yearly weatla & used to maximize the use of the
information available for each company. We use feeather variables, viz. minimum air
temperaturerfate,the number of days when minimum concrete tempegatwere below zero
degreesdcte), the number of days with heavy halhéil), and the number of days with heard
thunder @thu). In Jamasb et al. (201We have shown that these were sufficient to comarol
most of the effect of weather conditions on costs.

!> Here we assume that all z variables have a, dthejtwithin-firm variation. Otherwise, the fixed
effects should be obtained using only the averadgeg of the high-within-firm-variation variables.
181t should be noted that we use data on servicktgtiar the years 2003/2004 in order to compute th
expected customer minutes in the future.

11



Table 2reports the summary statistics of the data uske.riionetary and physical data for the
inputs and outputs are based on publications dodwmation from Ofgem. The data on service
quality is mainly based on information from Ofgeralsnual Electricity Distribution Quality of
Service Report. The weather data were obtained fhend K Meteorological office for most
observation stations. All monetary variables angressed in 2003 real terms. Temperatures are
expressed in degrees Celsius and the remainingbkasi are expressed in number of days per
year.

[Insert Table 2 herg]

5. Empirical results

According to Section 2 we estimate a translog d$igation of the cost function (5). This
function can be interpreted as second-order apmaton to the companies’ underlying cost
function. All explanatory variables were divided tne sample geometric mean, so the first
order parameters can be interpreted as elastieitid®e sample geometric meahable 3shows
the parameter estimates. Using the Breusch-Pagaaohifglquared test we reject the null
hypothesis of no heteroskedasticity at the 5% pedesel of significance for all specifications
of the cost function. Although accounting for heskedasticity does not produce significant
changes in inference, we report the White hetedtécity-consistent t-ratios.

Table 3shows the estimated coefficients using OLS, FEREMD. All elasticities in the OLS
model have their expected signs at the sample geiomeean: the estimated first-order
coefficients of network lengtmf) and network densitydf) are positive and statistically
significant, and the coefficient of energy lossg3 &nd lead of the customer minutes lapt4()

are negative, suggesting a positive marginal dogtality improvements that we discuss later.
As expected, the effect of contemporaneous custamrartes los{qg;) on Totex is not
statistically significant. This suggests that comperaneous power interruptions are positively
correlated with corrective cost, but negativelyretated with costs caused by the acquisition of
new equipment to prevent power interruptions (mfiiture). Overall, these results seem to
support the theoretical framework describeéfigure 4.

[Insert Table 3 here]

The FE estimator allows us to control for unobserveterogeneity among firms that may be
correlated with the explanatory variables. Theafgbe FE estimator in the present application
is clearly inappropriate as the first-order coediits of network lengthn(), network density

(dy) and energy lossesj are not statistically significant. This is causgdthe fact that the
within variation of these variables (i.e. the vida over time with respect to the respective firm
average) is very lowT@ble 4) Indeed, the within firm variation of network lehgnetwork
density and energy losses is much lower than thatian among firms, i.e. the between
variation. As many relevant cost determinants haxge between-to-within variations, a large
amount of observable information will be discaradten using the FE model. Depending on

12



the correlation between the unobservable heterdiyeared any cost determinant, estimation
using FEVD might be the preferred estimation styaté

[Insert Table 4 hereg]

Since the between-to-within variation of networkdth is larger than 10, it is larger than 3 for
network density and energy losses, FEVD is likebetier estimator than FE. For this reason,
we estimate a FEVD model using these three vasabieir squares and their interactions as

regressors in the second stage. The final estinaatesbtained by estimating (5) including, as

an additional regressor, the unexplained part®ftitcomposed fixed effect vector obtained in
the second stage. The FEVD results are shown ilagtiéwo columns ifable 3

The last two columns imable 3show that all elasticities of Totex with respeetwork length,
network density, energy losses and the lead ofdlstomer minutes have again their expected
signs at the sample geometric mean, i.e. the cisfts ofny andd, are positive, the
coefficients ofe; andqgy.; are negative, and the effectggfon Totex is not statistically
significant. The coefficient of the residual fixeflects is close to unity. We use this result as
evidence that the FEVD model is well specifiedhaligh the magnitudes of the first-order
FEVD coefficients are somewhat less than the Oluhtparts, they are quite similar,
indicating that most of the fixed effects are expa by rarely variant variables (i.e. network
length, network density and energy los¥es)nd that the use of the FE estimator is not
appropriate in the present application.

On the other hand, the coefficient of the time drennegative and statistically significant,
indicating either a general increase in cost edficy or the existence of technical progress in
the sector. This improvement in performance magehesed by the current regulatory regime in
the UK as each firm is incentivized to save bothrafing cost and capital cost. It is worth
mentioning that when Capex is used as the dependenable (see Appendix) the improvement
in performance is lower (about 3%) than when weTuigex (about 8%). This implies that the
rate of improvement in Opex is much larger tha@apex.This is a reasonable result as in the
UK a firm receives greater benefits from saving Ofen Capex@fgem, 2003 over the

sample period. Hence, this result seems to support the formgomé¢hat the current regulation
framework in the UK has distorted significantly tiéocation of operating and capital inputs.
Regarding the weather factors, most weather coeffis are statistically significant (even when
we control for unobserved time-invariant variablieslicating that weather conditions matter
and that they should be included as cost deterrtsfan

Y Plumper and Troeger (200&givocate using the ratio between-to-within variatis a way of
distinguishing whether a particular variable carbb#er estimated using FEVD. Using Monte Carlo
simulations, they show that this ratio, howevepeatels on how well the particular variable in quesis
correlated with the unobservable heterogeneity.eékample, when the correlation is 0.5 the between-t
within ratio must exceed 2.8 for the FEVD to be sheerior estimator. When the correlation drop3.8
the between-to-within the person ratio only needse 1.7.

8 The R-square statistic of the second stage ist&¥#9%6.

Y This has been altered for the price control pebieginning in April 2010 (see Ofgem, 2009).

2% As weather is a complex phenomenon and its oveffaitt on cost is unknown, we take an agnostic
position and do not make specific assumptions ath@uprobable (partial) effect of each weatheralad
on distribution costs. Alternatively, given thedarcorrelation among some of the weather variables,
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Network length i) and network densitydf) allow us to measure respectively economies of
scale and economies of density. Economies of scaleclated to system expansion at constant
density and hence it can be measured by the paldisticity of cost with respect to network
length. The first-order coefficient of network lehgs 1.2086. That is, the technology exhibits
decreasing returns to scale at the sample mean exdpamsion requires enlarging the current
network to meet extra demand. Some previous sthdes found diseconomies of scale in the
electricity distribution (see e.yatchev, 2000Cronin and Motluk, 2007 On the other hand,
economies of density involve simultaneously outogtansion and service densification, i.e.
expansion in the existing service areas where iadditnetwork is not required. The first-order
coefficient of network density is 0.6808, indicatithat economies of density are higher than
economies of scalé&suldmann, 1985; Filippini, 1998and that increasing returns arise from
increased densities. That is, given network infrecstire, electricity distribution networks have
natural monopoly characteristits.

Figure 5depicts the elasticity of total cost with resp@chetwork length estimated for each
observation, sorted by network lengttusing the parameter estimates of the model wiibe€a
as dependent variable (see Appendix) we also catpatelasticity of capital cost with respect
to network length. In order to be consistent witl previous two equations, the elasticity of
operational cost is then obtained using the equéfit):

_elas-elagls
S

whereelasis the elasticity of total cost]as is the elasticity of capital costlas is the

elasticity of operational cost, asdands, are respectively the share of Capex and Opextah to
cost® Figure 5shows that firstly, Totex elasticity of scale igases with size (in terms of
network length) where the smallest companies ekimnbieasing returns to scale, and medium
to large companies exhibit decreasing returnsatesS&econdly, both Capex scale elasticity and
Opex scale elasticity are positive, indicating thath types of cost increase (i.e. they are
complementary) when additional network is requiectheet extra demand. Finally, while Opex
scale elasticity is lower than unity, Capex scidsteity is increasingly higher than one,
indicating that the “decreasing nature” of Totealslasticity is caused by decreasing returns
to scale in Capex.

elas (11)

[ Insert Figure5 here]

particular weather variable may be capturing ndy threir own effect but also the effect of other
(correlated) variables that might have a non exgakesign or magnitude. In this sense, what matsettsei
overall effect and not the effect of each particwaather variable.

2! Also Salvanes and Tjgtta (1998) find evidenceattiral monopoly characteristics in the Norwegian
electricity distribution networks.

22 \We note again that our elasticity function (itee first derivative of our cost function) just pides a
first-order approximation to the underlying elag§i@at the sample mean, and hence the estimated
elasticities tend to lose reliability when we maweay from the sample mean.

% In order to smooth the series we control for clesrig other variables and evaluate the other cost
determinants at the sample mean. Hence, the deitiopan Figure 5 (and following figures) allows u
to analyze changes in elasticities or marginalscost “representative” utility that increases educes
its size (or its density or quality level in thdléoving figures). Similar results are obtained, lewer, if
we do not control for changes in other variables.
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Using the parameter estimates of the model witleX and Capex as dependent variables and
the equation (11) we depict inigure 6the three types of density elasticities, sortetétyvork
density?* The negative values and the abrupt changes dgfthie both Capex and Opex
density elasticities should be viewed with cautigrthey correspond to some observations
exhibiting a network density far away from the séenpearf’ With this caution in mind, we
can see that, in contrastR@ure 5 Opex density elasticity is normally negative, gesfing that
Opex decreases when network density increasedditian, since Capex density elasticity is
positive, as seen froffigure § and in contrast tBigure 5again, we can conclude that utilities
tend to substitute Capex for Opex as network densiteases. This means that low and high
network density utilities adopt different combireis of operating and capital inputs. The less
operating intensive strategy followed by high netadensity utilities may be explained by
different consumer mix (e.g. household vs. indaktrsers) or differences in service areas (e.g.
urban vs. rural)Huang et al. (2009lso found two different cost structures for lawddigh
network density utilities in their study of elecity distribution firms in Taiwan.

[ Insert Figure6 here]

We aim to estimate econometrically marginal cofimproving quality services of the utilities
in order to shed light on the effectiveness ofdteent regulatory incentives in the UK to
improve quality. Once we estimate the translog naxdel, a marginal cost value can be
obtained for each firm using the following equation

MC = —EL% (12)

whereEL is the elasticity of cost with respectZcandz stands for either network energy losses
or total customer minutes lost.

Using the parameter estimates of the FEVD modé&hinle 3we compute the marginal costs of
reducing energy losses for each firm as show#igare 7 The last two columns ifable 3

show that the first-order coefficient of energydes (in logs) is negative and statistically
different from zero. This suggests that, on averttigemarginal cost of reducing electricity
losses is positive. The average marginal cost irsample is about 2.8 pence per kWh. Note
that the magnitude is smaller than the 4.8 penc&\pé set by the regulator to reward
(penalize) loss reductions (increases) in the focontrol period {oskow, 200@ndYu et al.
20093. Hence, we can conclude that the scheme edtallisy regulators to incentive utilities
to reduce their levels of electricity distributitosses is sufficient to improve performance.
However, we might expect that this improvement wilt be homogeneous as many
observations ifrigure 7have higher marginal costs than 4.8 pence per lath hence they are
not sufficiently incentivized to reduce their elézal losses, though we note that the value of

24 pAgain we evaluate the other cost determinantseasample mean in order to compute these elassciti
% For most functional forms (e.g., the translog fim} there is a fundamental trade-off between
flexibility and theoretical consistency. For instanmaintaining global monotonicity (e.g. positive
elasticities and marginal costs) is impossible aitHosing second order flexibility. For exampigrnett
et al. (1996show that the monotonicity requirement is by n@angeautomatically satisfied for most
functional forms, and that violations are frequent.
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loss reduction should relate to the wholesale abgbwer and any un-priced associated
environmental externality.

[ Insert Figure7 here]

Using the parameter estimates of the model witeX and Capex as dependent variables and
equation (12) we compute the total, capital andatmmal marginal costs of reducing energy
losses for each firm. The computed values are shiowigure 8 With the same caution
regarding the values on the left, we can identifg¢ different regions iRigure § according to
the relative weight of Capex and Opex in total nreabcost. These regions loosely correspond
to small, medium, and large utilities, and suggigerent strategies to reduce energy losses.
Indeed, in the first region, i.e. small utilitieeducing losses mainly implies operational
expenses because Opex marginal cost is posithite @apex marginal cost is negative. In the
second region, i.e. medium utilities, both Capex @pex marginal costs are similar in
magnitude and positive indicating that improvin@liy service implies an investment in both
capital and operational inputs. For large utilities. the third region, Capex marginal cost is
considerably larger than Opex marginal cost, irtdigathat for low quality utilities (in absolute
terms) reducing losses mostly requires capitalstments. Overall, these results suggest the
presence of different strategies among the UKibidion utilities to improve service quality.

[ Insert Figure8 here]

The blue dots ifrigure 9represent the estimated marginal costs of redubimgustomer
minutes lost by one minute. These values were mddaiising the parameter estimates of the
FEVD model inTable 3and equation (12). The marginal costs were ohtiaiyecomputing the
elasticity of cost with respect to the lead customimmutes lostg.1, as this elasticity is not
“contaminated” by corrective costs and, hencesritls to capture preventative marginal costs.
The green dots simulate the marginal cost in ctser gost determinants are evaluated at the
sample mean. Two comments are in order. Firstytben dots suggest a decreasing
relationship between marginal cost and customeutaglost. This implies that, as shown in
Figure 1, higher quality level is associated wiitjher marginal cost of quality improvement
(seeYu et al., 2009p Second, the large dispersion of the blue daisrat the green dots
indicates that the marginal cost of improving dyalaries considerably across utilities due to
their different configuration (i.e. network lengtietwork density, weather conditions, etc.).
However, given their own configuration, all of thérave similar downward marginal cost
curves to that representedrigure 9for the “representative” utility.

[ Insert Figure9 here]

The last two columns ifiable 3show that the first-order coefficient ofgify, is negative and
statistically different from zero. This suggestatfton average, the marginal cost of reducing
customer minutes lost is positive and statisticsifynificant. In particular, the average marginal
cost in our sample is about 25.6 pence per mimste Multiplying this by the number of
customers we get the marginal cost of avoidingromeite across all customers. This marginal
cost of one minute per customer is equal to 0.86omipounds for the average utility in our
sample (6.72 million pounds for the 12 analyzelitigs). Hence, the marginal costs estimated
here are considerably larger than the incentivesrastablished by the UK regulator for each
utility in the most recent price review to reducstomer minute lost (segpskow, 2006, p.56
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Indeed, using the period 2004/5 as a referencegwdmage incentive for one minute per
customer is 0.18 million pounds, i.e. a third af #stimated marginal cost per customerYAs
et al. (2009aalreadyfound, we can conclude as well that the UK incezgtigre not sufficiently
strong to incentivise improvements in service dyalh particular,Yu et al. (2009ajound that
the social cost of outages (measured by multiplipungjness and domestic willingness-to-pay
by total customer minutes lost) was consideralgjér than the utilities’ current
incentive/penalty.

On the other hand, as pointed outllmgkow (20086)it is not clear where the values for the
incentive rates established by the UK regulatoefieh utility originate from. However, it is
expected that they are correlated with utilitiesirginal cost. Indeed, using the incentive rates
for the period 2004/5, the coefficient of corredatiwith our marginal costs is quite high, about
46%. This coefficient rises until 55% if we comp#ne incentive rates with the marginal cost of
avoiding one minute per customer. This suggestsdtthough the estimated cost function in
Table 3only provides at the sample mean a first-order@pmation to the underlying

marginal costs, the estimated differences amotigagiseem to be reliable. Conversely, since
marginal costs of improving quality vary acrosditigis as different (higher) quality levels are
associated with different (higher) marginal costd there are large differences among utilities
in size and network characteristics, our resulggest tailoring the incentives for each utility.
The high correlation between incentive rates atichated marginal costs seems to indicate that
the regulator has taken, to some extent, into atdbe differences in marginal costs to design
the incentive schemes in the UK.

Using the parameter estimates of the model witleX and Capex as dependent variables and
equation (12) we have computed the total, capitdlaperating marginal costs of reducing
customer minute lost for each observation. The adetpvalues are shown lifigure 10 The

left side offFigure 10corresponds to high quality utilities, and movetsdn the right represent
deteriorations in quality. As iRigure § the different weight of Capex and Opex in total
marginal cost, and its evolution, suggests presehddferent strategies to improve consumer
service quality. Indeed, for low quality utilitieducing customer minutes lost mostly implies
increasing operational inputs. In contrast, wheawise quality is already high, reducing
customer minutes lost even more mostly impliessting in capital inputs. This investment
might imply, for instance, acquiring sophisticaggglipment or undergrounding activities which
are likely quite expensive. This also explains whg marginal cost of quality improvement for
high quality utilities is larger than for low quiglicompanies.

[ Insert Figure 10 here]

Finally, as illustrated ifrigure 11 the estimated marginal costs allow us to know Fenvihe
utilities are from their optimal quality level atol compute welfare losses due to sub-optimal
quality levels. This requires an estimate of custowmillingness-to-pay (WTP) for quality
improvement. To this end, we use the WTP data bgetl et al. (2009a)This data covers
domestic and business customers and was obtammdiie Ofgem-Accent’s customer survey
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of WTP for quality of service in 2008fgem, 200%2° For the sample analyzed in the present
paper, the WTP for avoidance of a one minute paomerruption is on average about 1.92
pounds. However, the preliminary results from #e urvey carried out in 2008 seem to
suggest that the former WTP is overestimated (smert, 2008, p.103). For this reason, we
also simulate the optimal quality levels assumirag inderlying WTP might be 75 and 50% of
the former WTP!

[Insert Figure 11 here]

The simulation results are presented able 5 Any of the WTP values shown in Table 5 when
compared to the estimated marginal costs suggasatiual service quality is on average far
from the optimal levels. The results are per corgpamparticular, while actual customer
minutes lost is about 161 million on average,dhtmal customer minute lost is 29-45% less
than the actual levels. Moving from actual levelshte optimal ones would yield a customer
welfare gain of £48-144 million. This improvementquality would cost about £23-57 million,
which represent an increase of 13-32% in total fmystach utility. Overall the social welfare
would be higher as the social welfare gains areethbetween £25 and 87 milliéh.

[Insert Table5 hereg]

In addition, the estimated marginal costs allovicusieasure the effect on welfare of the quality
improvements in the UK. The simulation results gdime original WTP are shown irable 6
Similar conclusions stem from the adjusted WTP® average quality improvement in our
sample was about 9.1% from 1995/6 to 2002/3, whephesent one fifth of the optimal
reduction in customer minute lost. This improventead yielded a customer welfare gain of 43
million of pounds, which represents 30% of the poé customer welfare gains. This
improvement in quality has cost about 10 milliomupds, which represents a 5.6% of utilities
total costs. Overall, the social welfare has insegicin 33 million of pounds.

[Insert Table 6 hereg]

5. Summary and conclusions

Quality of service in electricity distribution netwks is important for residential, commercial,
and industrial customers alike, as many functidmaadern society depend on electricity.
However, improving upon a given level of qualitysafrvice has a cost. The likely effects of
incentive regulation on service quality has regeattracted regulators’ interest and a number of

%6 SeeYu et al. (2009afor more details about how WTP can be estimatedpaablems of obtaining
accurate measurement.

*’ These adjustments can also be justified as ourinargpst of quality improvement might be
underestimated due to the variable-in-error probieenmtioned in the model specification section

%8 These numbers were obtained assuming constant WEPoptimal values can be computed as, given
other variables to be constant, marginal cost afiguimprovement rises with quality (see Figurel9)
should be also noted that the optimal quality lewveight be overestimated if WTP decreases with
quality. This provides an additional justificatifor carrying out our simulation with an adjusted WT
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electricity regulators have made considerable ettodesign appropriate regulation
mechanisms of quality of service in electricitynsanission and distribution networks. In
designing quality-incorporated regulatory mechasisregulators are faced with the task of
determining a market demand curve for service dlsasanarginal cost of quality
improvements.

The main aim of this paper is to estimate econaoatly marginal costs of improving quality
services in the UK electricity distribution netwerkrhe estimated marginal costs allow us to
shed light on the effectiveness of the current bigentives to improve quality, and to compute
optimal quality levels and welfare losses due to-gptimal quality levels. Our parameter
estimates also allow us to measure the effect diamgeof the quality improvements observed
in the UK.

In order to achieve these objectives we addressasta issues. First, while accurate
information about operational and capital costs guality services may be available, the
marginal cost of quality improvements is not dikgabserved. For this reason, it is inferred
from a previous estimation of the utilities’ cosh€tion that reflects both the underlying
(physical) technology and the (consequences ofrdg)latory environment that conditions
utilities’ performance. A second issue is that seEnquality is likely to be negatively correlated
with corrective costs, but positively correlatedhmpreventative costs. We attempted to
distinguish between both types of cost by includingent and (a proxy of) expected levels of
quality services as cost determinants. A thirdessuo control for the effect of differences
among utilities in environmental factors, such aather, geography, etc. In order to estimate
consistently a cost function in the electricitytdisution networks, we included weather
variables as cost determinants. In addition, weauseed-effect type estimator to control for
unobserved heterogeneity among firms that migttdoeelated with the explanatory variables.
However, the use of the traditional Fixed Effedtreator in the present application is not
inappropriate as many crucial determinants of atatt distribution costs, such as the energy
delivered, number of customers, or network lengthpeersistent variables. In order to address
this issue we have used the FEVD estimator intrediny Plumper and Troeger (2007).

All elasticities have the expected signs at thepdammgeometric mean, i.e. the coefficients of
network length and network density are positive,¢befficients of energy losses and lead of
the customer minutes lost are negative, and tleetedf contemporaneous customer minutes
loston cost is also not statistically significant. Agarevious studies, we found that technology
exhibits decreasing returns to scale when expamsiuires enlarge the current network to
meet extra demand, but increasing returns whenanktiensity increases. That is, given
network infrastructure, electricity distributionsheharacteristics of a natural monopoly.

We also found that Totex elasticity of scale inse=awith size, and that Capex and Opex have a
complementary relationship when additional netweniequired to meet extra demand.

However, utilities tend to substitute Capex for ©pden network density increases, indicating
that low and high network density utilities adogtetent combinations of operating and capital
inputs.

The estimated marginal costs suggest that the tinesroffered by the UK regulator to reduce
their network energy losses are sufficient to yetdmprovement in sector performance.
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However, this improvement is likely not homogenédpuaistributed among utilities as some of
them seem to be insufficiently incentivized to regltheir energy losses. Our results also
suggest the existence of different strategieserti electricity distribution networks to
undertake reductions in network energy losses.

On the other hand, we found that while higher serquality level is associated with higher
marginal cost of quality improvement, the margicast of improving quality varies
considerably across utilities due to their différemnfiguration. Our results hence suggest
tailoring the incentives for each utility. The higbrrelation between incentive rates and
estimated marginal costs seems to indicate thgtttduk into account differences in marginal
costs to design the incentive schemes in the UKvevyer, based on our results, we conclude
that the UK incentive scheme is not sufficientipag to incentivise reductions in customer
minutes lost as the marginal costs estimated syghper are much larger than the incentive
rates established by the UK regulator. We alsodalifferent strategies to tackle reductions in
customer minutes lost. Indeed, for low qualityitié, reducing customer minutes lost mostly
implies increasing operating cost. In contrast, méervice quality is already high, reducing
customer minutes lost mostly implies investingapital inputs.

Finally, we also found that the optimal customenumes lost is 29-45% less than the actual
levels, based on the willingness to pay estimdsging to the sample period. The observed
improvements in quality during the period of thisdy only represented a 30% of the potential
customer welfare gains, and hence there is dalige range for quality improvements. But,
achieving the optimal level of customer minutes esuld represent an increase of 13-32% in
total cost for each utility. Use of more recentedan costs, quality and willingness pay might
however give different results, as there appeanate been a significant fall in customer
willingness to pay for quality in more recent years
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Table 1. Relationship between quality service and contempeous and past expenditures

Model 1 Model 2 Model 3 Mode 4 Model 5
Totex No No - - -
Totex(-1) Yes - Yes - Yes
Totex(-2) No - - No No
R-squared 10.6% 7.8% 10.4% 6.8% 10.4%

Notes: Yes (No) indicates that the coefficientist] statistically significant at 5%. Dependent
variable:g=CML



Table 2: Descriptive Statistics (96 Observations)

Description Variable Unit Mean Std. dev. Min M ax

Total expenditures Totex Million £ 177.38 62.80 74.86 373.88
Capital expenditures Capex Million £ 85.92 33.00 36.00 203.94
Operational expenditures Opex Million £ 91.46 43.52 30.64 267.02
Network length n Thousand Km 55.84 15.27 32.002 92.121
Network density= (Energy delivered) / Network ldmgt d GWh /Km 0.37 0.07 0.15 0.48
Energy Distribution Losses e Thousand GWh 1.53 0.58 0.36 2.61
CML=(Customer minutes lost) x {lof customers) q Million Minutes 163.75 76.58 60.67 670.58
Minimum air temperature mate Degrees C 1.06 1.57 -1.9 5.7
Hail dhail Days 2.25 2.66 0 14
Thunder dthu Days 10.57 5.93 2 27.4
Concrete temperature dcte Days 57.76 22.97 14.6 107.5
Willingness-to-pay WTP £/min 1.93 0.61 0.87 3.82

Description of the Weather Variablemate=Minimum air temperature (lowest monthly averagite=Number of days when minimum concrete temperature lvelow
zero degrees @hail=Number of days when hail fell (00-24 GMT) ie. sfirecipitation with a diameter 5mm or motkhu=Number of days when thunder was heard.




Table 3. Translog cost function parameter estimalEpendent variabtdnTotex

OLS FE FEVD

Variable parameter  robust-t parameter  robust-t mater  robust-t

In 1.3137 8.7892 0.6714  0.4663  1.2086 7.7896
In d 0.7845 4.2300 -0.1387  -0.2491  0.6808 3.7828
In & -0.2969  -2.8668  -0.0737  -0.3475 -0.2568  -2.4902
In g -0.0341  -0.4747 0.0010  0.0126  0.0093 0.1257
I Giees -0.2480  -3.0383  -0.1919  -2.2565 -0.2160  -2.7604
1/2(Inny)"? 1.7211 1.0945 55295  1.4673  1.6463 1.1039
1/2(In ) -0.4202  -0.3202 1.4715  1.0862  -0.5422  -0.4197
1/2(Iney)™ -0.6036  -1.2321  -0.1490 -0.2008 -0.3739  -0.8167
1/2(In gi) 0.6710 1.9141 0.3854 0.9031 0.4614 1.3446
1/2(IN Q1) 2 0.3961 1.1266 0.4137 11734  0.4154 1.2001
In . LIn d 0.6638 0.5203 0.2362  0.1496  0.9398 0.7790
Inn [Ine -0.2116  -0.2246  -0.7062  -0.6110 -0.3896  -0.4481
In ny LIN G -0.2797  -0.5321 0.0875  0.1586  -0.0816  -0.1545
In N LIN G 0.1543 0.2289  -0.0574 -0.0841 -0.0805  -0.1183
Indy [Ine 0.5495 0.7925  -0.0393 -0.0561  0.3875 0.6240
In di, LIn g 0.7856 1.8963 0.8472  1.9838  0.8426 2.0387
In de [IN Gt -0.7298  -1.5345  -0.0947 -0.1783 -0.6232  -1.3349
In e [In g -0.4021  -1.8871  -0.3348  -1.4702  -0.4003  -1.8977
In € [N Ger 0.2077 0.6096 0.2728  0.7830  0.1867 0.5505
In g [IN Giras -0.8958  -2.6992  -0.9303 -2.4735 -0.8400  -2.6355
t -0.0875  -10.2738  -0.0895  -6.1815 -0.0873  -10.243
mate 0.0827 3.6185 0.1170  5.3073  0.0877 4.0957
dcte, 0.0318 3.9541 0.0216  1.7615  0.0336 4.2502
dhail, 0.0047 1.1771 0.0072  1.2156  0.0087 1.6125
dthu 0.0060 3.8060 0.0051  2.4659  0.0063 4.0806
Intercept 55325  147.241 - - 55462  139.267
Fixed Effects - - - - 0.8983 1.7664
R-squared 0.8332 0.7192 0.8389




Table 4. Between and within standard deviations

Variable Between Within Between-to-within ratio
In ng 0.27620 0.02693 10.25509
In di 0.24396 0.06310 3.86661
In e 0.42712 0.14131 3.02259
In gy 0.28697 0.25465 1.12693
IN Qits1 0.32038 0.24386 1.31382

Table 5. Simulation results: Optimal quality levels (avgea for 12 utilities).

Variable Units 100% WTP 75% WTP 50% WTP
WTP £/min 1.92 1.44 0.96
Marginal Cost £/min 0.25 0.25 0.25
Actual CML Million minutes 161.2 161.2 161.2
Optimal CML Million minutes 80.2 69.8 53.5
% Reduction CML Percentage 45.5 % 39.0 % 29.1 %
Customer gains £ million 143.7 94.01 48.32
Additional costs £ million 56.5 40.54 22.90
Welfare gains £ million 87.2 53.47 25.42

Table 6. Simulation results: Welfare gains in period 19852002/3 (averages for 12 utilities).

Variable Units Potential Observed Difference
gains performance
% Reduction CML Percentage 455 % 9.1 % 36.4%
Customer gains £ million 143.7 43.0 100.7
Additional costs £ million 56.5 9.9 46.6
Welfare gains £ million 87.2 33.1 54.1
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APPENDI X

Table Al. Translog cost function parameter estimaiiEpendent variabldnCapex

OLS FE FEVD
Variable parameter  robust-t parameter  robust-t mater  robust-t
In Ny 1.6560 8.3045 1.8343 1.2732 1.6317 9.2007
In dj 1.3917 6.2157 1.0804 1.6628 1.4107 6.5654
In e -0.1584 -1.2271 -0.2304 -1.0092 -0.2122 -1.6543
In g -0.0793 -0.7828 0.0420 0.4606 0.0023 0.0227
IN Qisa -0.5378 -4.7037 -0.3864 -3.3487 -0.4655 -4.8458
1/2(Inng)™? 3.3095 2.1820 6.9322 2.0269 3.0068 2.0394
1/2(Indy)"™ 4.2910 2.6745 2.5718 1.4217 3.9116 2.3764
1/2(Iney)™ -1.1858 -2.1307 -1.8420 -2.3083 -0.9430 -1.8655
1/2(Ingy) 1.3186 2.7242 0.5861 1.0321 1.0841 2.2375
1/2(In Gje1) ™ 1.6904 3.4367 1.3788 3.0876 1.6825 3.7125
In i [ 1N dy 1.9745 1.4090 -3.3852 -1.6723 1.3479 0.9605
In i [N e 0.7602 0.8285 2.2896 1.8710 0.6737 0.7800
In n [ In g -0.3623 -0.5236 0.6071 0.7924 -0.1704 -0.2483
In N [N Girss -1.2721 -1.4902 -1.2801 -1.6657 -1.1844 -1.4752
In di [ In e -0.1580 -0.2013 0.8733 0.9222 -0.0781 -0.1001
In di [ In g 0.9753 1.6106 1.3199 2.2348 1.3158 2.1876
In di¢ [ 1N Qi1 -1.4544 -2.3183 -1.0576 -1.7285 -1.1479 -2.1873
In e [ In g -0.6975 -2.3640 -0.9998 -3.0933 -0.8231 -2.8296
In e [ In Qits1 0.6835 1.5040 0.6259 1.5070 0.4923 1.2456
In g [ 1IN Qi1 -1.6510 -3.3329 -1.2881 -2.5756 -1.6619 -3.5853
t -0.0268 -2.6245 -0.0312 -2.1420 -0.0309 -3.1380
mate 0.1362 49184 0.1671 5.2466 0.1789 5.3962
dcte 0.0277 3.1491 0.0059 0.4074 0.0270 3.2227
dhail 0.0010 0.2096 0.0078 1.4268 0.0023 0.4718
dthy, 0.0086 4.7980 0.0101 4.3459 0.0114 5.0927
Intercept 4.3555 85.7369 4.3932 80.8328
Fixed Effects 0.9435 2.8413
R-squared 0.7741 0.5639 0.7928




Figure 1. WTP, marginal costs and optimal quality levels
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Figure 3. Preventative vs. corrective cost
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Figure 4. Theoretical framework
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Elasticity value

Elasticity value

Figure5. Elasticities of scale
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Figure 6. Density elasticities
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Figure 7. Marginal cost of reducing electricity distributitosses
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Figure 8. Decomposing marginal cost of reducing electricigtribution losses
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Pounds per minute

Figure 9. Marginal cost of reducing customer minutes lost
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Figure 10. Decomposing marginal cost of avoiding power intgtians

—Totex MC
= Capex MC
—QOpex MC

Observations

32




Figure 11. Optimal vs. actuaduality levels and welfare gains
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