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Abstract 
 
To deal with the presence of slowly changing variables, Plümper and Troeger (2007) 
proposed a fixed effects vector decomposition (FEVD) estimator, which is a three-stage 
procedure based on the fixed effects estimator. We show that this estimator moves 
between fixed effect and ordinary least squares depending on how its second stage is 
specified. This provides an alternative interpretation of the FEVD estimator that allows 
us to introduce a one-stage counterpart of the FEVD model, which can be viewed as a 
partial Mundlak (1978) transformation of the random effects model. We illustrate our 
approach with an application to UK electricity distribution utilities using the same data 
as Yu et al. (2009). Our application suggests that our estimator and the FEVD yield 
similar results when the pooled OLS estimates for a given panel are similar to the 
random effects estimates. 
 
Keywords: slowly changing variables, fixed effects vector decomposition, one-stage 
estimator. 
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1. Introduction 

 

Fixed effects estimation of production, cost, or demand functions has a long tradition as 

this model allows to control for unobserved heterogeneity that might be correlated with 

the explanatory variables. However, estimation of the fixed effect (FE) model may yield 

implausible parameter estimates when the data contain slowly changing variables, i.e. 

variables with relatively low within variance. These slowly changing variables are 

found in many empirical applications. For instance, macro data sets contain aggregates 

which often move slowly over time and firm-level data often contain slowly changing 

variables such as labour inputs in farm data, capital stock in transport firms, or energy 

delivered for electricity distribution companies. To account for the presence of such 

variables, Plümper and Troeger (2007) proposed what they label the fixed effects vector 

decomposition (FEVD) estimator. The FEVD estimator is a three-stage approach based 

on the fixed effect estimator that, in certain circumstances, may provide more precise 

estimates than the FE estimator in a root mean squared error sense. In the first stage, FE 

estimates of the panel data model are obtained. In the second stage the estimated unit 

effects are regressed on the time-invariant variables and the unit means of time-varying 

variables of the slowly-changing variables, thereby “decomposing” the unit effects into 

their “observable” and “unobservable” components, the latter corresponding to the 

residuals from this second stage regression. In the third stage, the model is estimated by 

pooled OLS using the second-stage residuals as an additional regressor.  

 

Formal analyses of the FEVD estimator have been provided by Greene (2010) and 

Breusch et al. (2010), who show that the FEVD estimator simply reproduces the fixed 

effects estimates when only strictly time-invariant variables are included in the second 

stage, i.e., when the unit means of the slowly-changing variables are not included. In 

this paper we focus on the case where the slowly-changing variables are included in the 

second stage. The first contribution of our work is that we show that the FEVD 

estimator moves between FE and OLS depending on how its second stage is specified. 

In particular, it is shown that the FEVD estimator reproduces the OLS estimates of the 

parameters of the time-varying and time-invariant variables when the whole set of 

explanatory variables (i.e. the time-invariant variables and the unit means of the time-

varying variables) are included in the second stage. This provides an alternative 
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interpretation of the FEVD estimator: as we incorporate slowly-changing variables, we 

move away from FE towards OLS. 

 

Using this interpretation of the FEVD estimator as a shrinkage-type estimator located 

between FE and OLS, our second contribution is to take advantage of the insights of the 

FEVD approach to introduce a one-stage counterpart based on the random effects (RE) 

transformation introduced by Mundlak (1978). This estimator can be viewed as a partial 

random effects Mundlak transformation (REMT), and moves between a consistent but 

inefficient estimator (FE) and an efficient but inconsistent estimator (RE). Unlike the 

FEVD, therefore, our estimator moves between two panel data estimators.  

 

To illustrate our approach we provide an application to UK electricity distribution 

utilities using the same data as Yu et al. (2009). Our application suggests that our 

estimator and the FEVD yield similar results when the pooled OLS estimates for a 

given panel are similar to the random effects estimates. 

 

 

2. The FEVD estimator 

 

We summarize in this section the main characteristics of the Plümper and Troeger 

(2007) FEVD estimator. Let us assume we wish to estimate the following model: 

��� = ���� + ��	 + 
� + ���     (1) 

where ��� is a � × 1 vector of time-varying explanatory variables, �� is a � × 1 vector 

of time-invariant explanatory variables, ��� is the idiosyncratic error term, and 
� 

captures the effect of unobserved time-invariant individual characteristics.  

 

The three stages of the FEVD procedure can be neatly presented using the notation in 

Breusch et al. (2010), which will also facilitate the discussion in the next section of the 

relationship of the FEVD estimator with both OLS and FE. In particular, let � =

�� ⨂ �� be the matrix of dummy variables indicating group membership, where �� is an 

� × � dentity matrix and �� is a � × 1 vector of ones. We use the proyection matrix for 
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�, i.e. �� = ���′�����′, to get a vector of group means, and �� = ��� − �� to 

reproduce the within-group variation.   

 

In the first stage, a FE regression is performed using the within transformation, so that 

the individual effects 
� and the time-invariant variables �� are removed:  

��� = ���� + ���     (2) 

where ��� =  ��� − �!�", ��� =  ��� − �!�" , and ��� =  ��� − ��̅". The moment 

condition corresponding to this FE regression is: 

�� − ���′��� = 0     (3) 

and the estimated unit effects % are 
& ' = ���� − �()*� where ()* is the fixed effects 

estimate of (2). 

 

In the second stage, these estimated unit effects are regressed on the observed time-

invariant variables and the group means of a subset �+ of the � time-varying variables, 

where the , < � variables in �+ are those with relative low within-variance, i.e. slowly 

changing variables. As ���� − �()*� is regressed on ���+(. and �/, the residuals 

from this regression are ���� − �()*� − ���+(. − �/ and the corresponding moment 

conditions of this second stage can be written as: 

0���� − �()*� − ���+(. − �/1
2
���+ = 0             (4a) 

0���� − �()*� − ���+(. − �/1
2
� = 0          (4b) 

where (. and / are parameters to be estimated. Thus, the unit effects are decomposed 

into a part explained by the available between-unit information contained in � and the 

subset , of rarely changing variables, and an unexplained part which corresponds to the 

residual from this second stage regression. The group-average residuals, ℎ, from this 

regression are: 

ℎ = ��0� − �()* − �+(. − �/1      (5) 
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In the third and final stage, the full model is run using pooled OLS without the unit 

effects but including the group-average residuals ℎ from the second stage, yielding the 

final FEVD estimates. The moment conditions are:  

�� − �� − �	 − ℎ4�′5�, �, ℎ7 = 0    (6) 

Using the moment-condition representation above in the next section we show that this 

FEVD estimator can be interpreted as a shrinkage-type estimator which is located 

between FE (a consistent but higher variance estimator) and OLS (an inconsistent but 

lower variance estimator). The crucial issue here is the variables that are included in the 

second step of the FEVD estimator.  

 

 

3. Relationship between the FEVD estimator and both OLS and FE 

 

When only the strictly time-invariant variables, �, are included in the second stage, 

Greene (2010) and Breusch et al. (2010) prove the following: (i) the estimated 

coefficients of the time-varying variables in the third stage of the FEVD are exactly the 

same as in FE (� = �)*); (ii) the estimates of the coefficients of the time-invariant 

variables are the same as those from the second stage (	 = /); and (iii) 4 = 1. As �+ in 

the second stage above contains no elements (, = 0), the group average residuals from 

this stage are simply : 

ℎ = ���� − �()* − �/�          (7) 

To prove that the FEVD estimator simply reproduces the fixed effects estimates when 

only time-invariant variables are included in the second stage, Breusch et al. (2010, 

Theorem 1) verified that the moment conditions (6) are satisfied at � = ()*, 	 = /, and 

4 = 1. This requires that 

�� − �()* − �/ − ℎ�′5�, �, ℎ7 = 0    (8) 

Substituting in the definition of ℎ from (7) and gathering terms, this simplifies to 

�� − �()*�′��5�, �, ℎ7 = 0         (9) 
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It is straightforward to see that the first set of conditions in (9) must be satisfied, since it 

is identical to the moment condition (3) that defines ()*. The other two set of conditions 

must be also satisfied since both � and ℎ are time-invariant. 

 

We next analyze the opposite situation, assuming that the group means of all the time-

varying variables are included as regressors in the second stage (, = �). Using the 

above moment-condition representation, we demonstrate that the FEVD estimator 

collapses to OLS, which can be represented by the following moment conditions:  

�� − �(89:�′� = 0     (10) 

where we have dropped � for notational ease and the OLS estimate of (10) is denoted 

by (89:.1  

 

To prove that the FEVD estimator reproduces the OLS estimates in this case, we follow 

the same methodological strategy as above, i.e., we will verify that the moment 

conditions (6) are satisfied at � = (89:, and 4 = 1 when the group means of all the 

time-varying variables are included as regressors in the second stage. This is equivalent 

to assuming that , = � and hence the moment conditions in the second stage can be 

written as: 

����� − �()*� − ���(.�′��� = 5���� − �()* − �(.�7′��� = 0  (11) 

The group-average residuals h from this regression are: 

ℎ = ���� − �()* − �(.�      (12) 

Taken into account that ��
′�� = ��, the moment conditions in (11) can be written as: 

�� − ��()* + (.��′��� = 0         (13) 

Gathering the sets of both first and second-stage coefficients and defining ; = ()* +

(., we finally get that:  

�� − �;�′��� = 0           (14) 
                                                 
1 The same results are obtained by including � in (10). It is worth noting that except when we work with 
the FE estimator we can interpret � as a vector of both time-varying and time-invariant variables without 
any change in the results.  
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Note that this set of moment conditions coincides with those corresponding to the 

Between estimator, which estimates (1) by OLS using the individual group means, i.e. 

��� and ���. The moment conditions of the Between estimator are: 

���� − ���(<*��′��� = 0      (15) 

where (<*� stands for the Between coefficients. These moment conditions are 

equivalent to: 

5���� − �(<*��7′��� = �� − �(<*��′��� = 0   (16) 

It can be seen that the moment conditions in (14) and (16) are the same, from which it 

follows that ; = ()* + (. = (<*�. That is, the parameter estimates in the second stage, 

(., correspond to the difference between the Between and Within estimates, i.e. 

(. = (<*� − ()*.2 

The previous result implies that the group-average residuals (12) can be written as:  

ℎ = ���� − �()*� − ����(<*� − ()*� = ���� − �(<*��      (17) 

Therefore, the group-average residuals in the second stage do not actually depend on 

coefficients estimated in the first stage of the FEVD procedure using the FE estimator, 

but on between coefficients that have not been explicitly estimated. Note, in addition, 

that if we take into account that 

(<*� = 5�����′�����7�������′����� = 5�′���7���′���       (18) 

the group-average residuals in (17) can be written as: 

ℎ = ��� − ���5�′���7���′���     (19) 

If we next pre-multiply by �′, we get:  

�′ℎ = �′��� − �′���5�′���7���′��� = �′��� − �′��� = 0        (20) 

                                                 
2 The same results are obtained if we explicitly work with time-invariant variables in equation (15). 
Indeed, when time-invariant variables are included, the corresponding moment conditions of the second 
stage can be written as �� − �; − �/�2��� = 0 and	�� − �; − �/�2� = 0. On the other hand, the 
moment conditions of the Between estimator, which now implies regressing ��� against ��� and �, can 
be written as �� − �(<*� − �/.�2��� = 0 and �� − �(<*� − �/.�2� = 0, where /. stands for the 
between coefficients of the time-invariant variables. Again both sets of moment conditions are the same, 
and ; = ()* + (. = (<*�, and / = /.. 
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Armed with the above results, we can demonstrate that the moment conditions in the 

third stage are satisfied at � = (89:, and 4 = 1. Ignoring the time-invariant variables, 

these moment conditions simplify to  

�� − �� − ℎ4�′5�, ℎ7 = 0       (21) 

If the set of moment conditions in (21) are satisfied when � = (89:, and 4 = 1, this 

implies that  

�� − �(89: − ℎ�′� = 0     (22) 

�� − �(89: − ℎ�′ℎ = 0     (23) 

Taking the transpose in (22) we get 

�′�� − �(89: − ℎ� = �′�� − �(89:� − �′ℎ = 0   (24) 

Since �′ℎ = 0, the above set of conditions must be satisfied, since it is identical to the 

moment condition (10) that defines (89:.  

 

Taking the transpose in (23) we get 

ℎ′�� − �(89: − ℎ� = ℎ′�� − ℎ� − ℎ′�(89: = 0    (25) 

Using the fact that �′ℎ = 0, and substituting for ℎ from (17), the above condition is 

identical to  

ℎ′�� − ℎ� = �� − �(<*��′��′�� − ��� + ���(<*�� = 0   (26) 

As ��
′ = ��, this simplifies to 

ℎ′�� − ℎ� = �� − �(<*��′���(<*� = 0     (27) 

The above condition must be satisfied since it is identical to the moment condition (15) 

that defines (<*�, showing that the FEVD estimator reproduces the OLS estimates when 

the whole set of time-varying variables are included as regressors in the second stage.  

 

In summary, this section has shown that the FEVD estimator can be viewed as an 

estimator located between FE and OLS. This is illustrated in Figure 1. When only 
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strictly time-invariant variables are included in the second stage of the FEVD estimator, 

it reproduces the FE estimates. As we incorporate the group means of the time-varying 

variables, we move away from FE towards OLS, arriving at OLS estimates when the 

group means of all the time-varying variables are included.  

 

[INSERT FIGURE 1 HERE] 

 

The crucial issue with the FEVD estimator is therefore what variables to include in the 

second stage. Strictly time-invariant characteristics will obviously be included and 

variables with sufficiently low within-variance should also be included. Plümper and 

Troeger (2007) carry out Monte Carlo simulations to provide the conditions under 

which a time-varying variable should be included in the second stage. Using the root 

mean squared error as their criterion, they find that the decision to treat a slowly 

changing variable as time-varying or time-invariant depends on the correlation between 

the variable and the unobserved heterogeneity and the ratio of the between to within 

variance. For a correlation of 0.3 between the variable and the unit heterogeneity, a 

between-to-within ratio of approximately 1.7 is sufficient for the FEVD estimator to 

outperform FE. When the correlation rises to 0.5, the between-to-within ratio rises to 

about 2.8. While this correlation is unobservable, the inclusion of additional variables in 

z will reduce the potential for correlation, and Plümper and Troeger (2007) suggest that 

a between-to-within ratio of 2.8 is sufficient to justify the inclusion of the variable in the 

second stage. 

 

The importance of the between-to-within variance as a criterion for the inclusion of 

time-varying variables in the second stage is thus clear. The aim is to maximize the use 

of between variation for those variables with relatively low within variation, and we 

include the group means of more time-varying variables we move away from FE to 

OLS. Alternatively, we move away from a consistent but higher variance estimator (FE) 

towards an inconsistent but lower variance estimator (OLS), and it is in this sense that 

the FEVD can be interpreted as a shrinkage estimator where the criterion for leaning 

more towards one or the other depends on the between-to-within variance of the time-

varying variables and their subsequent inclusion in the second stage.  
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4. A partial Random Effects Mundlak transformation  

 

We take advantage of the preceding interpretation of the FEVD estimator to introduce a 

one-stage counterpart of the estimator that can also be interpreted as a shrinkage 

estimator, this time between FE and RE. Our model is based on the random effects 

Mundlak transformation (REMT) introduced by Mundlak (1978).3 Mundlak showed 

that the FE parameter estimates can be obtained from the RE model by simply adding 

the individual means of all time-varying variables as explanatory variables. In the 

REMT, the individual effects 
� in (1) are substituted by  


� = >� +	∑ @AB̅A� ,C
AD� 			>�~��0, FG

.�		   (28) 

Replacing the unit effects in (1) with (28), the REMT model can be expressed as: 

��� = >' 	+ 	∑ @HBIH'
�
H=1 +	∑ �ABA�� 	+	∑ 	JKJ� 	+ 	���L

JD�
C
AD�    (29) 

where it is assumed that K� and 
� are uncorrelated. 

REMT corrects for endogeneity at the cost of discarding all between information, which 

is of course why it yields FE estimates as it only uses the within information of the 

time-varying variables.4 Our proposal is to introduce some but not all of the unit means 

as additional regressors in the RE model. This model can therefore be labelled as a 

Partial REMT. This will permit us to take advantage of the between information of the 

variables whose unit means are excluded as regressors, which will lead to lower-

variance estimates at the cost of not controlling for the possible endogeneity of these 

variables. As in the FEVD, therefore, the issue is one of trading bias for efficiency. 

 

As shown in Figure 2, if we introduce the unit means of only a subset J of the K time-

varying variables, where the variables in J are those with sufficiently high within-

variance for reasons that will become clear below, we again arrive at an estimator which 

is located between a consistent but higher variance estimator (FE) and an inconsistent 

but lower variance estimator (RE).  

                                                 
3 See also Chamberlain (1980). 
4 This can be seen by noting that the REMT model (29) can be rewritten as: 

��� = >� + ∑ �@A + �A�B̅A�
C
AD� + ∑ �A�BA�� − B̅A�� + ∑ 	JKJ� + 	���

L
JD�

C
AD� .  
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[INSERT FIGURE 2 HERE] 

Replacing the unit effects in (1) with a modified version of (28) where only , unit 

means are included so that 
� = >� + 	∑ @AB̅A�
+MC
AD� , the partial REMT model can finally 

be expressed as: 

��� = >' 	+ 	∑ @HBIH'
,<�
H=1 +	∑ �ABA�� 	+	∑ 	JKJ� 	+ 	���L

JD�
C
AD�    (30) 

Which unit means should be included in J? Recall that Plümper and Troeger (2007) 

included unit means in their second stage to make use of between information for 

variables with relatively low within variation so that the variables included were those 

with high between-to-within variance ratios. The more variables included in this second 

stage, the further away from FE and the closer the estimator gets to OLS. In our partial 

REMT we are going in the opposite direction, towards FE: the more unit means we 

introduce into (30), the less between information we use and the more we rely on within 

information. As a criterion for choosing our unit means, ideally we will only discard 

between information when we are left with sufficient within information to 

satisfactorily estimate the parameter. Our criterion is thus the inverse of that of the 

FEVD: the unit means to be introduced will be those of variables with relative low 

between-to-within variance ratios.  

 

By including the unit means of only those variables with sufficiently high within-

variance, the coefficients of slowly changing variables are biased, as in the FEVD 

model, but have lower variances than estimates from the FE model. Note, however, that 

these estimates are obtained here in a one-stage regression, while the FEVD model 

requires estimating three equations.  

 

 

5. Empirical Illustration 

 

We illustrate our approach with an application to UK electricity distribution utilities 

using the dataset of Yu et al. (2009) on 12 distribution networks in the UK for the 

1995/96 to 2002/03 period. This dataset is particularly appropriate for our purposes as 

many crucial determinants of utility costs such as the energy delivered or the number of 

customers are persistent or slowly changing variables. Moreover, there are many 
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characteristics of the electricity distribution sector, such as geography, weather 

conditions, network characteristic, etc. that affect production costs but which are not 

observed (Farsi and Filippini, 2004) so that individual firm effects need to be modeled. . 

Table 1 reports the summary statistics of the data used. All monetary variables are 

expressed in 2003 real terms. 

[INSERT TABLE 1 HERE] 

To illustrate our approach we estimate a simple cost function than can be written as: 

�NOPQRNSO�� = 
� + �� ∙ U�UVWX�� + �. ∙ U�V�� + �Y ∙ RZ[�� + ���    (31) 

where TotalCost includes capital and operational costs and the opportunity cost of 

network energy losses, following Jamasb et al. (2010). The output variable ENERGY is 

the energy delivered;5 EPR is the price for network energy losses; and CML is a 

measure of service quality, measured by the customers minutes lost. The between and 

within standard deviations are shown in Table 2.  

[INSERT TABLE 2 HERE] 

The estimated coefficients and the heteroskedasticity-robust standard errors from the 

OLS, FE and FEVD estimators are shown in Table 3.  

[INSERT TABLE 3 HERE] 

All coefficients in the OLS model have their expected signs. Thus, the coefficients of 

energy delivered and input price are positive and statistically significant and the 

coefficient of customer minutes lost is negative, suggesting a positive marginal cost of 

quality improvements. However, Jamasb et al. (2010) note that the quality of service 

variable may be correlated with average weather conditions, and hence the estimated 

marginal cost of quality improvements is likely to be downward biased. They examine 

how to address this issue when weather data is available. Here we will try to control for 

this endogeneity problem using “adjusted” FE and RE estimators.  

 
                                                 
5 Customer numbers and units of energy delivered are the most commonly-used outputs in the 
benchmarking of distribution network utilities. Given that the statistical correlation between these two 
outputs is large (over 97%), we only present our parameter estimates using energy delivered as a unique 
output. The specification of the cost function that uses the energy delivered as output appears more 
appropriate as our dependent variable includes the cost of energy losses. 
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The low precision of the FE estimator in the present application is clearly illustrated by 

the fact that the coefficient of the energy delivered variable is negative and not 

statistically significant. The reason is that the within variation of this variable is much 

lower than the between variation (see Table 2). We therefore estimate a FEVD model 

using the variable ENERGY as a regressor in the second stage. From Table 3 it can be 

seen that all coefficients again have their expected signs. The coefficient of the residual 

from the second stage �;�� is close to unity, which is expected.6 Note also that the 

parameter estimate for CML increases in absolute terms to 0.235. This value is quite 

similar to the marginal cost of quality improvement obtained in Jamasb et al. (2010) 

where weather variables are included to control for the endogeneity of the quality 

services variable.  

 

The estimates from the Between and FE estimators and the second stage of the FEVD 

estimator when the group means of all the time-varying variables are included are 

shown in Table 4. This illustrates the result from Section 3 that the estimates on the 

group means of the time-varying from the second stage of the FEVD are the difference 

between the estimates from the Between and FE estimators.  

[INSERT TABLE 4 HERE] 

Table 5 shows the estimated coefficients using RE-based models. All coefficients in the 

RE model have the expected signs. Interestingly, the OLS and RE models yield the 

same estimates as the variance of the unit effects was found to be equal to zero in the 

RE model. This was despite the fact that in the FE model we find evidence of unit 

effects and a Hausman test rejected RE (see Table 3). Hence, both the FEVD and partial 

REMT estimators are effectively located between the same estimators insofar as OLS 

and RE are the same. This provides an ideal situation to compare both estimators. The 

second model in Table 5 is the REMT which reproduces the FE parameter estimates as 

it includes the individual means of all cost determinants (i.e. U�UVWX!!!!!!!!!!!!, U�V!!!!!! and RZ[!!!!!!	) 

as explanatory variables.  

[INSERT TABLE 5 HERE] 

                                                 
6 Recall that Breusch et al. (2010) and Greene (2011) have shown that when only time-invariant variables 
are included in the second stage the coefficient is exactly unity. 
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For the partial REMT model we include the individual means of those variables with 

the lowest between-to-within variance ratios, i.e. U�V!!!!!! and RZ[!!!!!!.7 The point estimate of 

the only slowly changing variable in our application (ENERGY) is again reasonable 

from an economic perspective. The partial REMT model produces quite similar 

estimates to the FEVD, as is to be expected given the similarity of the RE and OLS 

estimates.  

 

 

4. Conclusions 

 

In this paper we have shown that the fixed-effect vector decomposition (FEVD) 

estimator introduced by Plümper and Troeger (2007) can be interpreted as an estimator 

lying between a consistent but higher variance estimator (FE) and a biased but lower 

variance estimator (OLS). The FEVD estimator moves from FE towards OLS as we 

incorporate the group means of time-varying variables in the second stage of the FEVD 

estimator. The criterion for including time-varying variables in the second stage is 

related to the between-to-within variance of the time-varying variables. Using the 

insights of the FEVD estimator, we propose a one-stage counterpart which can be 

viewed as a partial random effects Mundalk (REMT) transformation and we have 

illustrated the estimator with an application to UK electricity distribution utilities. Our 

results show that the partial REMT permits more reasonable coefficients of variables 

with low within variance than FE and for the data set used the estimates are quite close 

to those of the FEVD. We believe that our model offers an interesting alternative to 

FEVD in the presence of slowly changing variables and variables with low between-to-

within variance ratios. As our model lies between FE and RE, the better the RE 

estimates the better the partial REMT. When the RE and OLS estimates are close, the 

partial REMT can be expected to produce similar estimates to FEVD, with the 

difference that the partial is a mix of two pure panel data estimators whereas the FEVD 

is a mix of a panel estimator (FE) and a non-panel estimator (OLS).  

 

                                                 
7 Note from Table 2 that the inclusion of U�V!!!!!! will lead to little loss of between information. Including 
RZ[!!!!!! will entail a loss of substantial between information but this still leaves a lot of within information 
to work with as can be seen by the fact that the within variance is higher than the between variance.  
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Table 1: Descriptive Statistics (96 Observations) 
 

Variable Unit Mean Std. dev. Min Max 

      

TotalCost Million £ 243.99 85.66 88.16 449.99 

ENERGY Thousand GWh 20.67 7.26 7.492 36.262 

CML Million Minutes 163.75 76.58 60.67 670.58 

EPR Thousand £ 43.79 12.93 25.19 77.06 

      

 
 
 

Table 2. Between and within standard deviations 
 

Variable Between Within Between-to-within ratio 

    
ENERGY   7.43   1.24 5.98 
EPR   3.38 12.52 0.27 
CML 51.34 58.50 0.88 
    

 
 

 
Table 3. Cost function parameter estimates: OLS, FE and FEVD 

 
 OLS FE FEVD 

Variable     Coef.  S.E.    Coef.  S.E.    Coef.  S.E. 

       
ENERGY 9.770 0.779 -3.189 4.890 10.179 0.760 
EPR 4.232 0.304 3.341 0.349 4.120 0.298 
CML -0.155 0.054 -0.178 0.076 -0.235 0.061 
Constant 243.99 4.231 243.99 3.917 243.99 3.913 
; - - - - 1.009 0.263 

Hausman test (d.o.f.)   27.55 (3)   

F-test: αi = 0 (p-value)          2.39 (0.01)   

FEVD 2nd stage (Dep. Var. =	
�)       

U�UVWX!!!!!!!!!!!!     13.130 0.2415    

R2     0.969 
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Table 4. Between, FE and second stage FEVD estimates 

 
 BETWEEN FE FEVD 2nd Stage 

Variable     Coef.  S.E.    Coef.  S.E.    Coef.  S.E. 

       
ENERGY 8.626 0.930 -3.189 4.890 11.815 0.274 
EPR 5.569 1.346 3.341 0.349 2.228 0.397 
CML 0.151 0.126 -0.178 0.076 0.329 0.037 
Constant 243.99 3.885 243.99 3.917    - - 
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Table 5. Cost function parameter estimates: RE-based models. 
 

 RE REMT    Partial REMT 

Variable Coef. S.E. Coef. S.E. Coef. S.E. 

       
ENERGY 9.770 0.779 -3.189 5.278 8.129 0.876 
EPR 4.232 0.304 3.341 0.378 4.045 0.309 
CML -0.155 0.054 -0.178 0.068 -0.252 0.062 
U�UVWX!!!!!!!!!!!! - - 11.815 5.277 - - 
U�V!!!!!! - - 2.228 1.071 1.267 1.053 
RZ[!!!!!! - - 0.329 0.163 0.455 0.150 
Constant 243.99 4.231 243.99 3.914 243.99 4.036 
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Figure 1. FEVD estimator and its anchoring estimators 
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Figure 2. Partial adjusted RE estimator and its anchoring estimators 
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