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Abstract 

This study contributes to the literature on estimating market power in 
homogenous product markets. We estimate a composed error model, where the 
stochastic part of the firm’s pricing equation is formed by two random variables: the 
traditional error term, capturing random shocks, and a random conduct term, which 
measures the degree of market power. Treating firms’ conduct as a random parameter 
helps solving the issue that the conduct parameter can vary between firms and within 
firms over time. The empirical results from the California wholesale electricity market 
suggest that realization of market power varies over both time and firms, and reject the 
assumption of a common conduct parameter for all firms. Notwithstanding these 
differences, the estimated firm-level values of the conduct parameter are closer to 
Cournot than to static collusion across all specifications. For some firms, the potential 
for realization of the market power unilaterally is associated with lower values of the 
conduct parameter.  
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1. Introduction 

 

Starting from seminal research works of Iwata (1974), Gollop and Roberts 

(1979), and Appelbaum (1982), measuring the degree of competition in oligopolistic 

markets has become one of key activities in empirical industrial organization. A large 

and growing economic literature in New Empirical Industrial Organization (NEIO) 

relies on structural models to infer what types of firm behaviour (“conduct”) are 

associated with prices that exceed marginal costs.1 A typical structural model based on 

the conduct parameter approach for homogenous product markets starts with specifying 

a demand function and writing down the first-order condition of firm’s profit-

maximization problem: 

                                      0=θ⋅+− itittitt q)Q´(P)q(mc)Q(P ,                       (1) 

where P(Qt) is inverse demand, Qt=Σi
Nqit is total industry’s output, qit is the firm’s 

output in period t, mc(qit) is the firm’s marginal cost, and θit is a “conduct” parameter 

that parameterizes the firm´s profit maximization condition. Under perfect competition, 

θit=0 and price equals marginal cost. In equilibrium, when θit=1/sit (where sit denotes 

firm’s market share of output) we face a perfect cartel, and when 0<θit<1/sit various 

oligopoly regimes apply. 2 In these models the (firm or industry) degree of market 

power is measured by a conduct parameter θ that is jointly estimated with other cost and 

demand parameters.3  

                                                 
1 For an excellent survey of other approaches to estimating market power in industrial organization 
literature, see Perloff et al. (2007).  
2 In a symmetric equilibrium, the upper bound of inequality 0<θit<1/sit would be equal to the number of 
firms, N.  
3 Some studies interpret estimated conduct parameter as a ‘conjectural variation’, i.e., how rivals’ output 
changes in response to an increase in firm i’s output. It is also sometimes argued that the conjectural 
variation parameter results from the reduced form of a more complex dynamic game, such as a tacit 
collusion game (see e.g., Itaya and  Shimomura 2001, Itaya and  Okamura 2003, Figuieres et al. 2004, 
and references therein). Other studies (Bresnahan 1989, Reiss and Wolak 2007) argue that with an 
exception of limited number of special cases (e.g., perfect competition, Cournot-Nash, and monopoly) 
there is there is no satisfactory economic interpretation of this parameter as a measure of firm behaviour. 
Sorting out between these theoretical complications is beyond the scope of this study. We therefore 
interpret this parameter as a simple descriptive measure of firm’s degree of market power. 
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The conduct parameter θit may vary across time as market conditions change, 

and firms change their own pricing strategies.4 Moreover, the conduct parameter may 

also vary across firms as “there is nothing in the logic of oligopoly theory to force all 

firms to have the same conduct” (Bresnahan, 1989, p. 1030).5 Obviously, allowing the 

conduct parameter to vary both by firms and time-series results in an overparameterized 

model. To avoid this problem, empirical studies in structural econometric literature 

always impose some restrictions on the way the value of conduct parameter varies 

across firms and time. The overparameterization is typically solved by estimating the 

average of the conduct parameters of the firms in the industry (Appelbaum 1982), 

reducing the time variation into a period of successful cartel cooperation and a period of 

price wars or similar breakdowns in cooperation (Porter 1983a), allowing for different 

conduct parameters between two or more groups of firms (Gollop and Roberts 1979), or 

assuming firm-specific, but time-invariant, conduct parameters in a panel data 

framework (Puller 2007). 

This study proposes a new econometric approach that deals with 

overparameterization problem and helps obtaining the values of firm’s conduct that vary 

across both time and market participants. Instead of estimating the firm’s conduct as a 

common parameter together with other parameters defining cost and demand, we 

propose treating firms’ behaviour θit as a random variable. Our approach is based on 

composed error model, where the stochastic part is formed by two random variables - 

traditional error term, capturing random shocks, and a random conduct term, which 

                                                 
4 As the problem of repeated oligopoly interaction has received greater attention, the estimation of time-
varying conduct parameters that are truly dynamic has become an issue. Indeed, the Stigler’s (1964) 
theory of collusive oligopoly implies that, in an uncertain environment, both collusive and price-war 
periods will be seen in the data. Green and Porter (1984) predict a procyclical behaviour pattern for mark-
ups because of price reversion during a period of low demand. Hence the conduct parameter changes 
from collusive value to competitive value when there is an unanticipated negative demand shock. On the 
contrary, Rotemberg and Saloner (1986) predict that prices and mark-ups are countercyclical, and hence 
the conduct parameter will decrease when demand is high. Moreover, Abreu et al. (1986) find that in 
complex cartel designs the length of price wars (i.e., changes in conduct parameter) is random because 
there are “triggers” for both beginning a price war and for ending one. It is therefore difficult to impose 
plausible structural conditions and estimate firms’ conduct over time. 
5 In many treatments of oligopoly as a repeated game, firms expect deviations from the collusive 
outcome. Firms expect that if they deviate from the collusive arrangement, other will too. This 
expectation deters them from departing from their share of the collusive output. Because these deviations 
are unobserved in an uncertain environment, each firm might have its own expectation about what would 
happen if it deviates from collusive output. 
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measures market power. The model is estimated in three stages.6 In the first stage, all 

parameters describing the structure of the pricing equation (1) are estimated using 

appropriate econometric techniques. In the second stage, distributional assumptions on 

random conduct term are invoked to obtain consistent estimates of the parameters 

describing the structure of the two error components. In the third stage, market power 

scores are obtained for each firm by decomposing the estimated residual into a noise 

component and a market-power component. 

The main contribution of the proposed approach is about the way the asymmetry 

of the composed error term is employed to get firm-specific market power estimates. 

While the first stage of our model is standard, the following stages take advantage of the 

fact that the distribution of conduct term is truncated and is likely to be positively or 

negatively skewed. Though the idea of identification of structural econometric models 

through asymmetries in variance of error term is not new in applied econometric 

literature, 7 to our knowledge skewness of conduct parameter in oligopolistic industry 

settings is not examined explicitly in most (if any) of the previous studies.  

The proposed approach can be viewed as belonging to the same family as Porter 

(1983b), Brander and Zhang (1993), and Gallet and Schroeter (1995) who estimate a 

regime-switching model where market power enters in the model as a supply shock. As 

in our model, the identification of market power in these studies relies on making 

assumptions about the structure of unobservable error term. However, while previous 

papers estimated the pricing relationship (1) assuming θit=θt to be a discrete random 

variable that follows a bimodal distribution (“price wars” vs. “collusion”), here θit varies 

both across firms and over time and is treated as a continuous random term. Therefore, 

while the switching regression models can only be estimated when there are discrete 

“collusive” and “punishment” phases that are either observable or could be inferred 

from the data, our model can be estimated in absence of regime switches.8 The 

                                                 
6 As in Porter (1983b), Brander and Zhang (1993), and Gallet and Schroeter (1995), Maximum 
Likelihood techniques can be used to estimate all parameters of the model in a unique stage. However this 
does not allow us to address the endogeneity issues that appear when estimating the pricing equation (1). 
7 See Rigobon (2003), and references therein.  
8 The regime switches only occur when a firm´s quantity is never observed by other firm and, hence, 
deviations cannot be directly observed. This is not the case in the electricity generating industry analyzed 
in the empirical section as market participants had access to accurate data on rivals’ real-time generation.  
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continuous nature of our conduct random term thus allows us to capture gradual 

changes in firm behaviour.9 

Another feature that distinguishes our paper from previous studies is the attempt 

to estimate a double-bounded distribution that imposes both lower and upper theoretical 

bounds (i.e., 0≤θit≤1/sit) to a continuous random conduct term. To achieve this objective 

we have explored the stochastic frontier literature,10 and adapted the doubly truncated 

normal distribution recently introduced by Almanidis et al. (2011) to our framework. To 

our knowledge, this is the first time the stochastic frontier models are used to measure 

market power. Because our model relies on distributional assumptions on the stochastic 

part, firm-specific market power estimates can be obtained just using cross-sectional 

data sets, unlike in previous papers that used a fixed effect treatment to estimate firm 

average conduct in a panel data framework. Therefore, our approach is especially useful 

when: i) no panel data sets are available;11 ii ) the time dimension of the data set is short; 

12 iii ) the available instruments are valid when estimating a common pricing equation to 

all observations, but not when we try to estimate separable pricing equations for each 

firm; or iv) the assumption of time-invariant conduct is not reasonable.  

While economic theory imposes both lower and upper theoretical bounds to the 

random conduct term, the skewness of its distribution is an empirical issue. We argue, 

however, that the skewness assumption of the distribution of conduct term is reasonable 

because oligopolistic equilibrium outcomes often yield skewed conduct random terms 

where large (collusive) conduct values are either less or more probable than small 

(competitive) conduct values. For instance, the dominant firm theory assumes that one 

(few) firm(s) has enough market power to fix prices over marginal cost. This market 
                                                 
9 Kole and Lehn (1999) argue that for many firms the decision-making apparatus is slow to react to 
changes in the market environment within which it operates, due to the costs to reorient decision-makers 
to a new “game plan”. In particular, the existing culture or the limited experience of the firm in newly 
restructured markets may be such that strategies to enhance market power may not be immediately 
undertaken.  In addition, we would also expect gradual changes in firms conduct in a dynamic framework 
if firms are engaging in efficient tacit collusion and are pricing below the static monopoly level, and when 
there is a high persistence in regimes (Ellison, 1994). 
10 For a comprehensive survey of this literature, see Kumbhakar and Lovell (2000), and Fried et al. 
(2008). 
11 In particular, our approach is useful in cross-section applications when there is not prior information 
about the identities of suspected cartel members and hence a benchmark of non-colluding firms is not 
available. 
12 The fixed-effect treatment is only consistent when long panel data sets are available (i.e., as T→∞). In 
addition, the incidental parameter problem appears, i.e., the number of parameters grows with sample size 
(i.e., as N→∞). 
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power is, however, attenuated by a fringe of (small) firms that do not behave 

strategically.13 The most important characteristic of this equilibrium is that the modal 

value of the conduct random term (i.e., the most frequent value) is close to zero, and 

higher values of θit are increasingly less likely (frequent). In other markets all firms 

might be involved in perfect cartel scheme. In such a cartel-equilibrium, firms usually 

agree to sell “target” quantities, and the resulting market price is the monopoly price, 

which is associated with the maximum conduct value, e.g., θit = 1/sit. Smaller values of 

θit are possible due, for instance, to cheating behaviour.14 This means that the modal 

value of the conduct random term in this equilibrium is one, with smaller values of θit 

increasingly less likely. That is, firm-conduct is negatively skewed. In general, similar 

equilibria that yield asymmetric distributions for the firm-conduct parameter with modal 

values close to zero or to the number of colluding firms may also arise.  

We illustrate the model with an application to the California electricity 

generating market between April 1998 and December 2000. This industry is an ideal 

setting to apply our model because there were high concerns regarding market power 

levels in California restructured electricity markets during that period, and detailed 

price, cost, and output data are available as a result of the long history of regulation and 

the transparency of the production technology. This data set allows us to compute 

directly hourly marginal cost and residual demand elasticities for each firm. We can 

therefore avoid complications from estimating demand and cost parameters and focus 

our research on market power, avoiding biases due inaccurate estimates of marginal cost 

and residual demand.15  Hence, this data set provides a proper framework to discuss 

methodological issues and to apply the empirical approach proposed in the present 

paper.  In addition, these data have been used in previous papers to evaluate market 

power in California electricity market. In particular, Borenstein et al. (2002) and Joskow 

and Kahn (2001) calculate hourly marginal cost for the California market and compare 

                                                 
13 This partial collusion equilibrium is reasonable in markets with many firms where coordination among 
all firms is extremely difficult to maintain as the number of firms in the collusive scheme is too high or 
other market characteristics make coordination too expensive, e.g., markets with differentiated products. 
14 It is well known that secret price cuts (or secret sales) by cartel members are almost always a problem 
in cartels. For instance, Ellison (1994) finds that secret price cuts occurred during 25% of the cartel period 
and that the price discounts averaged about 20%. See also Borenstein and Rose (1994). 
15 See Kim and Knittel (2006) using data from the California electricity market. See also Genesove and 
Mullin (1998) and Clay and Troesken (2003) for applications to the sugar and whiskey industries 
respectively. 
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these estimates to wholesale prices. They find that, in certain time periods, prices 

substantially exceeded marginal cost. Wolak (2003) calculates the residual demand 

based on bidding data in California Independent System Operator’s (CAISO) real-time 

energy market. He concludes that the increase in market power in summer 2000 can be 

attributed to firms’ exercise of unilateral market power. Puller (2007) analyses the 

pricing behaviour of California electricity generating firms and finds that price-cost 

margins varied substantially over time. 

Our first-stage results are generally similar to previous findings of Puller (2007). 

The estimated market power values are closer to Cournot (θit =1) than to static collusion 

(θit=1/sit). We find an increase in collusive behavior of all firms above Cournot levels 

during the period of price run-up in June – November 2000, using the residual demand 

elasticities based on Puller (2007) but not using the residual demand elasticities based 

on PX data. The analysis of firm-specific conduct parameters suggests that realization 

of market power varies over both time and firms, and rejects the assumption of a 

common conduct parameter for all firms. Estimated firm-specific conduct parameters 

generally tend to move in the same direction across time, suggesting that firms pursue 

similar market strategies as market conditions change.  

Finally, we use the estimates of firm-specific conduct parameters to clarify the 

extent to which firms’ potential for exercising market power unilaterally affects their 

market conduct. Similar to Wolak (2003) we compute the residual demand elasticities 

facing each firm individually on the California PX market, and use their reciprocals 

(Lerner indices) as a measure of the firms’ potential to exercise unilateral market power. 

We find strong negative correlation between Lerner indices and estimated conduct 

parameters for 3 out of 4 firms during the first period of our sample (before entry of 

Southern) and for 2 out of 5 firms during the second period of our sample. This result 

indicates that, for some firms the potential for realization of the market power 

unilaterally is associated with lower values of the conduct parameter.     

The rest of the paper is structured as follows. In Section 2 we describe the 

empirical specification of the model. In Section 3 we discuss the three-stage procedure 

to estimate the model. The empirical illustration of the model using California 

electricity data is described in Section 4. Section 5 concludes. 
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2. Empirical Specification    

 The traditional structural econometric model of market power is formed by a 

demand function and a pricing equation. Because we are interested in the estimation of 

industry or firm-specific market power scores, we only discuss here the estimation of 

the pricing equation (1), conditional on observed realization of residual demand.16 If the 

demand function parameters are not known, they should be estimated jointly with cost 

and market power parameters.  

In this section we develop a simple model where firms sell homogenous 

products (e.g., kilowatt-hours of electricity) and choose individual quantities each 

period so as to maximize their profits. Our model is static as we assume that firms 

maximize their profits each period without explicit consideration of the competitive 

environment in other periods.17  Firm i’s profit function in period t can be written as: 

           
),()·( απ itittit qCqQP −= ,           (2) 

whereβ̂  is a vector of previously estimated demand parameters, and α is a vector of 

cost parameters to be estimated. We assume that firms choose different quantities each 

period and their marginal cost varies across firms and over time. 

In a static setting, the firm’s profit maximization problem is 

 
),q(Cq)·ˆ,Q(Pmax ititt

qit

α−β
 
.          (3) 

The first order conditions (FOC’s) of the static model are captured by equation 

(1), that is: 

                       itititt gqmcP θα ⋅+= ),( ,    

                                                 
16 This is the strategy followed, for instance, by Brander and Zhang (1993), Nevo (2001) and Jaumandreu 
and Lorences (2002). 
17 Corts (1999) argues that traditional approaches to estimating the conduct parameter from static pricing 
equations yield inconsistent estimates of the conduct parameter if firms are engaged in an effective tacit 
collusion. The robustness of the conduct parameter approach depends, in addition, on the discount factor 
and the persistency of the demand. Puller (2009) derives and estimates a more general model that 
addresses the Corts critique. The results from estimating the more general model for the California market 
yielded estimates very similar to the static model. This similarity comes from the fact that “California 
market [can be] viewed as an infinitely repeated game with a discount factor between days very close to 
1” Puller (2007, p.84). Our empirical application to California electricity market as a static model is 
therefore sufficient for estimating market power consistently. 
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where ),q(mc it α  stands for firm’s marginal cost, D
ittittit QqPg η/= , and 

ttt
D
it QPQP /)(′=η  is the (observed) elasticity of product demand. The stochastic 

specification of the above FOC´s can be obtained by adding the error term, capturing 

measurement and optimization errors: 

  ititititt vgqmcP +⋅+= θα),( .                     (4) 

Instead of viewing firm’s behaviour as a structural parameter to be estimated we 

here treat firms’ behaviour as a random variable. While retaining standard assumption 

that the error term itv  is i.i.d. and symmetric with zero mean, we also assume that θit 

follows a truncated distribution that incorporates the theoretical restriction that 

0≤θit≤1/sit. The distinctive feature of our model is that the stochastic part is formed by 

two random variables - the traditional symmetric error term, vit, and an asymmetric 

random conduct term, git·θit, that reflects the market power. The restriction that the 

composed error term is asymmetric allows us obtaining separate estimates of θit and vit 

from an estimate of the composed error term.  

Our static model can be easily adapted to a dynamic framework following Puller 

(2009). He notices that the dynamic part of the FOC’s is common to all firms and, 

hence, Corts’ critique can be avoided by estimating the pricing equation (4) with a set of 

time-dummy variables. Because firm’s dynamic behaviour is affected by current 

demand, expected future demand, and expected future costs (Borenstein and Shephard, 

1996), consistent estimates can be also obtained by replacing the set of dummy 

variables by a function of expected demand and cost shocks measured relative to current 

demand and costs.18   

 Challenges are greater if we want to estimate a general specification of the 

pricing equation that explicitly includes conduct determinants.19 If conduct determinants 

affect both the shape and magnitude of the asymmetric random conduct term, their 

coefficients must be estimated using maximum likelihood (ML) techniques. However, a 

                                                 
18 Kim (2006) proposes a similar solution to address Corts’ critique. He suggests modelling the conduct 
parameter as a core time-invariant conduct parameter, and a (linear) function of dynamic behaviour´s 
determinants, i.e., demand and cost shocks. 
19 Because estimating the pricing equation does not require any distributional assumptions on either error 
component, this issue can be easily handled later on (see next section) once distributional assumptions are 
invoked to estimate the structure of the two error components, provided first-stage parameters are 
consistently estimated.  



11 
 

method-of-moments (MM) estimator can still be used if θit satisfies the so-called scaling 

property, which implies that changes in conduct determinants affect the scale but not 

the shape of θit.
20 Whether or not the scaling property should hold is an empirical 

question, but if this property cannot be rejected, some attractive features arise (see 

Wang and Schmidt, 2002).  

 

3. Estimation strategy 

 We now turn to explaining how to estimate the pricing relationships presented in 

the previous section. Two estimation methods are possible: a method-of-moments 

(MM) approach and maximum likelihood (ML). The MM approach involves three 

stages. In the first stage, all parameters describing the structure of the pricing equation 

(i.e., cost, demand and dynamic parameters) are estimated using appropriate 

econometric techniques. In particular, because some regressors are endogenous, a 

generalized method of moments (GMM) method should be employed to get consistent 

estimates in this stage.21 This stage is independent of distributional assumptions on 

either error component. In the second stage of the estimation procedure, distributional 

assumptions are invoked to obtain consistent estimates of the parameter(s) describing 

the structure of the two error components, conditional on the first-stage estimated 

parameters. In the third stage, market power scores are estimated for each firm by 

decomposing the estimated residual into an error-term component and a market-power 

component.  

 The ML approach uses maximum likelihood techniques to obtain second-stage 

estimates of the parameter(s) describing the structure of the two error components, 

conditional on the first-stage estimated parameters. It can be also used to estimate 

simultaneously both types of parameters, if the endogenous regressors in the pricing 

                                                 
20 The scaling property corresponds to a multiplicative decomposition of θit into a scaling function h(zit,ϕ) 
times a random variable uit that does not depend on zit, where zit is a vector are of firms’ behaviour 
covariates. An alternative that has sometimes been proposed in the literature on frontier production 
functions (Huang and Liu, 1994; Battese and Coelli, 1995) is an additive decomposition of the form 
θit(zit,ϕ) = h(zit,ϕ) + τit. However, this can never actually be a decomposition into independent parts, 
because θit(zit,ϕ) ≥ 0 requires τit ≤ h(zit,ϕ). 
21 The GMM estimator has the additional advantage over ML in that it does not require a specific 
distributional assumption for the errors, which makes the approach robust to nonnormality and 
heteroskedasticity of unknown term (Verbeek, 2000, p. 143). 
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equation are previously instrumented. In this case, the ML approach combines the two 

first stages of the method of moments approach into one.  

 While the first-stage is standard in the NEIO literature, the second and third 

stages take advantage of the fact that the conduct term is likely positively or negatively 

skewed, depending on the oligopolistic equilibrium that is behind the data generating 

process. Models with both symmetric and asymmetric random terms of the form in 

Section 2 have been proposed and estimated in the stochastic frontier analysis 

literature.22 

 

3.1. First Stage: Pricing Equation Estimates 

 

Let us rewrite the pricing equation (4) as:  

itititt gqmcP εθα +⋅+= ),( ,    (5) 

where α is the vector of cost parameters,23 θ =E(θit) can be interpreted as a measure of 

the industry market power, and  

{ }θθε −⋅+= itititit gv .    (6) 

The possible endogeneity of some regressors will lead to least squares being 

biased and inconsistent. This source of inconsistency can be dealt with by using GMM. 

Though first-step GMM parameter estimates are consistent, they are not efficient by 

construction because the vit’s are not identically distributed. Indeed, assuming that θit 
and vit are distributed independently of each other, the second moment of the composed 

error term can be written as: 

2222 )( θσσε ⋅+= itvit gE ,    (7) 

where E(vit
2)=σv

2, and Var(θit)=σθ
2. Equation (8) shows that the error in the regression 

indicated by (5) is heteroskedastic. Therefore an efficient GMM estimator is needed. 

                                                 
22 See, in particular, Simar, Lovell and Vanden Eeckaut (1994), and the references in Kumbhakar and 
Lovell (2000). 
23 In the empirical illustration below we include a dummy variable for binding capacity constraints that 
helps explaining the differential of prices over marginal costs. This variable is interpreted here as a 
determinant of marginal cost. 
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Suppose that we can find a vector of m instruments Mit that satisfy the following 

moment condition: 

[ ] ( )[ ] [ ] 0),(),(·· ==⋅−−= θαθαε ititittititit mEgqmcPMEME .  (8) 

The efficient two-step GMM estimator is then the parameter vector that solves: 

( ) [ ] [ ]),('),(minargˆ,ˆ 1 θαθαθα ittiitti mWm ΣΣΣΣ= − ,   (9) 

where W is an optimal weighting matrix obtained from a consistent preliminary GMM 

estimator.24  

 

3.2. Second Stage: Variance Decomposition 

 

The pricing equation (5) estimated in the first stage is equivalent to standard 

specification of a structural market power econometric model, where an industry-

average conduct is estimated (jointly with other demand and cost parameters in most 

applications). As we mentioned earlier in the introduction section, our paper aims to 

exploit the asymmetry of the composed error term (i.e., the skewness of the conduct 

random variable) to get firm-specific market power estimates in the second and third 

stages. These stages therefore are central to our analysis.   

In the second stage of the estimation procedure, distributional assumptions are 

invoked to obtain consistent estimates of the parameter(s) describing the variance of θit 
and vit (i.e., σθ and σv), conditional on the first-stage estimated parameters. This stage is 

critical as it allows us to distinguish variation in market conduct, measured by σθ, from 

variation in demand and costs, measured by σv. We can estimate σv and σθ
 using either 

MM or ML.  25 Given that we have assumed a particular distribution for the conduct 

term, the ML estimators are obtained by maximizing the likelihood function associated 

to the error term itititit gv θ+=ε~  that can be obtained from an estimate of the first-

stage pricing equation (5).   

                                                 
24 This optimal weighting matrix can take into account both heteroskedasticity and autocorrelation of the 
error term. 
25 Olson et al. (1980) showed that the choice of estimator (ML versus MM) depends on the relative values 
of the variance of both random terms and the sample size. When the sample size is large (as in our 
application) and the variance of the one-sided error component, compared to the variance of the noise 
term, is small, then ML outperforms MM in a mean-squared error sense. 
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The MM estimators are derived using the second and third moments of the error 

term εit in equation (5). 26 The third moment of εit can be written as:  

 ( )[ ]333 )( θθε −⋅= ititit EgE .     (10) 

Equation (10) shows that the third moment of εit is simply the third moment of 

the random conduct term, adjusted by3
itg . That is, while the second moment (7) 

provides information about both σv and σθ, the third moment (10) only provides 

information about the asymmetric random conduct term. Now, if we assume a specific 

distribution for θit, we can infer σθ from (10), and then σv from (7). In practice, the MM 

approach has two potential problems. First, it is possible that, given our distribution 

assumptions, εit has the “wrong” skewness implying a negative σθ. The second problem 

arises when εit has the “right” skewness, but the implied σθ is sufficiently large to cause 

σv<0. Because earlier versions of the present study resulted in negative values using the 

MM approach in some time-periods and specifications, in Section 4 we only report the 

results using the ML approach. 

Whatever the approach we choose in the present stage, we need to choose a 

distribution for θit. The selected distribution for the random conduct term reflects the 

researcher’s beliefs about the underlying oligopolistic equilibrium that generates the 

data. Therefore, different distributions for the conduct random term can be estimated to 

test for different types of oligopolistic equilibrium. The pool of distribution functions is, 

however, limited as we need to choose a simple distribution for the asymmetric term to 

be able to estimate the empirical model, while satisfying the restrictions of the 

economic theory The need for tractability prevents us from using more sophisticated 

distributions that, for instance, would allow us to model industries formed by two 

groups of firms with two different types of behaviour, i.e., an industry with two modes 

of the conduct term. 

The distribution for the asymmetric term adopted in this study is the double-

bounded distribution that imposes both lower and upper theoretical bounds on the 

values of the random conduct term, i.e., 0≤θit≤1/sit. In doing so, we follow Almanidis et 

                                                 
26 Note that 

itε~ is simply the error term in equation (5), plusθitg , and hence both 
itε~ and 

itε  have the same 

third moments.  
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al. (2011) who propose a model where the distribution of the inefficiency (here, the 

conduct) term is a normal distribution N(µ,σu) that is truncated at zero on the left tail and 

at 1/sit on the right tail.27 The model is estimated by maximizing a well-defined 

likelihood function associated to the error term that can be obtained from an estimate of 

the first-stage pricing equation.28 

As it is well known in the stochastic frontier literature, neglected 

heteroskedasticity in either or both of the two random terms causes estimates of 

inefficiency (here, the market power scores) to be biased.29 To address this problem we 

propose estimating our model allowing for firm-specific and/or heteroskedastic random 

terms. In particular, we extend the classical homoscedastic model by assuming that 

variation in the error term is an exponential function of an intercept term, the day-ahead 

forecast of total demand and its square (i.e., FQ, FQ2), that are included in the model in 

order to capture possible demand-size effects, and a vector of days-of-the-week 

dummies (DAY). These variables allow for time-varying heteroskedasticity in the error 

term. In addition, firm-specific dummy variables (FIRM) are included to test whether 

variation of the error term is correlated with (unobservable) characteristics of 

firms/observations. Therefore, the variation in the noise term can be written in logs as:30 

. FIRMDAYFQFQ i
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id
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dttitv ··ln
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210, ∑∑
==

δ+π+τ+τ+τ=σ   (11) 

Regarding the conduct random term, we assume that its variation is also an 

exponential function of several covariates. Because the upper bounds are firm-specific, 

we should expect a higher variation in θit for those firms with lower market share, and 

vice versa. For this reason, we include sit as a determinant of variation in market 

conduct and we expect a negative coefficient for this variable. Since Porter (1983), who 

                                                 
27 Table A.1 and Figure A.1 in the technical appendix illustrate the density function of this double-
bounded distribution. 
28 An important caveat in estimating doubly truncated normal models is whether it is globally identifiable. 
Almanidis et al. (2011) show that when both the mean and the upper-bound of the pre-truncated normal 
distribution are estimated simultaneously, and the combination of these two parameters yield a (post-
truncated) symmetric distribution identification problems may arise. Fortunately, these problems vanish 
in a structural model of market power because the upper-bound is fixed by the theory and it does not need 
to be estimated in practice. 
29 See Kumbhakar and Lovell (2000), for more details about this important issue in the stochastic frontier 
analysis framework. 
30 In empirical application we have scaled the day-ahead forecast of total demand dividing it by its sample 
mean in order to put all explanatory variables in a similar scale. 
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estimates a regime-switching model, there is a large tradition in the empirical industrial 

organization literature that extended Porter’s model by adding a Markov structure to the 

state (i.e., discrete) random variable capturing periods of either price wars or collusion 

(see, for instance, Ellison, 1994, and Fabra and Toro, 2005). Under this structure, the 

regimes are not independent and they are correlated over time, so that a collusion state 

today can be likely to lead to another collusion state next day. 

Although imposing an autoregressive structure on the conduct term θit might be 

a more realistic assumption, in this study we still assume that θit is independent over 

time. There are two reasons for doing so. First, in our model, random conduct parameter 

θit varies across both firms and over time, and is treated as a continuous random term 

that, in addition, it is truncated twice. This makes it difficult to allow for correlation 

over time in the random conduct term. In a finite-state framework, the model can be 

estimated by maximizing the joint likelihood function of vit and θit if a Markov structure 

is not imposed. When this structure is added, the computation of the likelihood function 

of the model is much more complicated because it necessities to integrate out θi1,…,θi1T. 

Several filtering methods have been proposed (e.g., Hamilton, 1989) to make tractable 

the likelihood function, and to jointly estimate the hidden states and the parameters of 

the model. As pointed out by Emvalomatis et al. (2011), these filtering methods cannot 

be easily adapted to a continuous and non-negative random variable. For instance, the 

traditional Kalman filtering techniques cannot be used in our framework when the latent 

variable (here θit) is not normally distributed, and a one-to-one, non-linear 

transformation of θit should be used before putting θit in an autoregressive form. It is 

clearly out of scope of the present paper to extend the proposed approach to double 

truncated random variables. Second, Alvarez et al. (2006) pointed out that we can still 

get consistent parameter estimates if the correlation of unobserved conduct term over 

time is ignored. The justification is based on a quasi-maximum likelihood argument, 

where the density of a firm’s efficiency score at time t, could still be correctly specified, 

marginally with respect to the efficiency score in previous periods.   

Although we do not explicitly incorporate autoregressive specification of 

unobserved conduct term θit, we do attempt to control for observed past behaviour in 
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some target variables.31 In particular, and following Fabra and Toro’s (2005) application 

to the Spanish electricity market, we include the lagged first-difference of market 

shares, i.e., ∆sit-1=sit-1-sit-2,  as a target variable A negative value of ∆sit-1 indicates that 

other strategic rivals have got yesterday a higher market share than the day before.  If 

the increase in rivals’ market share is taken as a signal of weakness of a potential tacit 

collusion arrangement among firms, it might encourage firm i to behave more 

aggressive next day.  If this is the case, we should expect a positive sign of the 

coefficient associated to this variable.32 Hence, our final specification of the conduct 

variation is:  

i

N

i

iitititu FIRMss ·ln
2

1210, ∑
=

− ς+∆υ+υ+υ=σ    (12) 

 

3.3. Third Stage: Obtaining Firm-Specific Market Power Estimates 

 

In the third stage we obtain the estimates of market power for each firm.  From 

previous stages we have estimates of itititititit vgv θ+=θ+=ε ~~ , which obviously 

contain information on θit. The problem is to extract the information that itε~ contains on 

θit. Jondrow et al. (1982) face the same problem in the frontier production function 

literature and propose using the conditional distribution of the asymmetric random term 

(here itθ~ ) given the composed error term (here itε~ ). In the technical appendix, Table A.2 

we provide distributional assumptions for the analytical form for )~|~( ititE εθ , which is 

the best predictor of the conduct term (see Kumbhakar and Lovell, 2000, and Almanidis 

                                                 
31 Since these variables in a regime-switching framework mainly affect the probability of starting a price 
war, they are label as “trigger” variables or “triggers”. We prefer using the term “target” because in our 
model we do not have collusion and price-war regimes, and hence we do not have to estimate transition 
probabilities from one discrete regime to another. 
32 We have also included other variables in order to capture the influence of past behaviour on actual 
market conduct. In particular, we have also used week-differences and other lags of the first-differences 
of market shares. Following Ellison (1994) we have also created more sophisticated target variables, such 
as, deviations with respect it predicted value, using the average of the same variable for the previous 
seven days. The results were almost the same as those obtained using ∆sit-1. 
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et al., 2011).33 Once we have a point estimator foritθ~ , the conduct parameter θit can be 

obtained using the identity ./
~

ititit gθθ ≡ 34  

 

4. Empirical Application to California Electricity Market 

 

In this section we illustrate the proposed approach with an application to the 

California electricity generating market.  This market was opened to competition in 

1998 allowing firms to compete to supply electricity to the network. The wholesale 

prices stayed at “normal” levels from 1998 to May 2000, and then skyrocketed during 

summer and fall 2000, resulting in the breakdown of the liberalized electricity market 

by the end of 2000. While the California electricity crisis was a complex situation 

affected by a number of factors, such as poor wholesale market design, absence of long-

term contracting, unexpected increase in generation input costs, and hike in end-use 

electricity demand due to unusually hot weather, a number of studies pointed to the 

evidence of significant market power in this restructured market. Borenstein (2002) and 

Wolak (2005) are two excellent surveys of the California electricity market 

restructuring disaster. 

Our empirical application analyzes the competitive behavior of five strategic 

large firms from Puller’s (2007) study of monopoly power in California restructured 

electricity markets using the same sample period (from April 1998 to November 2000). 

Following Borenstein et al. (2002), Kim and Knittel (2006), and Puller (2007), we 

define five large firms that owned fossil-fueled generators (AES, DST, Duke, Reliant 

and Southern) as ‘strategic’ firms, i.e., pricing according to equation (1). The 

competitive fringe includes generation from nuclear, hydroelectric, and small 

independent producers, and imports from outside California. Puller (2007, p.77) argues 

that these suppliers were either relatively small or did not face strong incentives to 

                                                 
33 Both the mean and the mode of the conditional distribution can be used as a point estimator for the 
conduct term

itθ~ . However, the mean is, by far, the most employed in the frontier literature. 
34 Although 

itθ̂  is the minimum mean squared error estimate of θit, and it is unbiased in the unconditional 

sense [ 0)ˆ( =θ−θ ititE ], it is a shrinkage of θit toward its mean (Wang and Schmidt, 2009). An 

implication of shrinkage is that on average we will overestimate θit when it is small and underestimate θit 
when it is large. This result, however, simply reflects the familiar principle that an optimal (conditional 
expectation) forecast is less variable than the term being forecasted. 



19 
 

influence the price.35 Other studies (Bushnell and Wolak 1999, Borenstein et al 2008), 

however, find that competitive fringe occasionally did have incentives to act 

strategically and bid elastic supply and demand schedules to counter exercise of market 

power by the strategic firms. Because electricity storage is prohibitively costly,36 both 

strategic and non-strategic firms had to produce a quantity equal to demand at all 

times.37 The five large firms and a competitive fringe interacted daily in a market where 

rivals’ costs were nearly common knowledge, which created strong incentives for tacit 

collusion (Puller, 2007). And the residual demand for electricity was highly inelastic, 

which, given institutional weaknesses of California Power Exchange, allowed 

individual firms to raise prices unilaterally (Wolak, 2003).  

 We first carry out a standard econometric exercise and estimate consistently by 

GMM the parameters of the pricing equation (1). In particular, and in order to be sure 

that our first stage is sound, we try to reproduce Puller’s (2007) results, using the same 

dataset, and the same specification for the pricing equation (1), and the same set of 

dependent and explanatory variables.38 Unlike Puller (2007) we use a different estimate 

of the elasticity of residual hourly demand function of the five strategic firms. This is 

because Puller (2007) does not observe actual residual demand schedules. Instead, he 

                                                 
35 Specifically, Puller (2007) argued that independent and nuclear units were paid under regulatory side 
agreements, so their revenues were independent of the price in the energy market. The owners of 
hydroelectric assets were the same utilities that were also buyers of power and had very dulled incentives 
to influence the price. Finally, firms importing power into California were likely to behave competitively 
because most were utilities with the primary responsibility of serving their native demand and then simply 
exporting any excess generation.  
36 One of the ways of storing electricity for load balancing is through pumped-storage hydroelectricity. 
The method stores energy in the form of water, pumped from a lower elevation reservoir to a higher 
elevation. Low-cost off-peak electric power is used to run the pumps. During periods of high electrical 
demand, the stored water is released through turbines to produce electric power. In California, there is a 
significant amount of hydropower including some pumped storage. Notwithstanding relative abundance 
pumped storage in California, it’s potential for load balancing is limited as hydropower schedules are 
relatively fixed in part due to environmental (low flow maintenance, etc.) rules. 
37 Modelling of market power in wholesale electricity markets becomes more complex if firms forward-
contract some of their output. As Puller (2007, p.85) notes, in the presence of unobserved contract 
positions the estimate of conduct parameters would be biased. This was generally not an issue in 
California wholesale electricity market during sample period. As Borenstein (2002, p. 199) points out, 
“Although the investor owned utilities had by 2000 received permission to buy a limited amount of power 
under long-term contracts, they were […] still procuring about 90 percent of their “net short” position 
[…] in the Power Exchange’s day-ahead or the system operator’s real-time market. Puller (2007, p. 85) 
argues that “there is a widespread belief that in 2000 Duke forward-contracted some of its production.” If 
data on contract positions were available, one could correct this bias by adjusting infra-marginal sales by 
the amount that was forward-contracted. Unfortunately, as in earlier studies on market power in 
California wholesale electricity market the contract positions are not observable in our dataset.    
38 Careful description of the dataset can be found in the technical appendix of Puller (2007, pp.86-87).  
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estimates the supply function of competitive fringe, and calculates the slope of the 

fringe supply, “which has the same magnitude but opposite sign of the slope of the 

residual demand faced by the five strategic firms” (Puller 2007, p. 78). This is 

problematic because Puller’s (2007) estimates are correct if and only if the fringe firms 

act non-strategically (i.e., bid perfectly inelastic supply and demand schedules). As we 

noted above, this assumption is questioned by a number of studies. Instead we use the 

estimates of residual demand elasticities based on actual bids from California Power 

Exchange (PX) as suggested by Wolak (2003). For comparison purposes we also report 

the results based on Puller’s (2007) elasticity estimates using the same definition of 

strategic/non-strategic firms. 

 After estimating the parameters of the pricing equation, we carry out the second 

and third stages assuming particular distributions for the conduct random term, all of 

them imposing the conduct term to be positive and less than the number of strategic 

firms.  

 

4.1. Pricing Equation and Data 

 

Following Puller (2007, eq. 3) the pricing equation to be estimated in the first 

stage of our procedure is:  

itD
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,)( ,   (13) 

where α and θ=E(θit) are parameters to be estimated, Pt is market price, mcit is firm’s 

marginal costs, qit is firm’s output, CAPBINDit is a dummy variable that is equal to 1 if 

capacity constraints are binding and equal to 0 otherwise, and QS
strat,t is total electricity 

supply by the strategic firms and ηD
strat,t is the elasticity of residual hourly demand 

function of the five strategic firms.  

We use hourly firm-level data on output and marginal cost. As in Puller (2007), 

we focus on an hour of sustained peak demand from 5 to 6 p.m. (hour 18) each day, 

when inter-temporal adjustment constraints on the rate at which power plants can 

increase or decrease output are unlikely to bind. Following Borenstein et al. (2002), we 

calculate the hourly marginal cost of fossil-fuel electricity plants as the sum of marginal 
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fuel, emission permit, and variable operating and maintenance costs.39 We assume the 

marginal cost function to be constant up to the capacity of the generator. A firm’s 

marginal cost of producing one more megawatt hour of electricity is defined as the 

marginal cost of the most expensive unit that it is operating and that has excess 

capacity.  

Our measure of output is the total production by each firm’s generating units as 

reported in the Continuous Emissions Monitoring System (CEMS), that contains data 

on the hourly operation status and power output of fossil-fuelled generation units in 

California. We use the California Power Exchange (PX) day-ahead electricity price, 

because 80%–90% of all transactions occurred in the PX. Prices vary by location when 

transmission constraints between the north and south bind.40 Most firms own power 

plants in a single transmission zone, so we use a PX zonal price. Table A.4 in the 

technical appendix reports the summary statistics for all these variables. 

We compute the value of the residual demand elasticity facing the five large 

suppliers evaluated at the hourly market clearing price, Ph, as described in Wolak 

(2003). We first compute the aggregate demand for electricity in the PX day-ahead 

energy market and subtract from that the total amount supplied at different prices in the 

neighborhood of the Ph by all market participants besides five strategic firms. As the 

resulting residual demand curve is a step function, computing the slope of the residual 

demand curve at the Ph involves some approximation. Wolak (2003) argues the 

approximation of the step function is reasonably accurate as there are large numbers of 

steps in the residual demand curve, particularly in the neighborhood of the market-

clearing price. To compute the slope of the residual demand curve at the hourly market-

clearing price, we find the closest price above Ph, such that the residual demand is less 

than the value at Ph. Following the notation in Wolak (2003), let Ph(low) be this price, 

and DRstrat,h(Ph(low)) be the associated value of the residual demand facing five 

strategic firms at Ph(low). Next, we find the closest price below Ph such that residual 

                                                 
39 We do not observe the spot prices for natural gas for California hubs in 1998 and 1999, and use prices 
from Henry Hub instead. The difference between natural gas prices between these hubs before 2000 (for 
which we have the data available) was relatively small (see Woo et al., 2006, p. 2062, Fig. 2). 
40 An important implication of transmission congestions is that they cause the slope of residual demand to 
differ for firms in the north and south of California. Puller (2007) estimated his model based on a 
subsample of uncongested hours and found smaller conduct parameter estimates relative to full sample 
(though his qualitative conclusions did not change). Our choice of residual demand elasticities based on 
PX data (see below) captures the effect of transmission constraints.   
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demand is greater than the value at Ph. Let Ph(high) be this price, and DRstrat,h(Ph(high)) 

be the associated value of the residual demand facing five strategic firms at Ph(high). 

The elasticity of the residual demand curve facing five strategic firms jointly during 

hour h at price Ph is equal to the arc elasticity, computed as 
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Following Wolak (2003) we set Ph(low) and Ph(high) equal to $1 below and above Ph.
 41 

For comparison purposes we also replicate Puller’s (2007) residual demand elasticity 

estimates to compute the expected value of the random conduct term. Puller (2007) 

computes residual demand elasticity as 

S
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 where QS
fringe,t is electric power supply by the competitive fringe, and 

S
tfringet

t
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the price elasticity of the fringe supply. We obtain the estimates of β̂  from Puller 

(2007, Table 3, p. 83).  

 Figure A.2 in the technical appendix shows calculated price-cost margins. This 

figure is almost identical to Figure 1 in Puller (2007), and shows that margins vary 

considerably over sample period. They are also higher during the third and fourth 

quarters of each year, when total demand for electricity is high. Figure A.3 in the 

technical appendix shows variation across time of the residual demand elasticities based 

on California PX bidding data and from Puller (2007). While both series exhibit similar 

trend, the elasticities based on PX data are considerably higher (in absolute terms) and 

more volatile. We next analyze the extent to which higher margins resulted from less 

competitive pricing behavior rather than from less elastic demand. 

 

4.2. Pricing Equation Estimates  

                                                 
41 Wolak (2003) notes that this procedure does not guarantee that the difference between 
DRstrat,h(Ph(high)) and DRstrat,h(Ph(low)) is positive and therefore can produce zero values of ηD

strat,t. We 
used $0.50, $1, and $5 to determine Ph(low) and Ph(high), and, similar to Wolak (2003), did not find 
noticeably different distributions of nonzero values of ηD

strat,t.  
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 This section describes estimation results of pricing equation (5), which result in 

the first-stage parameter estimates. We consider different specifications, estimation 

methods, and time-periods. First, we estimate equation (5) using elasticities of residual 

demand, calculated based on PX data and based on Puller’s (2007) estimates.  

Second, we allow for output to be an endogenous variable as the error term εit in 

(5) could include marginal cost shocks that are observed by the utility.42 To account for 

endogeneity of output we estimate equation (5) by the ordinary least squares (OLS), 

treating Pt·qit/Q
S
strat,t (hereafter xit) as exogenous variable, and by GMM using 

instruments for xit. We use four instruments for xit: the inverse of the day-ahead forecast 

of total electricity output, 1/FQt, the dummy variable for binding capacity constraints, 

CAPBINDit, the ratio of one week lagged output to current output, tt QQ 7− , and firm´s 

generation capacity, kit. The first two instruments are from Puller (2007).43 We assume 

that the ratio of one week lagged output to current output is exogenous based on the 

standard argument in economic literature that unpredictable random variables do not 

affect realizations of firms’ past planning decisions (Hall, 1988). We assume that firm´s 

generation capacity is orthogonal to the error term because it can be viewed as a quasi-

fixed variable, independent of current levels of operation. We then perform Hansen’s 

(1982) J test, F-test for weak instruments (Staiger and Stock, 1997) and Hausman’s 

(1978) specification test to test for overidentifying restrictions, instruments’ strength, 

and consistency of the OLS estimates. 

Finally, we estimate equation (6) over two periods described in Puller (2007). 

The first period from July 1998 to April 1999 covers four strategic firms (AES, 

DST/Dynegy, Duke, and Reliant). The second period from May 1999 to November 

2000 covers five strategic firms following Southern entry.44 

                                                 
42 Puller (2007) makes similar point. 
43 Puller (2007) adopts the day-ahead forecast of total electricity output, rather than it’s inverse. We do 
not use the day-ahead forecast of total electricity output here as an instrument because it failed Hansen’s 
(1982) J test. Notwithstanding this difference, the economic interpretation of using this instrument is the 
same as in Puller (2007).         
44 Puller (2007) also reports estimates for the period from June 2000 to November 2000, which covers the 
price run-up preceding collapse of California liberalized electricity market. We chose not report these 
estimates because though the incentives of some market participants changed during this period 
(Borenstein et al. 2008), the market structure itself was not fundamentally different.    



Table 1a. Pricing equation estimates (July 1, 1998 - April 15, 1999) 

Dependent variable: (P-mc)it; No. of strategic firms: 4; Method: OLS and Two-step GMM (a) 

  Elasticities based on Puller (2007) Elasticities based on PX bids 

Explanatory variables Coef. OLS GMM(b) OLS GMM(b) 

CAPBINDit Α -4.98 10.74***  36.67***  8.11 
  (3.70) (4.21) (6.08) (10.63) 

S
tstrat

D
tstratittit QqPx ,,η=  θ 1.42***  0.95***    0.125***  0.74***  

  (0.07) (0.06) (0.04) (0.11) 

    
Observations  864 864 864 864 

Mean of the dependent variable  8.56 8.56 8.56 8.56 

Standard error of residuals  13.14 14.18 20.28 28.34 

Hausman test  (c)   61.4***   41.64***  

Hansen test (c)   4.48**   1.78 

Test for weak instruments  (c)   226.5***   32.6***  

Notes:  
(a) Standard errors robust to heteroskedasticity in parenthesis. *(** )(*** ) stands for statistically significance at 10%(5%)(1%). 
(b) Instruments: CAPBINDit, kit, 1/FQt , where FQ is day-ahead forecast of total (perfectly inelastic) demand and kit is capacity. 
(c) Both Hausman and Hansen tests follow a χ2 distribution with 1 degree of freedom. The Hausman test is sometimes based in only one parameter in 
order to provide a positive value. The test for weak instruments follows F distribution with 2 and (obs-3) degrees of freedom. 



Table 1b. Pricing equation estimates (April 16, 1999 – November 30, 2000) 

Dependent variable: (P-mc)it; No. of strategic firms: 5; Method: OLS and Two-step GMM (a) 

  Elasticities based on Puller (2007) Elasticities based on PX bids 

Explanatory variables Coef. OLS GMM(b) OLS GMM(b) 

CAPBINDit Α -5.16 30.01***  76.591***  50.39***  

  (4.19) (6.69) (10.78) (13.19) 

S
tstratPullerittit QqPx ,η=  θ 1.363***  0.80***  0.065***  1.05***  

  (0.059) (0.034) (0.021) (0.123) 

Observations  2300 2300 2300 2300 

Mean of the dependent variable  18.43 18.43 18.43 18.43 

Standard error of residuals  27.83 34.80 57.69 80.76 

Hausman test  (c)   20.51***   66.28***  

Hansen test (c)   0.65  1.41 

Test for weak instruments  (c)   412.5***   71.6***  

Notes:  
(a) Standard errors robust to heteroskedasticity in parenthesis. *(**)(***) stands for statistically significance at 10%(5%)(1%). 
(b) Instruments: CAPBINDit, kit, Q(-7)/Q, where Q(-7) is total demand lagged one week, and kit is capacity. 
(c) Both Hausman and Hansen tests follow a χ2 distribution with 1 degree of freedom. The Hausman test is sometimes based in only one parameter in 
order to provide a positive value. Test for weak instruments follows F distribution with 2 and (obs-3) degrees of freedom. 



Tables 1a and 1b summarize the specification, estimation and fit of the pricing 

equation (5) using different set of instruments and calculated elasticities of residual 

demand, over the periods analyzed in Puller (2007). All estimated values of the conduct 

parameter are statistically significant from zero. The results of Hansen’s J test and F-

test for weak instruments indicate that the chosen instruments are generally valid45, 

whereas Hausman’s (1978) specification test indicates that the OLS results are biased 

and inconsistent. The size of this OLS bias, (measured by the difference between OLS 

and GMM estimates) is large indicating a significant correlation between the term xit 

and unobserved error term. 

The columns 4 and 5 of Tables 1a and 1b shows the estimated coefficients for 

the pricing equation (5) using residual demand elasticities calculated based on PX data. 

The GMM estimates of the conduct parameter are quite similar to those obtained by 

Puller (2007). Compared to Puller’s (2007) estimates (see columns 2 and 3 of Tables 1a 

and 1b), the estimated value of the conduct parameter is smaller over the period from 

July 1998 to April 1999 (0.74 vs. 0.95) and larger over the period May 1999 to 

November 2000 (1.05 vs. 0.80). However, in both cases it is not statistically different 

from Puller’s (2007) estimate of 0.97.  

 

4.3. Variance Decomposition 

 

Once all parameters of the pricing equation (5) are estimated, we can get 

estimates of the parameters describing the structure of the two error components 

included in the composed random term εit (second-stage). Conditional on these 

parameter estimates, market power scores can be then estimated for each firm by 

decomposing the estimated residual into a noise component and a market-power 

component (third-stage). 

Following the discussion in the section 3.2, to obtain the estimates of the 

parameters describing the structure of error components we first need to specify the 

distribution of the unobserved random conduct term. We must also impose both lower 

and upper theoretical bounds on the values of the random conduct term, i.e., 0≤θit≤1/sit.  
                                                 
45 Chosen Instruments fail Hansen’s J test at 5% level of significance over the period from July 1998 - 
April 1999 using residual demand elasticities calculated based on Puller’s (2007) estimates. 



Table 2. Second-stage Parameter Estimates.(a) 

 Elasticities based on Puller (2007) Elasticities based on PX bids 

Component / Parameter July, 1998 –April, 1999 April, 1998 –November, 2000 July, 1998 –April, 1999 April, 1998 -November, 2000 

Symmetric component, σσσσv        

Intercept 1.14***  (0.07) 1.88***  (0.04) 2.27***  (0.03) 3.62***  (0.02) 
FQt -1.82***  (0.45) -1.26***  (0.20) 3.78***  (0.16) 5.04***  (0.04) 
0.5·FQt

2 11.7***  (2.81) 3.35***  (1.27) 3.28***  (0.87) 2.51***  (0.58) 
DDST 0.03 (0.07) 0.29***  (0.06) 0.01 (0.04) 0.05***  (0.02) 

DDuke -0.18**  (0.07) 0.47***  (0.05) -0.07* (0.04) -0.01 (0.02) 
DReliant 0.10 (0.08) 0.05 (0.05) 0.01 (0.04) 0.02 (0.02) 
DSouthern   -0.37***  (0.07)   -0.14***  (0.02) 
Dtuesday 0.23 (0.15) 0.25**  (0.11) -0.19 (0.16) -0.96***  (0.08) 
Dwednesday 0.74***  (0.10) 0.17 (0.20) 0.44***  (0.12) -0.47***  (0.06) 
Dthuersday 0.58***  (0.13) 0.22**  (0.11) 0.41***  (0.10) -0.26***  (0.05) 
Dfriday -0.23 (0.24) -0.09 (0.12) -0.40**  (0.20) 0.01 (0.04) 
DSaturday 0.32 (0.31) 0.07 (0.13) -0.17 (0.20) -0.51***  (0.05) 
DSunday 0.19 (0.30) 0.16 (0.14) -0.60***  (0.18) -0.11**  (0.05) 

Asymmetric component, σσσσθθθθ        

Intercept 0.78***  (0.13) 1.22***  (0.09) 0.86***  (0.31) 1.12***  (0.25) 
sit -2.59***  (0.39) -6.45***  (0.37) -3.33***  (0.78) -6.23***  (1.06) 
DDST 1.69***  (0.15) -0.15**  (0.07) 1.06***  (0.33) -0.49 (0.30) 
DDuke 0.43***  (0.15) -0.08 (0.08) 0.61***  (0.30)   
DReliant 0.16 (0.10) -0.04 (0.07) 0.12 (0.27) -0.13 (0.24) 
DSouthern   0.08 (0.07)   0.58***  (0.16) 
sit-1-sit-2 0.17 (0.49) -0.19 (0.45) 1.22 (1.29) 0.85 (1.12) 
Mean log-likelihood -3.24 -3.93 -3.77 -5.03 
Observations 864 2300 864 2300 

Note: (a) Standard errors in parenthesis. *(**)(***) stands for statistically significance at 10%(5%)(1%). 



To achieve this objective, we consider the doubly truncated normal model 

introduced by Almanidis et al. (2011) that allows us to impose both theoretical 

restrictions.46 For robustness grounds, several specifications of the doubly truncated 

normal model were estimated, corresponding to different levels of µ , i.e., the mean of 

the pre-truncated random term that, after truncation, yields θit. For all models, we 

examine the values of µ equal to 0, 1, and 2 because the value of the conduct parameter 

estimated in the first stage of our procedure is around one. We then estimate the model 

using maximum likelihood and choose the preferred level of truncation based on the 

lowest value of the Akaike information criterion (AIC) from estimated specifications. In 

the technical appendix, Table A.4, we show the results of the test to select the value of 

the mean of the pre-truncated normal distribution, µ. Table A.4 in the technical 

appendix shows that the preferred level of truncation is 0 across all specifications. This 

implies that the conduct random term can be modeled using the truncated half normal 

distribution that assumes zero modal value of θit. 

Table 2 describes the parameter estimates of the doubly truncated normal model 

describing the structure of θit and vit (i.e., θσ and σv) across different specifications, 

conditional on the first-stage estimated parameters. In all cases, the variance of 

asymmetric component (the conduct term) is lower than the variance of the symmetric 

component (traditional error term). This outcome indicates that both demand and cost 

random shocks, which are captured by the traditional error term, explains most of the 

overall variance of the composed error term, σε.  

In all models we reject the hypothesis of homoscedastic variation in both the 

noise term and the conduct term (see Table A.5 in the technical appendix). Many of the 

day-of-the-week dummy variables are statistically significant in most periods. As 

expected, variation in conduct decreases with firms’ market shares, sit. The coefficient 

of the target variable ∆sit-1 is not significant at all in all periods and using elasticities 

based either on Puller or PX bids. This result is robust to the inclusion of other 

                                                 
46 To measure the convenience of using double-bounded distributions in practice, in previous versions of 
the present paper we also estimated the traditional half-normal distribution, which only imposes the 
conduct term be positive. The market power scores for the half-normal distributions were, on average, 
much higher than the upper-bound indicated by the theory, indicating  that the one-sided specifications, 
traditional in the stochastic frontier literature, should not be used in the present application, and theory-
consistent double-bounded distributions need to be estimated. 
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alternative variables to capture the influence of the past behaviour on the present market 

conduct, such as week-differences and other lags of the first-differences of market 

shares. The coefficient of dummy for DST in the conduct term part of the model has a 

large positive and significant coefficient in the first period. This result and the fact that 

the average market share of DST in the first period is much less than the average market 

share of its rivals explain our subsequent finding that DST market power scores are 

much higher than those obtained for the other strategic firms.  

 

4.4. Firm-specific market power scores 

 

Based on the previous estimates, the third stage allows us to obtain firm-specific 

market power scores. Table 3 provides the arithmetic average scores of each firm 

obtained using ML estimates of doubly truncated normal model. For comparison 

purposes we also report the firm-specific estimates of Puller (2007).  

Table 3 illustrates several interesting points that are worth mentioning. First, like 

in Puller (2007), the estimated firm-level values of the conduct parameter are closer to 

Cournot (θit =1) than to static collusion (θit =1/sit) across all specifications. A notable 

exception is DST, whose average market power score is much larger than the other 

averages during this period. Puller (2007, p.84) finds similar result and argues that from 

these high conduct parameter estimates may result from incomplete quantity data for 

some of Dynegy’s small peaker units. Unlike Puller (2007), we do not find an increase 

in market power if we compare the average values in the first period with those obtained 

in the second, regardless of which residual demand elasticity measure we use.  

Second, we find notable differences among utilities in terms of market power. 

This suggests that assuming a common conduct parameter for all firms is not 

appropriate. For instance, firms with smaller market shares (e.g., DST) have 

consistently higher market power scores, whereas firms with larger market share (e.g., 

Duke) have consistently lower market power scores, compared to other firms. These 

results seem to indicate that the traditional 1st-stage parameter estimate tends to 
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overweight the market power of larger firms and underweight the market power of 

smaller firms.47 

Table 3. Firm-Specific Conduct Parameter Estimates 

Firm 
Market  

Share (sit) 
Elasticities based  
on Puller (2007) 

Elasticities based  
on PX bids 

Puller  
(2007) 

 
Mean St. Dev. Mean St. Dev. Mean St. Dev.  

 
July 1, 1998 - April 15, 1999 
 

 

AES 0.28 0.15 0.92 0.53 0.83 0.45 0.99 
DST 0.07 0.08 6.89 4.58 4.29 1.67 5.15 
Duke 0.48 0.20 0.83 0.56 0.78 0.53 1.02 

Reliant 0.19 0.10 1.30 0.74 1.17 0.49 1.48 

        
Industry average  2.49  1.77  2.16 
Industry average (excl. DST) 1.02  0.93  1.16 
1st stage mean   0.95  0.74  0.97 
 
April 16, 1999 – November 30, 2000 

    

        
AES 0.17 0.09 1.02 0.70 0.94 0.48 0.82 
DST 0.12 0.05 1.11 0.65 0.72 0.20 1.75 
Duke 0.31 0.12 0.48 0.53 0.47 0.41 0.81 
Reliant 0.20 0.07 0.76 0.47 0.66 0.27 1.01 
Southern 0.20 0.08 0.93 0.54 1.38 0.66 1.21 
        
Industry average 0.86  0.83  1.12 

1st stage mean   0.80  1.05  0.97 

 

Third, as illustrated in the technical appendix, Figure A.4, our approach based on 

the estimated distribution of the random conduct yields similar firm-specific market 

power scores to those of Puller (2007) using a fixed-effect approach. This result 

demonstrates that both approaches are, in practice, equivalent or interchangeable. Our 

procedure has the advantage over Puller’s approach that it can be applied with cross-

sectional data sets; when the time dimension of the data set is short; or when the 

available instruments are valid to estimate a common pricing equation to all 

                                                 
47 Interesting enough, the average industry score for the first period (July 1, 1998 - April 15, 1999) are 
much larger than the 1st-stage common conduct parameter in all models. If we exclude DST in all models, 
the averages are again similar. This also happens in Puller (2007). This suggests that the common 
parameter is not the simple average of individual conduct parameters. For this reason, we have not 
imposed this condition when estimating the structure of the error term in the second stage of our 
procedure.  
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observations (see Hansen tests in Tables 1a and 1b), but they are not valid when a 

separable pricing equation is estimated for each firm.  

In a panel data setting the most important advantage of our methodology is that 

we can analyze changes in market conduct over time. Because our approach does not 

impose the restrictions on the temporal path of these scores they are allowed to change 

from one day to another. In Figures 1a-1b, and 2a-2b we show the temporal evolution of 

the average market power scores of the four/five strategic firms during the periods 

analyzed in the present paper.48 Our results indicate that the estimated firm-specific 

conduct parameters do vary significantly across time. Notwithstanding these 

differences, firm-specific conduct parameters generally tend to move in the same 

direction across time. This result indicates that firms tend to pursue similar market 

strategies across time, and is consistent with the implied equilibrium behaviour of 

repeated dynamic games in homogenous product market setting. The notable exception 

is Duke, whose market strategies are occasionally different from other firms. Puller 

(2007) notes that there is a widespread belief that Duke violated California electricity 

market rules and forward-contracted some of its production, which in part explains 

observed Duke’s behaviour. 

Figures 1a and 1b show the intertemporal variation in estimated conduct 

parameters over the period from July 1, 1998 to April 15, 1999. Both figures show that 

during this period firms electricity pricing were at (or slightly above) Cournot levels. 

The most notable exception is DST/Dynegy, whose conduct was well above Cournot 

level during summer 1998 and close to full collusion in winter 1998/1999. As explained 

above, high estimates of the conduct parameter for DST during these periods may 

reflect the bias from incomplete generation asset data for this firm. Another notable 

observation is rapid increase in the conduct term for Reliant and DST in winter 

1998/1999. 

                                                 
48 To smooth the variation across time, we report the monthly moving averages of the estimated conduct 
parameter.  



 

 

        

  

            

 

 

 

 

 

Figure 1b. Firm-Specific Conduct Parameter Estimates       
(Monthly Averages over July 1, 1998 – April 15, 1999, 
Elasticities based on PX Data)                  

Figure 1a.  Firm-Specific Conduct Parameter Estimates       
(Monthly Averages over July 1, 1998 – April 15, 1999, 
Elasticities based on Puller 2007)                  
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Figure 2a.  Firm-Specific Conduct Parameter Estimates       
(Monthly Averages over April 16, 1999 – May 30, 2000, 
Elasticities based on Puller 2007)                  

Figure 2b.  Firm-Specific Conduct Parameter Estimates       
(Monthly Averages over April 16, 1999 – May 30, 2000, 
Elasticities based on PX Data)                  



Figures 2a and 2b show the intertemporal variation in estimated conduct parameters 

over the period from April 16, 1999 to May 30, 2000 following the entry of Southern. 

Both figures demonstrate that firms’ pricing strategies are still close to Cournot levels 

for most of this period. On average, over this period, the new entrant Southern tends to 

have a higher value of the estimated conduct parameter, whereas Duke tends to have a 

lower value of the estimated conduct parameter.    

 Firms’ pricing strategies exhibit a larger variation during this period. For 

example, the market conduct of Southern increases above Cournot levels in summer 

1999, and the market conduct of Southern, Reliant, and AES increases above Cournot 

levels in summer 1999. There is also a difference in the inferred firms’ conduct for the 

results using the residual demand elasticities based on Puller (2007) and the residual 

demand elasticities based on PX bid data. The results using the residual demand 

elasticities based on Puller (2007) show that the conduct parameter of all firms (and 

most notably, DST) increases above Cournot levels during the notorious price run-up 

period of summer 2000. On the contrary, the results using the residual demand 

elasticities based on PX bid data show that pricing strategies of all firms, except for 

Southern, are at Cournot levels. As regards Southern, though pricing strategy is above 

Cournot levels, it is not different from its strategy in summer 1999. These results 

indicate that correctly specified residual demand elasticities are critical to understanding 

market conduct. 

 

4.5. Unilateral vs. Coordinated Market Power 

 

Wolak (2003) used the actual bids submitted to the California Independent 

System Operator’s real-time energy market, and demonstrated that residual demand 

curves facing five largest electric power suppliers were steep enough so that it was 

“unilaterally expected-profit-maximizing for each firm to bid to raise prices 

significantly in excess of the marginal cost of their highest-cost unit operating.”49 Based 

on that finding, Wolak (2003) argued that the potential for exercising market power 

unilaterally “made collusive behavior on the part of suppliers to the California market 

unnecessary to explain the enormous increase in market power exercised starting in 

                                                 
49 Wolak (2003, p.430) 
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June 2000,”50 although these considerations cannot rule out the possibility that collusive 

behavior took place.   

We use the results of the analysis carried out in this paper to clarify the extent to 

which firms’ potential for exercising market power unilaterally affects their market 

conduct. In doing so, we follow Wolak (2003) and apply equation (15) to compute the 

residual demand elasticities facing each firm individually on the California PX market, 

and use their reciprocals (Lerner indices) as a measure of the firms’ potential to exercise 

unilateral market power.51 We then compare estimated firms’ conduct parameters to 

calculated Lerner indices52 to deduct whether firms’ conduct is correlated with higher 

potential for exercising of unilateral market power.  

Figures 3a and 3b show the variation of calculated Lerner indices across time 

over the periods from July 1, 1998 to April 15, 1999 (preceding entry of Southern), and 

from April 16, 1999 to November 30, 2000. For most of the sample period their values 

fluctuate between 0.05 and 0.15, and are close to the averages reported in Wolak (2003, 

Table 1). However, for some periods, such as summers of 1998, 1999, and 2000, and 

the winters of 1998 and 1999 the values of calculated Lerner indices exceed 0.2, 

indicating substantial potential for the unilateral exercise of market power.  

We then examine the relationship between firms’ abilities to exercise unilateral 

market power, measured by Lerner index, and engage in collusive practices, measured 

by the conduct parameter. Figures 4a and 4b show the variation of both unilateral and 

coordinated market power across time over the periods from July 1, 1998 to April 15, 

1999, and from April 16, 1999 to November 30, 2000. The shaded areas in these figures 

                                                 
50 Ibid. 
51 It is important to point out that because suppliers had the opportunity to sell their capacity in the 
CAISO ancillary services markets and the real-time energy market, the calculated Lerner indices are not 
the actual measure of the unilateral market power, unlike in Wolak (2003). Rather, we use this measure as 
a (maximum) potential for the unilateral exercise of the market power. However, given that PX market 
accounted for 85% of all electricity delivered in the CAISO control area, whereas CAISO’s real time 
market accounted for just 5% (Borenstein et al. 2002), the ancillary services market was very small, and 
there was no substantial divergence between PX and ISO market clearing prices for the most of the time 
covered in this study (Borenstein et al. 2008) we believe our measure provides a reasonable 
approximation for the exercise of the unilateral market power.          
52 Wolak (2003, p.426) points out that regardless of the residual-demand realization, the following 
equation holds for each hour of the day, h, and each supplier, j:(Ph-MCjh)/Ph=-1/εhj where where Ph is the 
market price in hour h, MCjh is the marginal cost of the highest cost produced by firm j in hour h, and εhj is 
elasticity of the residual demand curve facing firm j during hour h evaluated at Ph. Following Wolak 
(2003) we define the Lerner index for firm j in hour h as. Lhj=-1/εhj. 



 

 

 

 

 

 

 

               

Figure 3a.  Firm-Specific Lerner Indices        
(Monthly Averages over July 1, 1998 – April 15, 1999, 
Elasticities based on PX data)                  

Figure 3b.  Firm-Specific Lerner Indices        
(Monthly Averages over April 16, 1999 – November 30, 2000, 
Elasticities based on PX data)                  
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Figure 4b. Unilateral vs. coordinated conduct scores       
(Monthly Averages over April 16, 1999 – November 30, 2000)                 

Figure 4a.  Unilateral vs. coordinated conduct scores       
(Monthly Averages over July 1, 1998 – April 15, 1999)                 



indicate that both sources of market power roughly move in opposite directions, 

and hence the non-shaded areas indicate co-movements of unilateral and coordinated 

market power scores.  Figures A.5 and A.6 in the technical appendix show firm-level 

correlations between calculated Lerner indices and estimated conduct parameters over 

two periods covered in this study. Figure 4a demonstrates that, with the exception of 

Duke, unilateral and coordinated market power scores move in opposite directions most 

of the period between July 1, 1998 and April 15, 1999. This is confirmed by Figure A.5 

in the appendix where a strong negative correlation has found between Lerner indices 

and conduct parameters for all firms but Duke over the period between July 1, 1998 and 

April 15, 1999. This finding implies that firms were more likely to engage in collusive 

practices when their potential for unilateral market power was limited.  

 Figure 4b shows a slight change in firms’ conduct after the entry of Southern. 

With the exception of DST where both unilateral and coordinated market power scores 

clearly move in opposite directions during most of the period between April 16, 1999 

and November 30, 2000, there are not a clear relationship between both sources of 

market power. This is confirmed by Figure A.6 that shows a strong negative correlation 

between Lerner indices and conduct parameters for only two firms out five – DST and 

Reliant (R2 is 0.24 and 0.08 respectively) over the period between April 16, 1999 and 

November 30, 2000. For other three firms, such correlation is weak or does not exist. 

This result indicates that firms’ market conduct is not necessarily affected by its 

potential to exercise unilateral market power. 

 

5. Conclusions 

 

This study contributes to the literature on estimating market power in 

homogenous product markets. Our econometric approach allows for the value of 

estimated conduct parameter to vary across both firms and time. We estimate a 

composed error model, where the stochastic part of the firm’s pricing equation is 

formed by two random variables: the traditional error term, capturing random shocks, 

and a random conduct term, which measures the degree of market power. Treating 

firms’ behaviour as a random parameter helps solving the over-parameterization 

problem in the continuous time. Other advantages of our approach are its applicability 
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to cross-sectional or short data sets, and to cases in which individual pricing equations 

cannot be consistently estimated with the available instruments. In addition, by 

imposing upper bound on the value of estimated conduct parameter we ensure that 

estimated market power scores are always consistent with the economic theory. 

The model can be estimated in three stages using either cross-sectional or panel 

data sets. While the first stage of our model is the same as in the previous literature, the 

second and the third stages allow us to distinguish variation in market power from 

volatility in demand and cost, and get firm-specific market power scores, conditional on 

the first-stage parameter estimates. Model identification is based on the assumption that 

the conduct term is asymmetrically distributed, which, to our best knowledge, has not 

been previously used in the empirical industrial organization literature.  

We illustrate the proposed approach with an application to the California 

wholesale electricity market using a well-known dataset from Puller (2007). We 

supplement the dataset with a different, and more accurate measure of the elasticity of 

residual hourly demand function of the five strategic firms, calculated based on 

California Power Exchange bidding data. After estimating the parameters of the pricing 

equation, we implement the second and third stages based on the truncated normal 

distributions, which imposes both lower and upper theoretical bounds on the values of 

the random conduct term.  

Our first-stage results based on the estimated distribution of the random conduct 

are generally similar to previous findings of Puller (2007) using a fixed-effect approach. 

This result demonstrates that both approaches are, in practice, equivalent or 

interchangeable for estimating firms’ pricing equation. However, our approach yields 

more reasonable market power scores than a fixed-effect treatment as estimated market 

power scores are always consistent with the economic theory. 

Similar to Puller (2007) our average conduct parameter estimates are closer to 

Cournot than to static collusion. We find an increase in collusive behavior of all firms 

above Cournot levels during the period of price run-up in June – November 2000, using 

the residual demand elasticities based on Puller (2007) but not using the residual 

demand elasticities based on PX data. The analysis of firm-specific conduct parameters 

suggests that realization of market power varies significantly over both time and firms. 
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We find strong negative correlation between Lerner indices and estimated conduct 

parameters for 3 out of 4 firms during the first period of our sample (before entry of 

Southern) and for 2 out of 5 firms during the second period of our sample. This result 

indicates that, for some firms the potential for realization of the market power 

unilaterally is associated with lower values of the conduct parameter. 
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Technical Appendix 
 
Table A.1. Double-bounded density functions (0≤u≤B) 

 
Model Density function of f( uv +=ε ) 
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Table A.2. Conditional means for selected distributions 
 

Model Functional form of )|( uvuE +  

Doubly truncated 
normal 
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Table A. 3. Summary statistics (hour 18) 
 

 Mean St.dev. Min Max Obs 
 
July 1, 1998 - April 15, 1999 

     

      
Price (Pt) 35.2 21.0 4.9 180.4 864 
Marginal cost (mcit) 26.6 3.1 19.5 33.7 864 
Margin (P t -mc it) 8.6 21.0 -25.0 158.6 864 
CAPBINDit 0.05 0.22 0.00 1.00 864 
Capacity (kit) 2463 1054 670 3879 864 
Output (qit) 813 844 0 3720 864 
Market demand (Qt) 30395 4146 20057 43847 864 
Elasticities based on PX bids 6.91 6.36 0.05 24.65 864 
Elasticities based on Puller (2007) 2.12 1.33 0.56 10.77 864 
 
April 16, 1999 – November 30, 2000 
 

      

Price (Pt) 61.2 68.4 9.5 750.0 2300 
Marginal cost (mcit) 42.7 22.9 22.3 214.5 2300 
Margin (P t -mc it) 18.4 57.3 -33.4 697.1 2300 
CAPBINDit 0.05 0.21 0.00 1.00 2300 
Capacity (kit) 2955 769 1020 3879 2300 
Output (qit) 1223 793 0 3317 2300 
Market demand (Qt) 30604 3658 22076 42404 2300 
Elasticities based on PX bids 4.02 4.35 0.01 24.89 2300 
Elasticities based on Puller  (2007) 1.02 0.68 0.35 5.26 2300 
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Table A.4. Selection of Pre-truncated Mean 
 

   Elasticities based on Puller (2007)   Elasticities based on PX bids 
              
Null Hypothesis   Average log-likelihood AIC   Average log-likelihood AIC 
              

July 1, 1998 - April 15, 1999     

       

µ=0   -3.24 5601.4   -3.77 6517.4 

µ=1   -3.30 5702.5   -3.80 6565.4 

µ=2   -3.37 5829.0   -3.83 6610.1 

Obs.   864     864   

              

April 16, 1999 – November 30, 2000 
  

  

µ=0   -3.93 18092.3   -5.03 23135.8 

µ=1   -4.09 18833.8   -5.06 23284.6 

µ=2   -4.42 20319.6   -5.08 23396.4 

Obs.   2300     2300   

 
Note: AIC: Akaike Information Criterion; Obs.: number of observations. The values, which correspond to 
the minimal value of AIC are shown in bold.  
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Table A.5. Likelihood Ratio Tests for Heteroscedasticity in Composed Error Term 
 

  Elasticities based  
on Puller (2007)  

  

Elasticities based  
on PX bids 

  
Null Hypothesis Average 

log-
likelihood 

LR Test, χ2 

 
Average 

log-
likelihood 

LR test, χ2 
 

July 1, 1998 - April 15, 1999  
     

υ1=υ2=0, ζ2=ζ3=ζ4=0 -3.42 306.9***  (5) -3.79 88.4***  (5) 

     

τ1=τ2=0, δ2=δ3=δ4=0   -3.49 117.5***   (11) -4.16 1710.3***   (11) 

π2=π3=π4=π5=π6=π7=0     

     

Unrestricted model -3.24  -3.77  

 
April 16, 1999 – November 30, 2000 

   

     

υ1=υ2=0, ζ2=ζ3=ζ4=ζ5=0 -4.04 197.1***  (6) -5.04 59.11***    (5) 

     

τ1=τ2=0; δ2=δ3=δ4=δ5=0 -4.09 78.3***  (12) -5.47 1948.1***   (12) 

π2=π3=π4=π5=π6=π7=0     

   

Unrestricted model -3.93  -5.03  

 
Notes: Tests are based on equations (11) and (12). (*** ) indicate that the null hypothesis 
is rejected at 1% level; degrees of freedom in parentheses. 
 



Figure A.1. Double-bounded distributions 
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Figure A.2. Price-cost margins in hour 18 (July 3, 1998 – November 30, 2000) 

 

  
 
 
 

Figure A.3. Residual Demand Elasticities Facing Strategic Firms in hour 18 
(Median Monthly Absolute Values, July, 1998 – November, 2000) 

 

 
 



 
Figure A.4. Comparison of market power scores using elasticities based on Puller (2007). 

 

 
 
 

Figure A.5. Firm-Specific Conduct Parameter Estimates vs. Firm-Specific Lerner Indices  
(over July 1, 1998 – April 15, 1999, elasticities based on PX data)  
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Figure A.6. Firm-Specific Conduct Parameter Estimates vs. Firm-Specific Lerner Indices  

(over April 16, 1999 – November 30, 2000, elasticities based on PX data)  
 

   
 

   
 

 


