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Bayesian Estimation of Inefficiency Heterogeneity in Stochastic

Frontier Models∗

Jorge E. Galán† Helena Veiga‡ Michael P. Wiper§

ABSTRACT

Estimation of the one sided error component in stochastic frontier models may erroneously attribute
firm characteristics to inefficiency if heterogeneity is unaccounted for. However, it is not clear in
general in which component of the error distribution the covariates should be included. In the
classical context, some studies include covariates in the scale parameter of the inefficiency with the
property of preserving the shape of its distribution. We extend this idea to Bayesian inference for
stochastic frontier models capturing both observed and unobserved heterogeneity under half normal,
truncated and exponential distributed inefficiencies. We use the WinBugs package to implement
our approach throughout. Our findings using two real data sets, illustrate the relevant effects on
shrinking and separating individual posterior efficiencies when heterogeneity affects the scale of the
inefficiency. We also see that the inclusion of unobserved heterogeneity is still relevant when no
observable covariates are available or they are found to be technology related.

JEL classification: C11; C23; C51; D24

Keywords: Stochastic Frontier Models; Heterogeneity; Bayesian Inference.

I. Introduction

Stochastic frontier models, first introduced in Aigner et al. (1977) and Meeusen and van den Broeck

(1977), are important tools for efficiency measurement. These models require the specification of an

economic, functional form based on a production or cost function which includes a composite error term.

This error term can be decomposed into two parts, firstly a two-sided, idiosyncratic error and secondly,

a non-negative inefficiency component. Measures of efficiency are obtained from this one-sided error,

which typically is assumed to follow some specific distribution. The most common distributions for the
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one-sided error are the half-normal (Aigner et al., 1977), exponential (Meeusen and van den Broeck,

1977), truncated normal (Stevenson, 1980), and gamma (Greene, 1990).

However, the estimated inefficiency component often includes some firm characteristics other than

outputs, inputs, or prices defined from the production or cost function, which should not be attributed

to inefficiency. These firm characteristics are exogenous variables (e.g. type of ownership, GDP level in

the country of operation) that have an effect on the technology used by the firms or directly on their

inefficiency. If these variables are not taken into account in the model specification, this may affect the

estimation of the inefficiencies or of the frontier significantly. The distinction between heterogeneity

and inefficiency has become a very important issue in stochastic frontier models.

Firm characteristics can be modeled in the frontier if they imply heterogenous technologies or in

the one-sided error component if they affect the inefficiency. In the former case, covariates are directly

included in the functional form and the main interest is to model unobserved heterogeneity (see Greene,

2005). For the case of heterogeneity in the inefficiency, covariates are usually included in the parameters

of the one-sided error distribution (see Huang and Liu, 1994).

Heterogeneity in stochastic frontier models has also been studied from the Bayesian context. The

Bayesian approach to stochastic frontiers introduced by van den Broeck et al. (1994) presents advan-

tages in terms of formally deriving posterior densities for individual efficiencies, incorporating economic

restrictions, and in the easy modeling of random parameters through hierarchical structures. Hierarchi-

cal models have been used to capture heterogeneous technologies (see Tsionas, 2002) and heterogeneity

in the inefficiency has been considered through covariates in the distribution of the non-negative error

component (see Koop et al., 1997). Modeling observed heterogeneity using non parametric and flexible

mixtures of inefficiency distributions are other interesting recent contributions (see Griffin and Steel,

2004, 2008). However, the treatment of unobserved heterogeneity in the non-negative error component

has been little explored.

Here, we propose the modeling of both observed and unobserved heterogeneity in the inefficiency

within a Bayesian framework. In particular, we extend the model of Caudill et al. (1995), where in the

classical context, observed covariates were included in the scale parameter of a half normal inefficiency

distribution. This model has the property of changing the scale while preserving the shape of the

inefficiency distribution. This is called the scaling property in Wang and Schmidt (2002) and Alvarez

et al. (2006) and allows us to think of the inefficiency as being composed of two parts where the first
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component captures random managerial skills and the second depends on firm characteristics. Here, we

include heterogeneity in the parameters of half normal, truncated normal and exponential distributed

inefficiencies in such a way that they are allowed to vary over time and that the scaling property is

preserved.

For illustration, we use two data sets which have been previously analyzed only in the classical

context. The first data set is from a controversial report by the World Health Organization (WHO)

on the efficiency of national health systems (see WHO, 2000), while the second evaluates the economic

efficiency of US domestic airlines. Results are compared against a base model with no heterogeneity

and a model with covariates in the frontier.

The rest of this paper is organized as follows. Section II presents a brief literature review on

heterogeneity in stochastic frontier models and the proposed model. Section III presents the Bayesian

inference and model selection criteria. Section IV reports the applications to the WHO and the US

domestic airlines data sets. Finally, in Section V we provide conclusions and consider some possible

extensions of our approach.

II. Heterogeneity in stochastic frontier models

A. A brief literature review

The original stochastic frontier model introduced by Aigner et al. (1977) and Meeusen and van den

Broeck (1977) has the following form:

yit = xitβ + vit − uit (1)

where yit represents the output for firm i at time t, xit is a vector that contains the input quantities

used in the production process, vit is an idiosyncratic error that is typically assumed to follow a normal

distribution and uit is a one-sided component representing the inefficiency and following some non-

negative distribution.

However, firm specific factors not specified in (1) can be mistaken for inefficiency if they are not

identified. Heterogeneity can either shift the efficiency frontier or change the location and scale of

the inefficiency estimations (see Kumbhakar and Lovell, 2000; Greene, 2008, for complete reviews). In
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general, when external factors are supposed to capture technological differences and these are out of

the firms’ control, heterogeneity should be specified in the frontier. In this case, the main interest is

capturing unobserved effects. In the classical context, this has been modeled through fixed and random

effects or models with random parameters (see Greene, 2005). Bayesian approaches have been based on

frontier models with hierarchical structures (see Tsionas, 2002; Huang, 2004).

When heterogeneity is more related to efficiency and thus more likely to be under firms’ control, then

this should affect directly the one-sided error term. In the parametric context, inefficiency heterogeneity

is often included in the location or scale parameters of the inefficiency distribution. For example,

covariates shift the underlying mean of inefficiency in Kumbhakar et al. (1991), Huang and Liu (1994)

and Battese and Coelli (1995). A reduced form of these models assumes that the location parameter of

uit depends on a vector of covariates zit and parameters δ as follows:

uit = |Uit|; Uit ∼ N(µit, σ
2
u)

µit = zitδ.
(2)

The scale parameter of the one-sided error component has also been modeled as a function of firm

characteristics. Reifschnieder and Stevenson (1991) provided one of the first linear specifications where

this parameter varies across firms. A similar model was proposed by Caudill et al. (1995) with the aim

of treating heteroscedasticity in frontier models. These authors found biased inefficiency estimations

when heteroscedasticity was not accounted for.1 The proposed model specifies the variance of a half

normal distributed inefficiency as an exponential function of time invariant covariates:

ui = |Ui|; Ui ∼ N(0, σ2
Ui
)

σUi = σU · exp(ziγ).
(3)

This specification has the characteristic of changing the scale of the inefficiency distribution while

preserving its shape and is referred in the literature as the scaling property (see Wang and Schmidt,

2002; Alvarez et al., 2006). In general, this property allows us to think about inefficiency as being

composed of two parts: uit = u∗it · f(zit, δ). The first component is a base inefficiency, which is not

affected by firm characteristics and captures random managerial skills, while the second component

is a function of heterogeneity variables determining how well management is performed under these

1In a previous study, Caudill and Ford (1993) also found biased estimates of the frontier parameters.
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conditions. Another interesting feature of this property is that the interpretation of the effects of

covariates on the inefficiency is direct and independent of the inefficiency distribution. The scaling

property also holds when the inefficiency is exponentially distributed (see Simar et al., 1994), or in a

particular case of truncated normal inefficiency where both parameters are an exponential function of

firm characteristics as follows (see Wang and Schmidt, 2002; Alvarez et al., 2006):

uit = |Uit|; Uit ∼ N(µit, σ
2
Uit

)

µit = µ · exp(zitδ)

σUit = σU · exp(zitδ).

(4)

Specification (4) for the inefficiency is a variation of a previous proposal by Wang (2002) where both

the mean and the variance of truncated normal inefficiencies are simultaneously affected by the same

covariates but with different coefficients. Other authors have also proposed heterogeneity specifications

that include firm characteristics in the variance of the idiosyncratic error with the aim of treating

heteroscedasticity in frontier models (see Hadri, 1999).

In the Bayesian context, Koop et al. (1997) presented different structures for the mean of the

inefficiency component as Bayesian counterparts to the classical fixed and random effects models. One

of these specifications is the varying efficiency distribution model, which includes firm specific covariates

in the parameter of an exponential distribution. These covariates link the firm effects and only the

efficiencies of firms sharing common characteristics are drawn from the same distribution. The following

is the specification where a time invariant inefficiency depends on a vector of binary covariates wit and

parameters γ:

ui ∼ Ex(λ−1
i )

λi = exp(wiγ).
(5)

The literature on modeling of unobserved firm characteristics in the inefficiency is still scarce. In the

frequentist context, Greene (2005) proposed a model where the coefficients of the observed covariates are

allowed to be firm specific and vary randomly. In the Bayesian framework, the marginally independent

efficiency distribution model proposed by Koop et al. (1997) may capture unobserved inefficiency het-

erogeneity through exponentially distributed inefficiencies with firm specific mean λi and independent

priors.
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B. The Model

In this section, we present a general stochastic frontier model for panel data that allows the modeling of

both observed and unobserved inefficiency heterogeneity and preserves the scaling property. Inefficien-

cies are assumed to follow: a) a half normal distribution, which is an an extension of the specification

for the scale parameter in (3), b) a truncated normal distribution, which extends the scaled Stevenson

model in (4), or c) an exponential distribution that can be seen as an extension of model in (5). The

general model is:

yit = xitβ + zitδ + vit − uit

vit ∼ N(0, σ2); uit = |Uit|

a) Uit ∼ N(0, σ2
U · (exp(hitγI1 + τitI2))

2)

b) Uit ∼ N(µ · exp(hitγI1 + τitI2), σ
2
U · (exp(hitγI1 + τitI2))

2)

c) Uit ∼ Ex(λ · exp(hitγI1 + τitI2)),

(6)

where zit is the vector of the observed heterogeneity variables that affect the technology; hit is the vector

of all covariates with effects in the scale of inefficiency; τit is an unknown parameter which intends to

capture time varying unobserved firm effects in the inefficiency; and, β, δ, and γ are vectors of the

estimated parameters. I1 and I2 are indicator variables taking the value of 1 when either observed

covariates or unobserved heterogeneity are accounted for, respectively.

It is easy to extend this specification to a hierarchical model which also allows for additional,

unobserved, firm effects in the technology. However, in practical applications, mean posterior efficiencies

are found to be very close to 1 for almost all firms (see Huang, 2004; Tsionas, 2002, for similar results).

From our point of view, these results are inconclusive as they do not allow us to get reliable efficiency

rankings.

III. Bayesian inference

The use of Bayesian methods in stochastic frontier analysis was introduced by van den Broeck et al.

(1994) and has become very common in recent applications. Bayesian approaches have various attractive

properties and, in particular, restrictions such as regularity conditions are easily incorporated and

parameter uncertainty is formally considered in deriving posterior densities for individual efficiencies.
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All the models derived from the general specification in (6) are fitted by Bayesian methods. In

order to do this, we first need to introduce prior distributions for the model parameters. Here we

assume proper but relatively disperse prior distributions throughout. The distributions assumed for the

parameters in the frontier function are as follows: β ∼ N(0,Σ−1
β ), δ ∼ N(0,Σ−1

δ ) with diffuse, inverse

gamma priors for the variances. Regularity conditions are imposed on those parameters in β that must

be positive in order to satisfy the theoretical economic constraints on the frontier. Finally, the variance

of the idiosyncratic error term is also inverse gamma, that is σ−2 ∼ G(aσ−2 , bσ−2) with low values of

the shape and scale parameters.

Regarding observed inefficiency heterogeneity, the distribution of the one-sided error component for

the half-normal and truncated normal models are: u|γ,h ∼ N+(0, λ−1·(exp(hγ))2), and u|γ,h ∼ N+(θ·

exp(hγ), λ−1 · (exp(hγ))2), respectively; where the superscript + denotes truncation to positive values,

θ is the mean parameter, and λ is the precision parameter. For the exponential model the distribution

is: u|γ,h ∼ G(1, λ · exp(hγ)), with shape parameter equal to 1 and scale parameter λ. For all models,

γ is normally, N(0,Σ−1
γ ) distributed with a diffuse prior for the covariance matrix. Parameters θ and

λ are defined for each distribution as in Griffin and Steel (2007). Priors for these parameters are also

valid in the case of models without heterogeneity in the inefficiency, where exp(hγ) = 1.

In the case of unobserved heterogeneity in the inefficiency, the unknown parameter is specified as:

τ ∼ N(τ ,σ−2
τ ), where τ ∼ N(0,σ−2

τ ) and σ−2
τ ∼ G(aσ−2

τ
, bσ−2

τ
), with diffuse priors.

The complexity of these models makes necessary to use numerical integration methods such as

Markov Chain Monte Carlo (MCMC), and in particular the Gibbs sampling algorithm with data aug-

mentation as introduced by Koop et al. (1995). For our models, implementation was carried out using

the WinBUGS package following the general procedure outlined in Griffin and Steel (2007). For all

our applications, the MCMC algorithm involved 50000 MCMC iterations where the first 10000 were

discarded in a burn-in phase.

Finally, although we do not display the details here, we should also note that in our applications,

some sensitivity analysis of our results to changes in the prior parameters was carried out. Results

showed that the posterior inference was relatively insensitive to small changes in these parameters.
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A. Model selection

The different models are evaluated in terms of three criteria, the Deviance Information Criterion (DIC),

the Log Predictive Score (LPS) and the Mean Square Error (MSE) of predictions. The former is a within

sample measure of fit introduced by Spiegelhalter et al. (2002) commonly used in Bayesian analysis.

Defining the deviance of a model with parameters θ as D(θ) = −2 log p(y|θ), where y are the data, then

the DIC is:

DIC = D̄ + pD

where D̄ is the expected deviance and pD is a complexity term such that pD = D̄ −D(θ̄), where θ̄ is

the mean of the posterior parameter distribution. The DIC can be evaluated automatically within the

WinBugs setup and a good description of its use in stochastic frontier models can be seen in Griffin and

Steel (2007).

The LPS is a scoring rule developed in Good (1952) and is defined as the average of log predictive

density functions evaluated at observed out-of-sample values. In general, it compares the predictive

distribution of a model with observations that are not used in the inference sample. To do this, we

split the sample into two parts. The first set of n traininng data is used to fit the model and the

predictive performance of the model is calculated on the second set of q data. In our case, the training

data set contains all observations except one for every firm, and the second data set just contains the

last observation of every individual unit. In stochastic frontier frameworks, Griffin and Steel (2004)

and Ferreira and Steel (2007) employed this criterion for model comparison. The formulation is the

following:

LPS =
−1

q

q∑
i=1

log p(yn+i|y1, ..., yn)

In this work, we also compare the models in terms of predictive mean squared error (MSE). This

measure involves again the partition of the sample into two parts as above. The models are fitted using

the training sample and their estimated parameters are used to predict the data for the last observation

of every firm. The MSE is calculated as follows:

MSE =
1

k

k∑
i=1

(
yi − E

[
(β′xi − ui)|y1, . . . , yn

])2
,

where k is the number of firms, ui is the mean of the inefficiency component, which is different depending
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on the distribution and varies with the firm for models with heterogeneity in the inefficiency.

IV. Empirical applications

In this section, we analyze two data sets, estimate the models presented in section II and interpret the

results.

A. Application to WHO data set

Evans et al. (2000) estimated the technical efficiency of 191 countries in the provision of health by using

a classical fixed effects stochastic frontier model for an unbalanced panel. The original data set covers

5 years from 1993 to 1997 and the production function model proposed was the following:

ln(DALEit) = αi + β1 ln(HExpit) + β2 ln(Educit) + β3
1

2
ln2(Educit) + vit,

where DALE is the disability adjusted life expectancy, a measure that considers mortality and illness

and represents health output. Input amounts are measured by HExp and Educ, which are health

expenditure and the average years of education, respectively.

Their results were reported by the WHO and suffered from several criticisms since the authors did

not consider the effects of heterogeneity in their study, even though the sample included countries with

very different characteristics such as Switzerland, China, or Zimbabwe. This led to unexpected country

health system performance rankings.

Greene (2004), using a classical random effects model, found that country rankings change when tech-

nology and inefficiency heterogeneity are considered. The author proposed to capture differences among

countries by including eight exogenous variables separated into two groups: zi = [Tropicsi, PopDeni]

and hi = [GEffi, V oicei, Ginii, GDPi, PubF ini, OECDi]. Tropics is a binary variable that takes the

value 1 if the country is located in the tropic and 0 otherwise; PopDen is the country population den-

sity, which may capture effects of dispersion but also congestion in the provision of health. GEff is an

indicator of government efficiency; V oice is a measure of political democratization and freedom; Gini

is the income inequality coefficient; GDP is the per capita country gross domestic product; PubF in is

the proportion of health care financed with public resources, and OECD is a binary variable that takes
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the value 1 if the country belongs to the organization and 0 otherwise. Variables in zi are assumed to

shift the frontier itself and then they are included as covariates in the production function. Variables

in hi are more under the control of countries and policy related but it is not clear where they should

be located.2

In order to assess the effects of heterogeneity under the Bayesian approach, we propose four different

models starting from our proposal in (6) using the covariates in zi and hi.
3 The inefficiency component

may follow: a) half-normal, b) truncated normal, or c) exponential distributions.

ln(DALEit) = α+ β1 ln(HExpit) + β2 ln(Educit) + β3
1
2 ln

2(Educit) + β4Tropicsi

+β5 ln(PopDeni) + hiδ + vit − uit

vit ∼ N(0, σ2
v); uit = |Uit|

a) Uit ∼ N(0, σ2
U · (exp(hiγI1 + τitI2))

2)

b) Uit ∼ N(µ · exp(hiγI1 + τitI2), σ
2
U · (exp(hiγI1 + τitI2))

2)

c) Uit ∼ exp(λ · exp(hiγI1 + τitI2)).

(7)

The base model, denoted Model I, does not consider any type of heterogeneity in the inefficiency,

and only variables in zi are included in the production function. Model II includes the covariates in hi

as technology heterogeneity variables but not in the inefficiency. Therefore, these two models assume

I1, I2 = 0. Models III and IV incorporate our proposal of heterogeneity that changes the scale but not

the shape of the inefficiency. In particular, Model III allows the parameters of the inefficiency component

to vary across countries through the random parameter τit that captures unobserved heterogeneity. For

this model, δ = 0, I1 = 0 and I2 = 1. Finally, Model IV captures observed heterogeneity in the

inefficiency through covariates in hi and the unknown parameter is omitted. Then, δ = 0, I1 = 1 and

I2 = 0.4

Model comparison criteria for the four models and the three distributions are presented in Table I.

In general, similar conclusions are obtained from the three criteria. Results show that models including

either observed or unobserved heterogeneity improve from the base model. In particular, the model

2Greene (2004) chose a model with all covariates in the production function excluding Gini and GDP, which were
included in the mean of a truncated normal distributed inefficiency.

3Regularity conditions are imposed on β1 and β2.
4A model including observed and unobserved heterogeneity in the inefficiency parameters simultaneously was also fitted

but we omit the results because they were roughly the same as those obtained with Model IV. This could imply that the
observed covariates in hi capture all relevant heterogeneity in the inefficiency.
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Table I

Model comparison criteria assuming different inefficiency distributions

Distribution Model I Model II Model III Model IV

Half normal DIC -2251.7150 -2598.3080 -2423.3160 -2914.7370
LPS -97.1690 -132.7610 -154.8950 -196.4420
MSE 0.1382 0.0864 0.0906 0.0736

Truncated normal DIC -2292.7710 -2593.1280 -2495.1400 -2884.9030
LPS -122.8900 -130.4520 -146.7710 -185.9830
MSE 0.1387 0.1051 0.1084 0.0869

Exponential DIC -2223.7420 -2568.4380 -2231.4950 -2580.1720
LPS -95.9810 -121.5150 -123.3560 -132.2700
MSE 0.1392 0.1153 0.1281 0.1085

that exhibits the best fit and predictive performance includes observed heterogeneity in the inefficiency,

which suggests that covariates in hi are inefficiency related. Regarding the inefficiency distributions, the

half-normal and truncated normal models present better indicators and seem to be better alternatives,

specially for those models considering observed heterogeneity in uit. However, efficiency rankings are

almost perfectly correlated across distributions as we can observe for Model IV in Figure 1.

Figure 1. Efficiency rankings in Model IV across distributions

Hereafter, we report the results for the half-normal distribution given the better performance indi-

cators obtained for model IV. Table II reports the mean of the posterior distributions of the parameters

for the four models. In general, we observe that including covariates affecting the scale of the ineffi-

ciency component increases the mean and diminishes the dispersion of the predictive posterior efficiency.

Regarding the coefficients, preserving the scaling property allows us to interpret directly the effect of

covariates on the inefficiency in Model IV given that γ = ∂ lnuit/∂hi. We limit the analysis to the

signs, which suggest that higher equality, income, government efficiency or pertaining to the OECD
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increase the efficiency of health provision as could be intuitively expected. In contrast, higher levels of

democracy and public finance of health services lead to lower efficiency.

Table II

Posterior means of the parameter distributions with half-normal distributed inefficiency

Parameters Model I Model II Model III Model IV

α 3.5272 3.4343 3.5854 3.8071
lnHExp 0.0678 0.0237 0.0594 0.0382
lnEduc 0.2386 0.2256 0.2163 0.1502
1
2 ln

2Educ -0.0387 -0.0471 -0.0385 -0.0308
Tropics -0.0239 -0.0153 -0.0142 -0.0124
lnPopDen 0.0025 -0.0006 -0.0001 0.0017
Gini - -0.2559 - 4.3871
lnGDP - 0.0796 - -0.5945
GEff - -0.0199 - -0.0939
V oice - 0.0237 - 0.0884
OECD - -0.0418 - -0.7439
lnPubF in - -0.0432 - 0.0681
τ - - -2.2678 -
σu 0.1379 0.1299 0.1055 0.0836
σv 0.0412 0.0367 0.0355 0.0292
mean pred. eff. 0.8569 0.8543 0.89291 0.8984
sd pred. eff. 0.0987 0.1010 0.0916 0.0721
DIC -2251.7150 -2598.3080 -2423.3160 -2914.7370
LPS -97.1690 -132.7610 -154.8950 -196.4420
MSE 0.1388 0.0861 0.0903 0.0730

However, the most interesting conclusions come from the efficiency rankings since they allow for

comparisons among countries. Figure 2 shows efficiency rankings’ scatter plots comparing the base

model against the other three models. For Model II, which includes the covariates in the frontier, most

countries preserve a similar position except for small changes in the middle rankings. The ranking

correlation to the base model is 0.94. Model III, capturing unobserved heterogeneity in the inefficiency,

shows a greater dispersion in middle positions but the first and last ranked countries barely change. The

ranking correlation to the base model is 0.87. Finally, Model IV, the one with observed covariates in the

scale parameter of the inefficiency, exhibits the greatest changes specially in top and middle positions,

and presents the lowest correlation against the base model (0.67). In particular, the highest ranked

countries present major movements in their positions, specially when covariates are included in the

inefficiency; while badly performing countries are always roughly the same regardless of the model used.

This latter group is composed mainly of central African countries (e.g. Zambia, Botswana, Zimbabwe),
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which share some characteristics related to low income, tropical diseases, etc.

Figure 2. Efficiency rankings - Base model vs. heterogeneity models

Table III

Top 20 most efficient countries

Model I Model II Model III Model IV

1. Yemen 1. Jamaica 1. Jamaica 1. Japan
2. Oman 2. Yemen 2. Oman 2. Sweden
3. Jamaica 3. Honduras 3. Georgia 3. Spain
4. Morocco 4. Cuba 4. Sri Lanka 4. Norway
5. Cape Verde 5. Morocco 5. Morocco 5. Greece
6. Sri Lanka 6. Armenia 6. Yemen 6. Austria
7. Solomon Islands 7. Turkey 7. Armenia 7. Jamaica
8. Georgia 8. Oman 8. Cape Verde 8. Italy
9. Indonesia 9. Cape Verde 9. China 9. France
10. Armenia 10. El Salvador 10. Indonesia 10. Luxembourg
11. Venezuela 11. China 11. Solomon Islands 11. Belgium
12. El Salvador 12. Nicaragua 12. Malta 12. United Kingdom
13. Honduras 13. Mexico 13. Saudi Arabia 13. Finland
14. China 14. Costa Rica 14. Venezuela 14. Canada
15. Saudi Arabia 15. Sri Lanka 15. Greece 15. Georgia
16. Dominican R. 16. Moldova 16. El Salvador 16. Netherlands
17. Egypt 17. Chile 17. Singapore 17. Iceland
18. Azerbaijan 18. Paraguay 18. Spain 18. Switzerland
19. Turkey 19. Spain 19. Dominican R. 19. Australia
20. Costa Rica 20. Greece 20. Honduras 20. Singapore

In order to observe in detail the changes that occur in the top ranked countries under the different

models, Table III shows the top 20 most efficient countries under all four models. Although there are

differences, the ranking is quite stable when we consider the first three models. All of these include

countries from Middle East, Asia, North of Africa and Latin America. However, this changes completely
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when observed heterogeneity affects the scale of inefficiencies. In Model IV, the developed countries

rank in the first positions as might be intuitively expected. For example, Japan, Sweden and Norway

are the top 3 countries under this model while they are ranked 30, 55 and 58 under the base model.

The opposite is also observed for some developing countries which are surprisingly very efficient when

heterogeneity is not considered such as Yemen and Cape Verde, among others.

Changing the scale of the inefficiency through observed covariates has an important effect over the

rankings and a heat map illustrates very well this situation. Figure 3 shows that while most of the

African countries continue to exhibit low efficiency; there is a significant change in the classification of

the top and middle ranked observations. The best performing countries, in particular, the developed

countries are very sensitive to the inclusion of relevant covariates such as income and inequality that

distinguish them from developing countries.

Figure 3. Heat map of efficiency rankings - Base model vs. Model IV
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The difference in the rankings obtained with Model IV is justified by significant moves and shrinkages

of the individual posterior efficiency distributions. Figure 4 shows the posterior 90% credible intervals of

efficiencies for some selected countries. It can be seen that the intervals are narrower when the observed

heterogeneity affects the scale of the inefficiency since the estimations uncertainty diminishes. Moreover,

the gap between the worst and the best performing countries increases under Model IV, resulting in

less overlaps of the posterior distributions. Countries with the lowest indicators on the heterogeneity

variables such as the African countries obtain even lower scores, while developed countries improve.

The case of US is remarkable, it occupies position 45 under Model IV, while it ranks 140 under the

base model. Less dispersion and overlaps of the posterior efficiency distributions allow for more reliable

conclusions about the rankings obtained.

Figure 4. 90% credible intervals of the posterior efficiency distributions for selected countries with
half-normal inefficiencies

As mentioned previously, one of the advantages of preserving the scaling property is the decomposi-

tion of the one-sided error term into a base and a heterogeneity component. In particular, considering

half-normal distributed inefficiencies, uit = |U∗
it| · exp(hi,γ) where U∗

it ∼ N(0, σ2
U ). Table IV presents

this decomposition in terms of efficiency for the selected countries in Figure 4. We observe that coun-

tries such as Yemen, Brazil and Colombia present higher base efficiency but lower total efficiency than

developed countries. This may indicate that these countries present good managerial skills in health

provision but under their specific characteristics, they exploit their management abilities to a lesser

extent than the developed countries. One of the countries taking great advantage of environmental
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characteristics is the USA, whose efficiency in health provision seems to be almost totally dependent in

their particular attributes. These results are in line with those obtained by contrasting the base model

and Model IV. Other group of countries, mainly from Africa exhibit low base and low total efficiency.

This may indicate both, poor natural managerial abilities, and inability to perform well under their

relative bad conditions. This may explain why these countries present very bad performance under all

models whether heterogeneity is considered or not.

Table IV

Efficiency decomposition for selected countries

Country Total efficiency Base efficiency

Angola 0.6518 0.0425
Australia 0.9860 0.1635
Brazil 0.8979 0.3126
Brunei 0.9088 0.0857
Cameroon 0.6897 0.0259
Canada 0.9877 0.1367
Colombia 0.9345 0.4489
Japan 0.9929 0.2135
Qatar 0.9310 0.0868
Sierra Leone 0.4466 0.0763
Spain 0.9908 0.3120
United Kingdom 0.9880 0.2106
United States 0.9672 0.0532
Yemen 0.9128 0.4543
Zimbabwe 0.5273 0.0266

Overall, we observe that allowing heterogeneity to change the scale but not the shape of inefficiency

distributions has relevant effects on shrinking and moving the distributions of posterior individual

efficiencies. The covariates are found to be inefficiency related and their inclusion affecting the scale of

the one sided error component distribution has a large impact on the countries’ efficiency ranking. This

may change the conclusions derived from the study and have possible implications over health policies.

B. Application to Airlines

The airline industry is an interesting sector where performance and efficiency have been studied in

the literature through parametric and non-parametric methods. Usually, production functions are

employed to evaluate technical efficiency and environmental covariates are often included in the frontier

as exogenous variables (see Coelli et al., 1999).
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In this application we use a Cobb-Douglas cost function with an output quadratic term to evaluate

economic efficiency of the airline industry. The model in (6) can be easily extended to a cost function

and as in the previous application we consider individual characteristics to capture firms heterogeneity.

We use a data set of 24 US domestic airlines over 15 years, from 1970 to 1984, with a total of 246

observations. This is a revised sample obtained from a data set used by Greene (2008).5

We estimate four stochastic frontier models similar to those proposed in the previous application. For

each model the inefficiency component is assumed to follow: a) half-normal, b) truncated normal, or c)

exponential distributions. We impose regularity conditions on prices and output in order to accomplish

positive elasticities. The general specification that encompasses our four models is the following:

lnCit = α+ β1 lnPmit + β2 lnPfit + β3 lnPlit + β4 lnPeit

+ β5 ln(yit) + β6
1
2 ln

2(yit) + β7t+ β8t
2 + hitδ + vit + uit

vit ∼ N(0, σ2
v); uit = |Uit|

a)Uit ∼ N(0, σ2
Uit · (exp(hitγI1 + τitI2))

2)

b)Uit ∼ N(µ · exp(hitγI1 + τitI2), σ
2
Uit · (exp(hitγI1 + τitI2))

2)

c)Uit ∼ exp(λit · exp(hitγI1 + τitI2)),

(8)

where Cit is the total cost supported by airline i at time t in the output production, and Pmit, Pfit,

Plit, Peit are the input prices of material, fuel, labor and equipment, respectively. Cost and prices

are normalized by the property price. yit is the output of airline i at time t and it is an index that

aggregates regular passenger, mail, charter, and other freight services. With the purpose to capture

possible technological changes over the 15 years covered by the sample we include a trend and its square

into the model.

Regarding heterogeneity, the vector of observed covariates is hit = [Loadit, Stageit, Pointsit], and

τit is the unobserved heterogeneity unknown parameter. Variables in hit are load factor, average stage

length and points served. Load factor is the effective performed tonne-passenger per kilometer by the

airline as a proportion of the total available tonne-passenger per kilometer. This is a capital utilization

ratio which can be seen as a measure of either demand or operational optimization. Stage length is the

ratio of total performed kilometers to the total number of departures. It defines whether or not the

5The original data set includes 256 observations, ten years of observations for an extra airline company. We excluded
this firm since we do not have data for the exogenous variables of this airline.
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airline makes long or short flights and measures scale effects. Finally, the number of points served is a

measure of network size and its effects.6

The base model (Model I) does not consider any type of heterogeneity; therefore, δ = 0, γ = 0

and I1 = I2 = 0. The last two assumptions apply for Model II, which considers only technological

heterogeneity by including hit in the cost function. As in the WHO application, Model III accounts

only for unobserved inefficiency heterogeneity through τit. Also, it is possible to think of covariates in

hit to be related with inefficiencies in the sense that the length of flights may have an effect on the

unproductive time of aircrafts; different utilizations of the aircrafts may imply different fix costs sharing;

and, the network size may affect coordination and routes optimization. Therefore, Model IV considers

the scale of the non-negative error component to be affected by these observed covariates.7

Table V

Model comparison criteria assuming different distributions for the inefficiency

Distribution Model I Model II Model III Model IV Model V

Half normal DIC -332.6250 -479.2080 -350.2240 -374.8520 -485.1709
LPS -32.1260 -77.6020 -40.1970 -52.5360 -78.5218
MSE 0.0264 0.0093 0.0259 0.0172 0.0112

Truncated normal DIC -403.6720 -606.3150 -413.9810 -525.8170 -614.7094
LPS -13.7340 -33.6520 -15.3840 -21.6690 -33.6910
MSE 0.0257 0.0096 0.0255 0.0178 0.0093

Exponential DIC -309.3740 -455.6980 -317.1460 -353.3810 -453.8130
LPS -1.5550 -11.6580 -2.1830 -9.5760 -11.6927
MSE 0.0318 0.0207 0.0297 0.0238 0.0214

From Table V we observe that the results are robust, both in terms of fit and predictive perfor-

mance, to the inefficiency component distributions. Models that include either observed or unobserved

heterogeneity present better values for the DIC, LPS and MSE than those obtained with the base mod-

els. Moreover, the best performance is exhibited by models that include exogenous variables in the

cost function. Therefore, we conclude that load factor, stage length and the number of served points

are more likely to be technology related than inefficiency related factors. This leads us to propose an

extra model (Model V) that includes the observed covariates in the frontier but also accounts for unob-

served heterogeneity in the inefficiency. This model presents improvements in most of the performance

6The first two covariates are commonly used in productivity and efficiency applications as well as other variables of
size. Coelli et al. (1999) use aircraft capacity besides stage length and load factor.

7We considered a fifth model that included both observed and unobserved heterogeneity in the sale parameter of
inefficiency, but the results were roughly the same than those obtained in Model IV. As in the WHO application, this
could mean that the covariates used capture all relevant heterogeneity in the inefficiency.
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indicators across distributions.

These results differ from those obtained by Greene (2008), where no differences were reported when

heterogeneity variables were included in the mean of a truncated inefficiency component compared to

a model with the covariates in the cost function. This could be due to the fact that we include the

covariates in a way that they affect the scale but not the shape of the inefficiency distribution. Also, we

impose regularity conditions in prices, which lead our models to present the expected coefficient signs.8

Regarding distributions, it is not possible to identify which one leads the different models to perform

the best. In general, models with inefficiency component following a half-normal distribution exhibit the

best LPS and models with truncated normal distributed inefficiencies present the best DIC. However,

as in the WHO application, rankings are almost unaltered across distributions. So, hereafter, we report

results with truncated normal inefficiencies. Table VI reports the posterior means of the parameter

distributions. We can observe that the inclusion of either unobserved or observed heterogeneity that

affects the scale but not the shape of the inefficiencies diminishes the predictive efficiency dispersion

and moves its mean toward 1. Regarding the coefficients, we can check that increasing the aircraft

utilization and the flights length have negative effects in costs and inefficiency, while a larger network

has the opposite effect. Interpretations of the effect of covariates over inefficiency can be done in the

same way as in the WHO case given the scaling property.

Including any type of heterogeneity change, the estimations of posterior mean efficiencies with respect

to the base model as we observe in Figure 5. Also choosing where to include covariates is important.

Figure 6 shows that mean efficiencies are very different if we include them in the cost function or in the

inefficiency parameters. Moreover, if covariates are found to be technology related as in this case, we still

can model unobserved effects on the inefficiency. In fact, including unobserved heterogeneity in Model V

has important effects on shrinking and moving the posterior efficiencies compared to Model II. In Figure

6, we observe that posterior mean efficiencies move close to the frontier for most of observations. This

may indicate that the unobserved component captures some factors that were attributed to inefficiency

under Model II. However, their relative positions are preserved and the effect on rankings is very little.

At an individual level, Figure 7 shows 90% posterior credible intervals for posterior efficiencies for 10

selected airlines in their last observed year. We can see a strong shrinkage effect on these intervals

when we take into account the unobserved heterogeneity in the inefficiency that preserves the scaling

8Greene (2008) obtains wrong signs for three of the price coefficients.
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Table VI

Posterior means of the parameter distributions with truncated normal distributed
inefficiencies

Parameters Model I Model II Model III Model IV Model V

α 1.7774 2.4628 1.7182 1.6229 3.1134
lnPm 0.3595 0.1483 0.5046 0.2890 0.1521
lnPf 0.1755 0.1952 0.1610 0.2243 0.2307
lnPl 0.2361 0.4844 0.1467 0.2170 0.3371
lnPe 0.0520 0.1890 0.0456 0.1372 0.2049
ln y 0.9421 0.9598 0.9531 0.9654 0.9787
1
2 ln

2 y 0.0884 0.0385 0.0932 0.0442 0.0439
t -0.0286 -0.0379 -0.0313 -0.0368 -0.0287
t2 0.0006 0.0005 0.0002 0.0001 -0.0003
Load - -0.9135 - -0.8045 -0.8456
lnStage - -0.2173 - -0.4924 -0.2290
lnPoints - 0.1498 - 0.3058 0.1363
τ - - -1.8905 - -3.0540
σu 0.1843 0.1245 0.1170 0.1272 0.0477
σv 0.0649 0.0881 0.0860 0.0631 0.0849
µ 0.0214 0.2092 0.0695 0.3514 0.2472
mean pred. eff. 0.8687 0.7862 0.8729 0.7095 0.9569
sd pred. eff. 0.1007 0.1275 0.0956 0.0873 0.0432
DIC -403.6720 -606.3150 -413.9810 -525.8170 -614.7094
LPS -13.7340 -33.6520 -15.3840 -21.6690 -33.6910
MSE 0.0257 0.0096 0.0255 0.0178 0.0093

property.

Figure 5. Mean efficiencies under truncated normal distribution - Base model vs. heterogeneity models

Preserving the scaling property makes individual inefficiency decomposition possible. In this case,

for the truncated normal inefficiency: uit = |U∗
it| · exp(τit) where U∗

it ∼ N(µ, σ2
U ). Table VII presents

this decomposition in terms of efficiency for Model V and for the 10 selected airlines plotted in Figure
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Figure 6. Mean efficiencies under truncated normal distribution - Model II vs. Model IV and Model
V

Figure 7. 90% credible intervals of the posterior efficiency distributions for selected airlines with
truncated normal inefficiencies

7. Although there are small differences in the total efficiency among airlines, when it is decomposed we

observe large differences in their natural managerial skills. The difference between the base and total

efficiency allows us to distinguish the way unobserved firm effects are handled by airlines managers. For

instance, airline 12 presents lower base efficiency but higher total efficiency than airline 17, suggesting

that the former handles better their specific characteristics.

We end the analysis of results with a plot of the probabilities of being the most efficient airline

along the sample period. This can be easy calculated in the Bayesian context from the posterior

individual distributions of efficiencies and might be very useful in empirical studies. Figure 8 exhibits

these probabilities from Model V for some selected airlines. We observe that for the last 10 years of
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Table VII

Efficiency decomposition for selected airlines

Airline ID Total efficiency Base efficiency

1 0.9651 0.4568
2 0.9411 0.2822
5 0.9562 0.3888
7 0.9488 0.3499
8 0.9803 0.6404
9 0.9527 0.3641
12 0.9713 0.3211
17 0.9472 0.5270
18 0.9728 0.5505
19 0.9537 0.3707

the sample period, airline 8 is the most likely to be the benchmark firm. Also, it is possible to see

improvements and declines in the airlines’ performance along time. For instance, airline 11 presents a

high relative improvement of its performance especially in the last 3 years, while airline 9 starts being

the most likely benchmark firm and decreases very fast its probability up to being zero in year 9.

Figure 8. Probability of being the most efficient firm along time for selected airlines

Summing up, performance indicators suggest that firm characteristics such as the distance among

destinations, the capacity offered, and the size of the network differentiates the airlines in terms of tech-

nology (e.g. type of aircraft). However, dispersion of individual posterior efficiencies is the lowest when

exogenous variables are included in the inefficiency component when the scaling property is preserved.

This holds when observed covariates are technological and unobserved heterogeneity in the inefficiency
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is added.

V. Conclusions and Extensions

In stochastic frontier analysis the inefficiency component may be erroneously estimated when firm

characteristics are not taken into account. These firm characteristics induce heterogeneity that might

result in different firm frontiers, or may have an impact directly on the inefficiencies.

In this work we put forward the modeling of heterogeneity in a Bayesian context by capturing both

the observed and unobserved heterogeneity in the inefficiency component distribution. Firm character-

istics are included through either exogenous variables or a random parameter which are allowed to be

time-varying and such that the scale but not the shape of the inefficiency is altered. The inefficiencies

are assumed to follow half-normal, truncated normal and exponential distributions that preserves this

property. Finally, the models were fitted to two, well known, data sets previously studied only in the

frequentist context. The WinBugs package was used to implement the Bayesian inference. Results were

compared to those obtained with frontier models that ignore heterogeneity or include heterogeneity just

in the frontier.

Our findings suggest that considering firms’ heterogeneity that have effects on the scale but not

in the shape of inefficiencies leads the models to improve in terms of goodness of fit and predictive

performance, and has a shrinkage effect that reduces the uncertainty on mean scores and rankings. The

inclusion of unobserved heterogeneity in the inefficiency is also found to be relevant when exogenous

variables are not available or when they are found to be technology related and consequently, should be

more investigated. Regarding this issue, we propose a very intuitive procedure by including a random

parameter in the parameters of the inefficiency component distribution.

A future research possibility is the study of different specifications to capture unobserved effects in

the inefficiency, as well as, the use of different distributions. A second area is the inclusion of dynamic

effects in the inefficiency specification, see e.g. Tsionas (2006). Work is currently in progress on these

areas.

23



References

Aigner, D., C. Lovell, and P. Schmidt (1977). Formulation and estimation of stochastic frontier pro-

duction function models. Journal of Econometrics 6, 21–37.

Alvarez, A., C. Amsler, L. Orea, and P. Schmidt (2006). Interpreting and testing the scaling property

in models where inefficiency depends on firm characteristics. Journal of Productivity Analysis 25,

201–212.

Battese, G. and T. Coelli (1995). A model for technical inefficiency effects in a stochastic frontier

production model for panel data. Empirical Economics 20, 325–332.

Caudill, S. and J. Ford (1993). Biases in frontier estimation due to heteroscedasticity. Economics

Letters 41, 17–20.

Caudill, S., J. Ford, and D. Gropper (1995). Frontier estimation and firm-specific inefficiency measures

in the presence of heteroskedasticity. Journal of Business and Economics Statistics 13, 105–111.

Coelli, T., S. Perelman, and E. Romano (1999). Accounting for environmental influences in stochastic

frontier models: With application to international airlines. Journal of Productivity Analysis 11,

251–273.

Evans, D., A. Tandon, C. Murray, and J. Lauer (2000). The comparative efficiency of national health

systems in producing health: An analysis of 191 countries. Discussion paper no. 29, World Health

Organization, EIP/GPE/EQC.

Ferreira, J. and M. Steel (2007). Model comparison of coordinate-free multivariate skewed distributions

with an application to stochastic frontiers. Journal of Econometrics 137, 641–673.

Good, I. (1952). Rational decisions. Journal of the Royal Statistical Society B 14, 107–114.

Greene, W. (1990). A gamma-distributed stochastic frontier model. Journal of Econometrics 46, 141–

164.

Greene, W. (2004). Distinguishing between heterogeneity and inefficiency: Stochastic frontier analysis

of the World Health Organization’s panel data on national health care systems. Health Economics 13,

959–980.

24



Greene, W. (2005). Reconsidering heterogeneity in panel data estimators of the stochastic frontier

model. Journal of Econometrics 126, 269–303.

Greene, W. (2008). The Econometric Approach to Efficiency Analysis. The Measurement of Productive

Efficiency and Productivity Growth, Chapter 2, pp. 959–980. Oxford University Press, Inc.

Griffin, J. and M. Steel (2004). Semiparametric Bayesian inference for stochastic frontier models. Journal

of Econometrics 123, 121–152.

Griffin, J. and M. Steel (2007). Bayesian stochastic frontier analysis using WinBUGS. Journal of

Productivity Analysis 27, 163–176.

Griffin, J. and M. Steel (2008). Flexible mixture modelling of stochastic frontiers. Journal of Productivity

Analysis 29, 33–50.

Hadri, K. (1999). Estimation of a doubly heteroscedastic stochastic frontier cost function. Journal of

Productivity Analysis 17, 359–363.

Huang, H. (2004). Estimation of technical inefficiencies with heterogeneous technologies. Journal of

Productivity Analysis 21, 277–296.

Huang, H. and J. Liu (1994). Estimation of a non-neutral stochastic frontier production function.

Journal of Productivity Analysis 5, 171–180.

Koop, G., J. Osiewalski, and M. Steel (1997). Bayesian efficiency analysis through individual effects:

Hospital cost frontiers. Journal of Econometrics 76, 77–106.

Koop, G., M. Steel, and J. Osiewalski (1995). Posterior analysis of stochastic frontier models using

Gibbs sampling. Comput Stat 10, 353–373.

Kumbhakar, S., S. Ghosh, and J. McGuckin (1991). A generalized production frontier approach for

estimating determinants of inefficiency in U.S. dairy farms. Journal of Business and Economic Statis-

tics 9, 279–286.

Kumbhakar, S. and C. Lovell (2000). Stochastic Frontier Analysis. New York: Cambridge University

Press.

25



Meeusen, W. and J. van den Broeck (1977). Efficiency estimation from Cobb-Douglas production

functions with composed errors. International Economic Review 8, 435–444.

Reifschnieder, D. and R. Stevenson (1991). Systematic departures from the frontier: A framework for

the analysis of firm inefficiency. International Economic Review 32, 715–723.

Simar, L., C. Lovell, and P. van den Eeckaut (1994). Stochastic frontiers incorporating exogenous

influences on efficiency. Discussion paper no. 9403, Institut de Statistique, Universit Catholique de

Louvain.

Spiegelhalter, D., N. Best, B. Carlin, and A. van der Linde (2002). Bayesian measures of model

complexity and fit. Journal of the Royal Statistical Society 64 (4), 583–616.

Stevenson, R. (1980). Likelihood functions for generalized stochastic frontier estimation. Journal of

Econometrics 13, 57–66.

Tsionas, E. (2002). Stochastic frontier models with random coefficients. Journal of Applied Economet-

rics 17, 127–147.

Tsionas, E. (2006). Inference in dynamic stochastic frontier models. Journal of Applied Econometrics 21,

669–676.

van den Broeck, J., G. Koop, J. Osiewalski, and M. Steel (1994). Stochastic frontier models: A Bayesian

perspective. Journal of Econometrics 61, 273–303.

Wang, H. (2002). Heteroscedasticity and non-monotonic efficiency effects of a stochastic frontier model.

Journal of Productivity Analysis 18, 241–253.

Wang, H. and P. Schmidt (2002). One step and two step estimation of the effects of exogenous variables

on technical efficiency levels. Journal of Productivity Analysis 18, 129–144.

WHO (2000). Health Systems: Improving Performance. The World Health Report. Geneva: World

Health Organization.

26


