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Abstract 
 
Supervised dimension reduction methods have been extensively applied in 
different scientific fields like biology and medicine in recent years. 
However, they have hardly ever been used in micro economics, and in 
particular cost function modeling. Nonetheless, these methods can also be 
useful in regulation of natural monopolies such as gas, water, and electricity 
networks, where firms’ cost and performance can be affected by a large 
number of environmental factors. In order to deal with this ‘dimensionality’ 
problem we propose using a supervised dimension reduction approach that 
aims to reduce the dimension of data without loss of information. Economic 
theory suggests that in the presence of other relevant production (cost) 
drivers, the traditional all-inclusive assumption is not satisfied and, hence, 
production or cost predictions (and efficiency estimates) might be biased. 
This paper shows that purging the data using a partial regression approach 
allows us to address this issue when analyzing the effect of weather and 
geography on cost efficiency in the context of the Norwegian electricity 
distribution networks.  

 
Keywords: supervised composites, environmental conditions, electricity 
networks. 
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1. Introduction 

New technologies allow researchers to collect and analyze large amounts of data at 
relatively low cost. Examples of large-size data sets are plentiful, among others, in 
computational biology, climatology, geology, neurology, health science, economics, 
and finance. The availability of massive data along with new scientific problems has 
reshaped statistical thinking and data analysis. Reducing the dimensions of data is a 
natural and sometimes necessary manner in order to proceed with such analysis. The act 
of replacing a set of regressors with a lower-dimensional function is called dimension 
reduction; and the reduction is labeled as sufficient or supervised when this reduction is 
achieved without loss of information.1  

In a seminal paper, Li (1991) introduced the first method for sufficient dimension 
reduction, i.e. sliced inverse regression (SIR), and since then various types of inverse 
regressions have been proposed.2 These inverse regression methods are computationally 
simple and practically useful, and have been intensively applied in fields such as 
biology, genome sequence modeling, pattern recognition involving images (e.g. face 
recognition, character recognition, etc.), or speech (e.g. auditory models). However, the 
potential of sufficient dimension reduction methods for reducing economic datasets has 
barely been explored. An exception is Naik et al. (2000) that use the SIR techniques to 
aggregate marketing data.  

The purpose of this paper is to show how supervised dimension reduction techniques 
can be used in economic analysis. We focus on cost function modeling with an 
application to the effect of weather and geography on cost efficiency of electricity, gas, 
and water distribution networks. Weather and geographic conditions are among the 
most commonly debated factors perceived to be affecting the performance of network 
utilities, as severe weather conditions and difficult terrains tend to increase service 
interruptions and costs associated with replacing the damaged equipment and restoring 
power. Controlling for the effect environmental factors is particularly important in the 
case of incentive regulation and benchmarking of electricity networks where the results 
of efficiency analysis have important financial implications for the firms. However, 
while the effect of weather and geographic conditions on the performance of the utilities 
is of academic and economic interest, the empirical evidence is rather limited, with Yu 
et al. (2009a) and Growitsch et al. (2012) as notable exceptions.  

Taking into account the effect of weather and geography on cost of production and 
quality of service is a challenging task. It is difficult to either formulate hypotheses or 
impose restrictions derived from production theory on the technology and weather and 
other non-discretionary influences that consist of a large number of factors with 

                                                           
1 Fisher (1922) formulated the concept of sufficient statistic as a means of reduction without loss of 
information. See Cook (2007) and Adragni and Cook (2009) for a formal definition and overviews of 
sufficient dimension reduction in regression.  
2 The literature on sufficient dimension reduction is still evolving. See Cook (1998) for an early summary 
of this literature. For a brief survey, see Bura and Yang (2011) and references therein. 
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complex interactions. This leads to a ‘dimensionality’ issue which becomes acute in 
non-parametric settings or when parametric flexible functional forms are to be estimated 
(e.g. Translog). The most common strategy to work with high dimensional data in 
production and efficiency analysis is dimension reduction (e.g. principal components or 
explanatory factor analyses), where the input dimension space is reduced into a small 
number of composites for further analysis using a linear combination of the original 
variables.3 This approach is used in the abovementioned studies and in Nieswand et al. 
(2009), Adler and Ekaterina (2010) and Zhu (1998). The main drawback of principal 
component analysis (PCA) and similar unsupervised dimension reduction techniques is 
that they might misspecify the fundamental relationship between a dependent variable 
(for instance cost) and weather and geography because they ignore information on the 
dependent variable when reducing the dimension of the data. Therefore, predictions 
might be biased because relevant predictive variables can be underweighted, while 
factors irrelevant for cost can be overweighed. 

In contrast, the so-called supervised methods for reducing the dimension of the data 
assume that the dependent variable is known, and take into account the relationship 
between the variable to be predicted (e.g., cost), and the vector of explanatory variables 
to be aggregated (e.g. weather and geographic variables). A common characteristic of 
these methods is that they aim to replace a high-dimensional vector of explanatory 
variables with a lower-dimensional function, provided that it captures all the 
information about the dependent variable. Another feature of these techniques is that 
they require no pre-specified model for the production or cost function and, except for 
the traditional exogeneity assumption, no other assumptions are made about the error 
term. This characteristic is especially important in efficiency analysis where the error 
term is composed into a (symmetric) noise term and a (asymmetric) random efficiency 
term. 

In our empirical application we use non-nested model selection tests to examine the 
relative performance of PCA and two of the most common supervised methods, viz. the 
sliced inverse regression introduced by Li (1991) and its parametric counterpart PIR (for 
parametric inverse regression). To our knowledge, the present paper is the first attempt 
to apply supervised methods to production economics. As controlling for the effect of 
environmental factors is particularly important in efficiency analyses of regulated 
electricity networks, we also examine whether efficiency analyses are robust with 
respect to using either unsupervised or supervised aggregation methods. This is 
achieved using a simple model of firms’ inefficiency. While previous papers have 
examined the robustness of efficiency results with respect to controlling or not for 
environmental factors (See, for instance, Growitsch et al., 2012), they have not carried 
out the above mentioned robustness analysis.  

                                                           
3 An alternative approach to avoid the curse of dimensionality is variable selection and regression 
shrinkage (see Fan and Li, 2006 for overviews). 
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Unlike in other settings, we need to address an important empirical issue caused by the 
fact that our dependent variable (i.e. electricity distribution costs) not only depends on 
the weather and geographic factors to be aggregated, but also on a set of economic and 
technical variables (e.g. number of customers, energy delivered, network length, etc.) 
that might be correlated with the environmental variables. If this is the case, the 
exogeneity assumption of Li (1991) is violated and this procedure will likely give poor 
predictive composites. Indeed, sliced inverse regression and other sufficient dimension 
reduction methods do not consider the presence of other explanatory variables than 
those that are to be aggregated, a feature that we label as the all-inclusive assumption. In 
order to relax this assumption and address the potential problems of endogeneity, we 
propose purging the data before using any supervised method. Moreover, to purge the 
data, we propose using a partial regression approach that requires estimating auxiliary 
regressions where original variables are replaced with residuals obtained from previous 
regressions. The proposed empirical strategy to tackle this issue is one of the 
contributions of the present paper. In addition, as we are primarily interested in weather 
and geographic factors, we also adapt traditional non-nested model selection tests in the 
analysis of a subset of the variables in a multiple regression. The adaptation is carried 
out by reversing the procedure used to purge the data mentioned above. 

Our test results show the superior performance of SIR and its parametric counterpart 
over the traditional variable reduction techniques. Moreover, using reasonable upper 
and lower bounds to identify utilities operating in areas with “normal” environmental 
conditions, we find evidence of the superior ability of SIR and PIR methods to identify 
utilities disadvantaged by (enjoying) adverse (favorable) environmental conditions. A 
traditional efficiency analysis indicates that, although there is scope for different 
degrees of inefficient performance in the Norwegian electricity distribution sector, the 
model that utilises PCA composites is not able to capture any performance variation 
among the utilities. 

Section 2 introduces SIR and other popular sufficient dimension reduction methods. 
Section 3 describes the data, the composite variables derivation, and the specification of 
the cost function used in the empirical exercise. Section 4 presents the main results 
using PCA, SIR and other supervised methods. Section 5 presents the conclusions.  

 

2. Sufficient dimension reduction methods 

Since Li (1991) introduced the sliced inverse regression, sufficient dimension reduction 
methods have become popular to use with large-scale data sets in fields such as biology, 
genome sequence modeling, or face recognition because massive datasets have been 
available in these fields for a relatively long time. The huge dimensionality problem in 
these fields boosted up the researchers interest in this issue and since Li’s seminar paper 
various types of inverse regressions have been proposed, including the sliced average 
variance estimation (SAVE) (Cook and Weisberg, 1991), principal hessian directions 
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(PhD) (Li, 1992), parametric inverse regression (PIR) (Bura and Cook, 2001a), and 
partial SIR (Chiaromonte et al., 2002) with categorical variables. The popularity of these 
inverse regression methods is due to the fact that most of them are computationally 
simple and have been demonstrated to be practically useful in the abovementioned 
fields.  

We next describe briefly the procedure of the original sliced inverse regression method 
and later on we relax the all-inclusive assumption underlying the sufficient dimension 
reduction method.  

Let Yi denote the variable to be predicted (e.g., firms’ cost) and xi be a p-dimensional 
column vector of regressors that are to be aggregated (e.g., weather and geographic 
variables). Let X denote a matrix of n observations of x�

�, Y be a vector of n 

observations of Yi, and Σx be the covariance of X. A common characteristic of most 
popular sufficient dimension reduction methods is that they aim to replace the p-
dimensional vector X with a smaller set of linear combinations of the original variables, 
provided that it captures all of the information that X contains about the variables to be 
predicted. A statistical formulation for addressing this issue is given in Li (1991), using 
the following fairly general model: 

Y� = f�β	′x�, … , β
′x�� + ε�     (1) 

where (β1,…,βK) are px1 vectors of unknown coefficients, and εi is a random term 
which is assumed to be independent of xi. This model makes no assumption about either 
f(·) or the distribution of the error term. The response variable Y is related to the p-
dimensional regressor xi only through the reduced K-dimensional 
variable �β	′x�, … , β
′x��. When this model holds, the projection of the p-dimensional 
explanatory variable xi onto the K-dimensional subspace �β	′x�, … , β
′x�� captures all 
the information about Yi.  

SIR and other sufficient dimension reduction methods are developed to find the space 
generated by the K unknown β vectors, called the effective dimension reduction (e.d.r.) 
space. This space should be estimated from the data and is based on the spectral 
decomposition of a kernel matrix M that belongs to the central subspace, that is 
S(M)⊂SY|X.4 Most sufficient dimension reduction methods are based on the same logic 
but use different kernel matrices. Once a sample version of M is obtained, the 

eigenvectors corresponding to the largest eigenvalues of ��  are used to estimate a basis 
of the central subspace.  

For effective dimension reduction, Li (1991) proposed to reverse the conventional 
viewpoint in which Y is regressed on X (forward regression) and showed that if X is 
standardized to have the zero mean and the identity covariance, the inverse regression 
curve η(Y)=E(X|Y) fall into the e.d.r. space. Hence a principal component analysis on 

                                                           
4 The central subspace is the smallest dimension-reduction subspace of ℝ� that provides the greatest 
dimension reduction in the predictor vector.  
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an estimation of E(X|Y) and its covariance matrix Ση=cov[E(X|Y)] can be used to 
estimate e.d.r. directions.  

The computation of SIR is quite simple and can be carried out in five steps: 

1) Standardize X to Z = Σ��
�	/��X − X�� where Σ��

�	/� is any square root of the 
inverse of the sample covariance matrix for X (e.g., the inverse of the lower 

triangular Cholesky factor of Σ�� ) and X� is the sample mean of X. In this scaling, 
Z has a zero mean and identity sample covariance matrix.  

2) Divide the range of Y into H slices and compute the mean of Z in each slice, z!", 
h=1,…, H. 

3) Form the weighted covariance matrix of these slice mean vectors, M� $%& =
Σ"'	

( p*"z!"z!"′, where p*" is the proportion of cases falling into slice h.  

4) Find the eigenvalues and eigenvectors for M� $%&. 

5) Let ηk (k=1,…, d) be the d largest eigenvector of M� $%&. The e.d.r. directions can 

be estimated by rescaling the previous eigenvectors, i.e. β�+ = Σ��
�	/�η*+. 

 
After standardizing X, step 2 produces a nonparametric estimate of the inverse 
regression curve E(Z|Y), which is the slice mean of Z after slicing the range of Y into 
several intervals and partitioning the whole data into several slices according to the Y 
value.5 These slice means of Z are used in step 3 to obtain an estimate of the conditional 

covariance matrix Ση=cov[E(X|Y)], i.e. matrix M� $%&. In step 4, a PCA is applied to these 
slice means of Z in order to find the e.d.r. directions. Finally, step 5 simply retransforms 
the scale back to the original one.  

Several comments are in order. First, the above eigenvalue decomposition differs from 
that of the traditional PCA. Here, the dependent variable is used to form slices while the 
standard PCA does not use any information from Y. Second, Chen and Li (1998) 
showed that SIR can be interpreted as a (multiple linear) regression analysis and 
established that SIR searches for the best e.d.r. directions without knowledge of the 
functional form f(·). Third, Li (1991) and Cook and Weisberg (1991) pointed out that 
the performance of SIR is not sensitive to the number of slices used in partitioning the 
data matrix. Finally, under general conditions the linearity assumption by Li (1991) 
holds asymptotically for high dimensional data (see Hall and Li, 1993). Therefore, when 
the dimensions are high, SIR can work well. These features lead us to focus our analysis 
on SIR or its parametric counterpart PIR, as outlined below. 

In SIR, Z are regressed on a discrete version of Y resulting from slicing its range in 
order to obtain a rather crude estimate of the inverse curve E(Z|Y). If Y is a continuous 
variable, its transformation to a categorical variable might imply ignoring much 

                                                           
5 Note that SIR uses the response variable only to create slices and only the order of Y is needed in 
slicing. Hence it is indifferent whether we use a monotonic transformation of the response variable such 
us the logarithm of Y.  
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information about the inverse relationship between Z and Y. PIR is another first-
moment based method for effective dimension reduction that aims to estimate the 
central subspace without imposing any restrictions on the nature of the response 
variable Y. This is achieved using least squares estimates of each standardized 
explanatory variable on a set of arbitrary functions of Y. The fitted values of E(Z|Y) are 
then used as an estimate of M, that is 

M� -%& = �F�′F� ��	F�′Z�     (2) 

where Fi=Fi(Y i) is a matrix of centered functions of Y. For instance, Bura and Cook 
(2001a) suggest using a quadratic function of Y. Because polynomial functions of Y are 
used, this method is known as a polynomial inverse regression.   

Although SIR and other supervised methods are statistical in nature, it is useful to see 
the challenges faced by any supervised method using a simple theoretical model. This 
not only helps to understand better the nature of these challenges but also to shed light 
on the nature of measurement errors in (un)supervised composites.  

Assume that the theoretically model to be estimated is Y = α	x	 + α�x�. Note that the 

coefficients of both observed variables, α1 and α2, capture the theoretical effect of each 
variable on Y. From a theoretical point of view, this effect does not rely on how x1 and 
x2 are aggregated using statistical techniques. An equivalent way to write the model 
above using a theoretical composite f=f�x	, x�� is Y = α ∙ 1�α	 2⁄ �x	 + �α� 2⁄ �x�4 =
 α ∙ f�x	, x��, where 2 = α	 + α� measures the overall effect of both variables. The 
latter specification simply indicates that both explanatory variables should be weighted 
using their relative effects on Y in order to estimate the same α. In other words, the 
empirical composite should aggregate the explanatory variables taking into account 
(somehow) the dependent variable. This is precisely the aim of the supervised methods 
for reducing the dimension of the data. In contrast, unsupervised methods only use 
information on how x1 and x2 are statistically distributed, how large their variances are, 
or whether they are highly correlated. 

So far we have assumed that the p-dimensional vector Xi includes the whole set of 
available variables and, hence, equation (1) does not consider the presence of omitted 
explanatory variables that might be correlated with Xi. In particular equation (1) ignores 
both the basic economic theory on production economics and the available empirical 
literature on the electricity distribution networks that demonstrate that utilities’ costs are 
increasing functions of economic-in-nature variables, such as number of customers, 
amount of energy delivered, network length, and labor and capital prices, etc. Under the 
presence of additional regressors, not only we have a traditional endogeneity problem 
but also the performance of supervised composites might degenerate drastically. If we 
add the economic variables to equation (1), the theoretical-consistent model to be 
estimated can be written as  

Y� = f�c�, θ� + g�Q�, P�, γ� + ε�    (3) 
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where θ and γ are parameters to be estimated, c� = ;β�	′x�, … , β�
′x�< is the matrix 

containing the estimated composites that were obtained using PCA, SIR and other 
supervised methods, and g�·� can be viewed as the traditional cost function in 
production economics which, by theory, should be increasing in outputs, Qi, increasing 
in input prices, Pi, and linearly homogeneous in input prices. As weather is a complex 
phenomenon and its overall effect on cost is unknown, we take an agnostic position and 
do not make specific assumptions about the probable (partial) effect of specific weather 
composites on distribution costs. 

In order to address both the likely endogeneity problem and poor performance of 
supervised composites, we rewrite (3) as follows: 

Y�
∗ = Y� − g�Q�, P�� = f�c�, θ� + ε�     (4) 

Hence, the above equation suggests that previous methods on sufficient dimension 
reduction can still be used after we have properly corrected the dependent variable for 
the effect of the economic variables. In order to achieve this objective we propose the 
so-called partial regression approach used to measure the contribution of a subset of the 
explanatory variables (in our case, economic drivers of costs) in multiple regression 
models taking into account that other explanatory variables (in our case, the 
weather/geographic composites) are already included in the model and that they might 
be correlated with the economic variables.  

An adjusted dependent variable can be obtained following Frisch-Waugh (1933)’s 
theorem by estimating an auxiliary regression where original variables are replaced with 
residuals obtained from previous regressions (see Greene, 2002, p. 26). The aim of this 
regression is to net out the effect of the weather and geographic composites on both the 
dependent variable (i.e. costs) and the economic variables. This procedure allows us to 
isolate the effect of the economic variables on cost, i.e. g(·) to purge the dependent 
variable.  

In particular, a properly corrected dependent variable can be obtained as follows. First, 
we regress Yi on the weather and geographic variables using the original data and obtain 
the associate residuals:6  

e� = e��Y|X� = YA − Y�A�XA�      (5) 

Second, we regress each economic variable on the weather and geographic variables 
and obtain the residuals: 

d� = d��z|X� = zA − ĈA�X��     where C = H IJ K   (6) 

                                                           
6 Note that here we are not interested in the interpretation of individual coefficients or in the statistical 
properties (i.e. t-ratios) of the estimated coefficients. We carry out this regression in order to implement 
the two-step Frisch-Waugh (1933) procedure. One potential problem could be the number of geographic 
and weather variables. If these are too large, we could carry out this regression by replacing the individual 
variables with PCA composites. Recall that PCA does not require using information on the response 
variable. In this case, we use PCA as an intermediate tool in our procedure in order to control for 
endogeneity issues when using supervised variable reduction techniques.  
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Finally, we regress the first set of residuals on the second set of residuals and obtain g(·) 
from the parameters of the auxiliary regression 

e� = g�d�� + v�       (7) 

The coefficients of (7) allow us to compute the costs attributed only to economic 
variables taking into account that the weather and geographic composites are also costs 
drivers and that they might be correlated with the economic variables. This estimate is 
then used to obtain Y�

∗. As this the new dependent variable is purged of the effect of 
economic variables, it should provide a better starting point to implement our 
supervised methods to aggregate our set of weather and geographic variables.  

 
3. Data, composite variables derivation, and cost function specification  

The data used to illustrate the relative performance of the different variable reduction 
methods is a balanced panel for 128 Norwegian electricity distribution networks for the 
years 2001 to 2004. Norway presents a particularly interesting case to study the effect of 
environmental factors. First, Norway was among the first countries to introduce 
efficiency benchmarking (based on the non-parametric data envelopment analysis 
technique) and incentive-based regulation in this sector in 1997. As a result, the 
managerial inefficiency of the networks has been reduced (Førsund and Kittelsen, 1998; 
Edvardsen et al., 2006). Second, unlike most countries, the Norwegian electricity sector 
consists of a large, though slowly declining (due to mergers and acquisitions), number 
of network utilities which allows the use of more sophisticated analytical methods, such 
as supervised methods and semiparametric estimators. Finally, the Norwegian energy 
regulator has made efforts to take the effects of environmental factors on the cost and 
service quality performance into account and include these in the benchmarking models. 
In particular, the regulator intends to analyze a large number of geographic and weather 
variables with a view to use unsupervised dimension reduction techniques to construct 
composite indices. The composites are then to be used in a second-stage regression 
model to adjust for their effect on the estimated relative inefficiencies. This approach 
implies that the (geographic and weather) composites affect the firms’ efficiency rather 
than their cost function.  

We specify a simple cost model with two outputs (CU=customer numbers, and 
ED=energy delivered), two input prices (KP=capital price and LP=labor price), a proxy 
for size of the system (NL=network length), and two indices capturing technological 
characteristics of the network (HV and TR). The two outputs are the number of final 
customers and the energy supplied measured in megawatt-hours (MWh). These two 
variables reflect the different marketable goods of the joint service of electricity 
distribution.7 The first technological index is HV, i.e. the percentage of high-voltage 

                                                           
7 Customer numbers and units of energy delivered are the most commonly used outputs in benchmarking 
of distribution network utilities (Giannakis et al., 2005; and Yu et al. 2009a, 2009b). These output 
variables are important cost drivers and influence the pricing of distribution services.  
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network in total network, which is included as an explanatory variable to capture 
differences in maintenance or acquisition of equipment (likely more expensive for high-
voltage network). This is an empirical question as high-voltage grid might be cheaper 
than low-voltage grid if the latter is mostly underground cable in urban areas. TR is the 
number of transformers and is used as proxy for assets and network capacity. 
Alternatively, we can interpret the coefficient of TR in terms of changes in the ratio of 
transformers to network length (i.e. changes in a new technological index) because 
network length is already included as a cost driver. The labor price is the average salary 
in electricity sector (NOK/month) and the price of capital is the price index for power 
sector goods.  

Regarding the dependent variable, and following the Norwegian benchmarking 
approach, we incorporate quality of service into our model by using, as dependent 
variable, social costs instead of total production costs. In addition to operating expenses 
and capital expenditures, social costs, C, include external quality costs. External quality 
costs are calculated by the multiplication of the energy not supplied with the estimated 
customer willingness-to-pay for an uninterrupted energy supply. Summary of statistics 
of the economic data are shown in Table 1.8 

[Insert Table 1] 

Given the abovementioned cost drivers, the basic cost function to be estimated can be 
written as: 

lnC�P = g	
QR�CU�P, ED�P, NL�P, TR�P, α� + g�

Z[�LP�P, KP�P, γ� + ε�P   (8) 

where the subscripts i and t stand respectively for utility and time, α and γ are the 
parameters to be estimated, and our former dependent variable has been replaced with 
the log of social costs, lnCit. Superscript TL in g	

QR�·� stands for Translog specification, 

and superscript CD in g�
Z[�·� indicates that only a Cobb-Douglas specification is 

estimated. We add the log of capital and labor prices to our cost function because they 
do not vary across utilities, but only vary over time. This precludes using quadratic 
terms and interactions with these variables.  

In addition to the previous economic variables, we incorporate a varied set of weather 
and geographic variables in our analysis. This includes variables for temperature, 
precipitation, wind speed, distance to coast, slope, population concentration, forests and 
so forth. Once we drop variables that are linear functions of others, our data consist of 
35 weather variables and 32 geographic variables. In order to further reduce the number 
of environmental variables to a manageable number and to avoid the problem of 
multicollinearity, we estimate composite factors for the geographic and weather 
conditions using two sufficient dimension reduction methods: SIR and its parametric 
counterpart, i.e. PIR. We also use PCA as a benchmark as it is the dominant method of 

                                                           
8 All monetary variables are in 2004 real terms. 
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dimension reduction in production economics and efficiency analysis.9 Then, we 
incorporate the estimated geographic and weather composites as additional cost drivers 
in our model. The final cost function that includes geographic and weather composites 
can then be written in a compact form as: 

lnC�P = g	
QR�α� + g�

Z[�γ� + f QR�c�P, θ� + ε�P    (9) 

where cit is a previously computed vector of environmental composites, and function 
f(·) is estimated using a Translog specification. Growitsch et al. (2012) applied 
dimension reduction to separable types of variables (though not all weather and 
geographic variables together as we do here) because weather and geographic 
conditions are different in nature. This somewhat facilitates interpretation, but ignores 
the feedback effects among weather and geographic conditions.10 

So far we have described the deterministic part of the model, i.e. the effect on the firms’ 
cost function of both economic and environmental variables. However, the estimated 
residual in (12) can be used to explore whether relative efficiency depends on the 
method selected to control for geographic and weather conditions. In order to achieve 
this we follow the well-known stochastic frontier analysis (SFA) literature11 and assume 
that the error term (εit) can be decomposed into a traditional noise term (vit) and a 
random efficiency term (uit), i.e. ε�P = v�P + u�P. In particular, we apply standard SFA 

techniques to a normal-half-normal model, and assume that vit~N(0,σv) and uit is a 

nonnegative half normal, i.e. uit~N+(0,σu). 

In order to obtain the efficiency scores for each firm we use a three-stage approach 
advocated in various models in Kumbhakar and Lovell (2000). In the first stage, we 
estimate the cost function (12) using ordinary least squares, OLS.12 The above 
distributional assumptions are then invoked to obtain estimates of the parameter(s) 
describing the variance of vit and uit, conditional on the first-stage residuals.13 Finally, 
                                                           
9 We have also used the most popular second-moment based methods, such as SAVE, SIR-II or pHd. 
Results from these alternative methods are not showed in next sections due to space limitations, and 
because their performance was (and often considerably) worse than that of SIR and PIR. They are, 
however, available from the authors upon request. 
10 In a previous version of this paper we examined whether a separable or joint analysis is more 
appropriate applying the Voung tests to two competing models, one with two composites derived from 
weather and geographic information, and other model with one separable composite for weather and 
geography respectively. Our results indicated that we should not treat weather and geographic 
information differently when computing our composites. 
11 For an overview of this literature see Kumbhakar and Lovell (2000) and Coelli et al. (2005). 
12

 Note that here the expectation of the composed error term is not zero as the expectation of the 
inefficiency term is positive. This implies that the OLS estimate of the intercept in (12) is biased. 
However, a consistent estimate of this coefficient can be obtained once the parameters describing the 
distribution of uit are estimated. 
13

 The second-stage estimators are obtained by maximizing the likelihood function associated to the 
residuals that can be obtained from an estimate of the first-stage cost function (12). The residuals from the 

first stage are ε*A^ = v�P + �u�P − E�u�P��. If uit follows a half-normal distribution, then E�u�P� = _2/a ·
bc. Thus, the stochastic frontier model in the second stage is ε*A^ = v�P + u�P − _2/a · bc where the 
parameters σu and σv are estimated by ML. 
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efficiency scores are estimated for each firm using the conditional distribution of uit 
given εit introduced by Jondrow et al. (1982). The main advantage of this procedure is 
that no distributional assumptions are used in the first stage (i.e., in OLS) and that in the 
first stage the error components are allowed to be freely correlated. Standard 
distributional assumptions on uit and vit are only used in the second and third stages of 
the procedure.  

 
4. Results 
Before presenting the parameter estimates, we first examine the relative performance of 
alternative composites using non nested model selection tests. In particular, for model 
selection we consider the widely-used the Bayesian Information Criterion (BIC), 
proposed by Schwarz (1978). BIC involves minimizing an index that balances the lack 
of fit (too few composites) and overfitting (too many composites) as it includes a 
penalty that increases with the number of regressors. Hence, models with lower BIC are 
generally preferred.14 

If we apply directly any model selection criteria to equation (3), none of them will be 
quite informative about the relative performance of any methods for aggregating 
weather and geographic factors because the economic-in-nature variables explain most 
variation in electricity distribution costs.15 As we are mainly interested in the correlation 
between the costs and weather and geographic factors, we adapt the traditional model 
selection tests to the analysis of a subset of the variables in a multiple regression setting. 
In order to address this issue, we make use of the so-called partial R2 in multiple 
regression models. A partial R2 allows us to measure the contribution of a subset of the 
explanatory variables (in our case, the weather and geographic composites) taking into 
account that: i) other explanatory variables (in our case, drivers of economic costs) are 
already included in the model, and ii) they might be correlated with the environmental 
variables. In particular, a partial R2 for the weather and geographic composites can be 
obtained as follows. First, regress Yi on the economic variables Qi and Pi and obtain the 
residuals. Second, regress each environmental variable on the economic variables Qi 
and Pi, and obtain again the residuals. Finally, regress ei on di, and obtain the R2 statistic 
between these two sets of residuals. The computed R2 from the last regression can be 
interpreted as a partial R2 because it measures the (pure) relationship between costs and 
environmental variables once we have controlled for the effect of economic variables. 

The above model selection procedures have been criticized because the deterministic 
nature of these criteria means that no information is provided as to ‘‘how much’’ better 

                                                           
14 An alternative model selection statistic is the widely-used Akaike’s Information Criterion (AIC) 
proposed by Akaike (1973). We use the BIC formulation because it uses a larger penalty than AIC, and 
hence it tends to favor more parsimonious models than AIC, which in turn help estimate models 
coefficients with more precision (see Verbeek, 2008, p. 61). 
15 In our application, only one explanatory variable (e.g. customer number or energy delivered) explains 
about 97% of the cost variations. 
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is the chosen model (i.e., they do not allow probabilistic statements to be made 
regarding model selection). Therefore, we also apply the Vuong’s (1989) model 
selection framework to select the most adequate model designed to test the null 
hypothesis that two competing models fit the data equally well versus the alternative 
that one model fits better. If the null is not rejected we can conclude that both 
competing models are equivalent. Otherwise, we conclude that the competing models 
can be statistically differentiated, and the sign of the test indicates which model 
dominates the other in the sense of being closer to the true model.  

Based on the cost function (9), Figure 1 shows the overall R2, and the partial R2 and 
BIC values obtained by including different numbers of composites. Both weather and 
geography variables are used to compute up to 8 composites. The figure indicates that 
the overall goodness-of-fit for all models is very high. This high value is the 
consequence of size effect as most of cost variation is explained by the number of 
customers, energy delivered or network length. In addition, these economic variables 
are strongly correlated with both weather and geographic variables and hence they are 
also capturing the effect on cost of environmental variables. For these two reasons, the 
overall R2 statistic does not help us to analyze the relative performance of PCA, SIR 
and PIR when aggregating weather and geographic factors. Figures 1b and 1c show, as 
expected, that the partial R2 and the partial BIC are much more informative as they 
isolate the contribution of weather and geographic composites. These figures clearly 
show the superior performance of SIR and its parametric counterpart, PIR. Only for 
large numbers of composites the performance of PCA is similar to that of SIR and PIR. 
Note, on the other hand, that the BIC figure reaches the minimum value when five 
composites are used. For this reason, a cost function with five SIR composites is, 
hereafter, our preferred model.  

[Insert Figure 1] 

The supervised composites have been computed after costs were purged using the 
procedure outlined in Section 3. The partial BIC values for SIR and PIR using actual 
cost are shown in Figure 2. Two comments are in order. First, the performance of both 
types of composites is similar for large numbers of composites. However, for small or 
moderate number of composites, the figure makes evident the superior performance of 
supervised methods that control for potential endogeneity based on corrected costs. 
Second, this better performance is especially evident for PIR composites. This result is 
likely due to the fact that SIR uses a crude measure of the inverse curve E(X|Y), while 
PIR uses a parametric but more precise estimate of E(X|Y) and, hence, more sensitive to 
the presence of additional regressors correlated with weather and geographic variables.  

[Insert Figure 2] 

As a robustness analysis, we examine again the relative performance of different 
dimension reduction methods in Table 2, but this time we use the Vuong test that 
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compares the goodness-of-fit of two competing (unsupervised vs. supervised) models 
when using different number of composites. A positive sign in this table indicates that 
the model that appears on the right is closer to the true model than the model that is on 
the left, and vice versa. In Tables 2a and 2b we test the relative performance of the most 
commonly used dimension reduction method, PCA, against SIR and PIR. The estimated 
values of the Voung test are positive except when eight composites are used, indicating 
again that PCA tends to perform worse than SIR and PIR. It should be noted that the 
estimated differences in goodness-of-fit are statistically significant for moderate 
numbers of composites even though the Voung test might not perform well because our 
models are highly overlapped (Shi, 2011). This result is additional evidence in favour of 
SIR and PIR. On the other hand, Table 2c shows that both supervised methods perform 
similarly, although SIR clearly outperforms PIR when two or eight composites are used.  

[Insert Table 2] 

In Table 3 we show the estimated coefficients of the cost function using our preferred 
model, i.e. the cost function with five SIR composites. For comparison, we present the 
parameter estimates of a model without environmental composites and the 
corresponding model using the most commonly used dimension reduction method, 
PCA. The variables are measured in deviations from the geometric mean and hence 
first-order coefficients are elasticities (or derivatives) evaluated at the sample mean. 
Table 3 shows that all elasticities of social cost with respect to customer numbers, 
energy delivered, and network length in our preferred model have the expected 
(positive) signs at the sample mean. As the first order coefficients of the outputs are in 
sum the scale elasticity and if this is smaller than one, scale advantages indicate natural 
monopoly characteristics (see also Salvanes and Tjøtta, 1998). Although the scale 
elasticity is similar using either SIR or PCA composites, there are remarkable 
differences in individual variables. For instance, the first-order coefficient of customer 
numbers (energy delivered) using PCA is much higher (lower) than that found using a 
SIR specification. This suggests that our results vary with the method used to construct 
environmental composites. The first-order coefficient of HV is also positive and 
statistically significant, indicating that an increase in high-voltage network percentage 
yields higher maintenance costs. It might also indicate that high-voltage equipment is 
more expensive. The second technological index, TR, also has a positive first-order 
coefficient, indicating that a higher ratio of transformers to network length tends to 
increase electricity distribution cost. It is worth mentioning the positive and significant 
coefficient of the labor price. The coefficient of capital price is positive as well, though 
not statistically significant. 

[Insert Table 3] 

Regarding the environmental factors, the estimated coefficients are shown in the 
Appendix. Although we take an agnostic position and do not make specific assumptions 
about the sign of these coefficients, it is worth mentioning that most of them are 
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statistically significant. Hence, we can conclude that weather and geographic conditions 
matter and that they should be included as cost determinants.16 Moreover, the estimated 
coefficients suggest the existence of remarkable differences among utilities in cost 
attributed to different environmental conditions. This is likely what regulators wish to 
control for. The estimated differences are summarized in Figure 3 where we plot kernel 
density functions of the percentage of cost attributed to (unfavourable) environmental 
conditions, measured in relation to the “average” firm, that have been obtained using 
our preferred model based on SIR composites.17  

The distribution of the estimated SIR environmental cost differences is slightly 
symmetric. However, we find the existence of a concentration mass in both tails of the 
distribution for the SIR model. The observations belonging to any of these two 
concentration masses are utilities that are likely operating in areas with either extreme 
bad or good environmental conditions. This issue is explored in more detail later using a 
new figure, but Figure 3 shows that the SIR model predicts up to 44% lower costs for 
utilities operating in an area with favourable environmental conditions. A simple 
correlation analysis suggests that the lower costs are mostly associated with “urban” 
factors and the relative importance of district heating systems, i.e. a higher urbanisation 
and more output delivered of district heat in concession area lead to a decrease in cost. 
Higher shares of agricultural land around roads and lines reduce cost as well. 
Distribution costs also tend to decrease in warmer parts of Norway. On the other hand, 
for utilities operating in an area with unfavourable environmental conditions higher 
costs up to about 35% are predicted using the SIR model. These higher costs are mostly 
caused by weather conditions: an increase in snow, rain precipitations, and wind tend to 
increase cost. Geographic factors such as the hilliness and slope of the ground and the 
presence of water bodies (e.g. wetlands or lakes) or shallow soil that may be easily 
moved by wind seem to be also correlated with higher distribution costs.  

[Insert Figure 3] 

As the above correlations make sense, we can conclude that our empirical strategy to 
control for environmental factors based on SIR composites performs well. Recall that a 
SIR specification of the model is preferred because the PCA specification is rejected 
using the Vuong test (see Table 2) and partial R2 (BIC) statistic is higher (lower). We 
next examine the results in comparison to PCA composites. Figure 4 shows a scatter 
plot of the estimated environmental cost differences using SIR and PCA composites. As 
shown, the estimated cost differences from these two composites are not highly 
correlated. In addition, the coefficient of correlation (0.43) between the competing 
models is quite small. These results indicate that controlling for the effect of differences 
in environmental factors is a difficult task and, hence, the results of efficiency analysis 

                                                           
16 Growitsch et al. (2012) have found similar results using a similar specification of the technology of the 
Norwegian electricity distribution networks.  
17 The so-called average firm is obtained by adding the first-order coefficients of the five composite 
variables as all explanatory variables are in deviations with respect to their respective means. 
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in an incentive regulation framework might be biased if regulators do not select the 
proper method to construct environmental composites. For instance, regulators might 
reward some utilities in excess because they have been wrongly labelled as suffering 
from harsh environmental conditions. 

[Insert Figure 4] 

Figure 5 shows the box plots of the percentage of cost attributed to unfavourable 
environmental conditions, measured in relation to the “average” firm. We might assume 
that values smaller or larger (smaller) than the upper (lower) adjacent values are 
identifying utilities operating in areas with extreme bad (good) environmental 
conditions. It is conceivable that a firm lying within these bounds has 'normal' weather 
and geographic conditions. The range of values of the estimated environmental cost 
differences using SIR is wider than those using a PCA model.18 However, the number 
of observations with 'normal' weather or geographic conditions in the SIR model is 
somewhat lower than those detected using a PCA model. In other words, while PCA 
only detects 8 observations (in fact 2 utilities) with over-cost percentages larger than the 
upper adjacent value, SIR detects 55 observations (i.e. about 13 utilities) with extremely 
good (8 utilities) or bad (5 utilities) environmental conditions. We can intrepret this as 
an additional evidence of the higher ability of SIR methods to identify utilities suffering 
(or enjoying) extreme bad (good) environmental conditions. Moreover, PCA only 
detects utilities with extreme unfavourable conditions, while SIR is able to detect 
utilities with both good and bad extreme conditions. It is noteworthy that the SIR set of 
utilities does not nest the PCA set as the two utilities identified using the PCA model do 
not appear in the SIR set.  

[Insert Figure 5] 

So far we have analysed the results regarding the estimated cost function, i.e. the 
deterministic part of the model. We have made no distributional assumptions when 
estimating the coefficients of the cost functions in Table 3. We next assume, following 
the SFA literature, that the estimated error term can be decomposed into a noise term 
(vit~N(0,σv)), and a one-sided random term capturing firms’ inefficiency (uit~N+(0,σu)) 
in order to form an idea about the robustness of a traditional efficiency analysis if either 
unsupervised or supervised aggregation methods are used, an issue not examined yet.  

Table 4 shows the ML parameters estimates of (the log of) both standard deviations σu 
and σv describing the structure of the error terms, conditional on the first-stage 
estimated parameters. The variance of the inefficiency term is higher than the variance 
of the traditional noise term when no composites are used. In particular the statistic γ in 
Table 4 indicates that random shocks, which are captured by the traditional symmetric 

                                                           
18 This result makes sense because PCA composites are computed ignoring their relationship with the 
dependent variable. As the potential explanatory power of PCA composites is weaker than that of SIR 
composites, OLS tends to soften the cost effect of weather and geographic conditions. 
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error term, explain 56% of the overall variance of the composed error term.19 However, 
when either SIR or PCA composites are included in the model, the variance of the 
inefficiency term tends to be much lower. This result is consistent with our expectation 
as ignoring relevant factors in efficiency analysis tends to overestimate the efficiency 
scores because the relative differences among observations tend to be much higher.  

[Insert Table 4] 

Table 5 provides summary statistics of the estimated efficiency scores from the 
compared models. On average, the efficiency scores obtained from the more restrictive 
model (about 90.5%) are relatively lower than the efficiency scores using SIR or PCA 
composites (about 96% and 99% respectively). This increase is particularly high in 
specifications that use PCA composites. Moreover, the variance estimate of the 
inefficiency term in the PCA model is not statistically significant. This result indicates 
that, although there is scope for different degrees of inefficient performance in the 
Norwegian electricity distribution sector,20 the model that uses PCA composites is not 
able to capture any variation in (relative) performance among utilities. Clearly this 
result (i.e. the lack of inefficiency) might not happen in other applications. We simply 
give some evidence about the consequences of using less accurate methods to control 
for environmental conditions in traditional efficiency analyses.  

[Insert Table 5] 

 
5. Summary and conclusions  
Although supervised dimension reduction methods are commonly used with large-scale 
data sets in biology, genome sequence modeling or face recognition, they have hardly 
ever been used in applied economics, and in particular in production or cost function 
modeling. However, these methods can be useful in regulated sectors and efficiency 
analysis where firms’ performance is affected by weather and geographic conditions 
which involve a large and varied number of nondiscretionary factors with complex 
interactions, leading to a ‘dimensionality’ problem. We have shown how these 
techniques can be used in production or cost function modeling with an application to 
the effect of weather and geography on electricity distribution costs in Norway. To our 
best knowledge, this is the first attempt to apply these techniques to production and 
efficiency analyses. 

In our empirical analysis we also addressed issues caused by the fact that our response 
variable (i.e. electricity distribution costs) not only depends on the weather and 
geographic factors to be aggregated, but also on a set of economic variables (e.g. 
number of customers, energy delivered, network length, etc.) that might be correlated 

                                                           
19 The expression γ = bc

�/�bd
� + bc

�� is often used in the SFA literature to measure the relative 
importance of inefficiency in total variation. 
20

 This is expected as this sector is incentive regulated using cost benchmarking and efficiency analysis. 
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with the environmental variables. In order to address these issues we have proposed 
using the Frisch-Waugh (1933)’s theorem that allows us to work with subsets of 
explanatory variables in a multiple regression setting. 

Regarding our application, we first examined the relative performance of alternative 
composites using a model selection approach. Our test results are quite robust and 
clearly show the superior performance of SIR and its parametric counterpart, PIR. 
Moreover, PCA performs much worse than other supervised methods. However, its 
performance tends to be similar to that of SIR for large numbers of composites. Overall, 
our preferred model is a cost function with five SIR composites.  

Regardless of the methodology used to avoid the dimensionality problem, the estimated 
coefficients of our environmental composites are statistically significant indicating that 
weather and geographic conditions matter and that they should be included as cost 
determinants. We also found large differences among utilities in cost attributed to 
different environmental conditions. Our preferred model predicts up to 44% lower costs 
for utilities operating in areas with favourable environmental conditions. For utilities 
operating in an area with unfavourable environmental conditions higher costs of up to 
about 35% are predicted. While lower costs are mostly associated with “urban” factors, 
district heating systems, and agrarian farms around roads and lines, higher costs are 
mostly caused by weather conditions and two geographic factors reflecting the hilliness 
and slope of the ground and the presence of water bodies (e.g. wetlands or lakes), or 
shallow soil. Moreover, using reasonable upper and lower bounds to identify utilities 
operating in areas with “normal” environmental conditions, we found evidence of the 
superior ability of SIR methods to identify utilities disadvantaged by (enjoying) or 
adverse (favorable) environmental conditions. 

Finally, we examined the robustness of a traditional efficiency analysis in order to use 
different aggregation methods to control for environmental factors. The variance of the 
inefficiency term tends to be much lower when either SIR or PCA composites are 
included in the model. This result is consistent with our expectation as ignoring relevant 
factors in an efficiency analysis often tend to amplify the relative differences among 
observations. Our analysis also indicates that, although there is scope for different 
degrees of inefficient performance in the Norwegian electricity distribution sector, the 
model that utilizes PCA composites is not able to capture any performance variation 
among the utilities. 
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Figure 1. Overall and partial goodness-of-fit 

 

(a) R-squared 

 

(b) Partial R2 

 

(c)  Partial BIC 
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Figure 2. Partial BIC with actual and purged cost 

 

(a) SIR composites 

 

(b) PIR composites 
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Figure 3. Histograms and Kernel density plots of estimated environmental cost differences 
using SIR composites. 
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Figure 4. Estimated environmental cost differences using SIR and PCA models 
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Figure 5. Box plots of % of estimated 
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. Box plots of % of estimated environmental cost differences
 

 

environmental cost differences.  
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Table 1. Summary statistics of the economic data 

 

Variable Obs Mean Std. Dev. Min Max 

ln(SOTEX) 512 10.4190 1.1261 8.5261 14.284 

ln(CU) 512 0 1.2605 -2.0206 4.3041 

ln(ED) 512 0 1.3575 -2.3100 4.5338 

ln(NL) 512 0 1.0882 -2.1162 3.2718 

HV 512 0 7.9380 -14.448 24.922 

ln(TR) 512 0 1.1008 -2.1887 3.4337 

ln(KP) 512 0 0.1027 -0.1662 0.0951 

ln(LP) 512 0 0.0550 -0.0858 0.0626 
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Table 2. Model selection Vuong tests  

 

a) Null Hypothesis: SIR=PCA 

No Composites Value Model Accepted 

1 0.688 SIR 
2 4.414 SIR*** 
3 4.18 SIR*** 
4 3.546 SIR*** 
5 2.725 SIR*** 
6 1.45 SIR* 
7 1.078 SIR 
8 -0.12 PCA 

b) Null Hypothesis: PIR=PCA 

No Composites Value Model Accepted 

1 0.298 PIR 
2 3.933 PIR*** 
3 4.129 PIR*** 
4 3.534 PIR*** 
5 2.085 PIR*** 
6 0.917 PIR 
7 0.333 PIR 
8 -2.035 PCA** 

c) Null Hypothesis: SIR=PIR 

No Composites Value Model Accepted 

1 0.553 SIR 
2 1.724 SIR** 
3 -0.324 PIR 
4 -0.294 PIR 
5 1.149 SIR 
6 0.457 SIR 
7 0.825 SIR 
8 2.385 SIR*** 

 

Notes: the Vuong test statistic is distributed as a standard normal variable, N(0,1). * significant at 15%, 
** significant at 10%, and *** significant at 5%. Critical values: 1.44 at 15%, 1.64 at 10%, 1.96 at 
5%.



29 

 

Table 3.  OLS parameter estimates of the cost function. 

 

 No composites SIR composites PCA composites 

  Coef. t-ratio Coef. t-ratio Coef. t-ratio 

Intercept 10.3749 828.2 10.3449 678.3 10.3424 533.2 
ln(CU) 0.5532 10.25 0.4832 8.86 0.5735 10.30 
ln(ED) 0.0751 2.05 0.1262 3.57 0.0476 1.18 
ln(NL) 0.1211 2.79 0.0078 0.16 -0.0569 -1.02 
HV 0.0111 9.17 0.0069 4.56 0.0032 1.87 
ln(TR) 0.1802 3.75 0.3200 5.52 0.2971 4.80 
½·ln(CU) 2 0.3182 0.80 -0.0528 -0.13 0.2708 0.65 
½·ln(ED) 2 0.5014 3.21 0.9494 6.35 0.4006 2.62 
½·ln(NL) 2 0.0114 0.03 -0.5087 -1.29 0.2175 0.54 
½·HV2 -0.0002 -0.93 -0.0003 -1.61 -0.0003 -1.50 
½·ln(TR) 2 0.8661 1.89 0.0346 0.07 0.0873 0.19 
ln(CU)·ln(ED) -0.3831 -1.69 -0.4389 -1.98 -0.4409 -1.98 
ln(CU)·ln(NL) 0.4286 1.80 0.1924 0.83 0.2711 1.12 
ln(CU)·HV -0.0087 -1.16 -0.0392 -5.15 -0.0174 -2.09 
ln(CU)·ln(TR) -0.2735 -0.92 0.4922 1.61 0.1064 0.31 
ln(ED)·ln(NL) -0.0418 -0.25 0.0323 0.21 -0.1395 -0.87 
ln(ED)·HV 0.0029 0.62 0.0119 2.58 -0.0069 -1.28 
ln(ED)·ln(TR) -0.1571 -0.73 -0.6952 -3.36 0.0952 0.44 
ln(NL)*HV -0.0009 -0.15 0.0127 2.14 0.0132 2.01 
ln(NL)*ln(TR) -0.4054 -1.03 0.2252 0.58 -0.3722 -0.97 
HV·ln(TR) 0.0047 0.67 0.0135 1.90 0.0121 1.64 
ln(KP) 0.0912 0.98 0.0901 1.15 0.0895 1.07 
ln(LP) 0.3824 2.17 0.3983 2.67 0.4204 2.63 
       
Composites No  Yes  Yes  
R2 0.985  0.990  0.988  
AIC -3.904  -4.214  -4.083  
BIC -3.713  -3.858  -3.727  
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Table 4. ML estimates of the parameters describing the structure of the error term. 

 

 No composites SIR composites PCA composites 

  Coef. t-ratio Coef. t-ratio Coef. t-ratio 

ln(σv) -2.1879 -22.38 -2.2252 -16.74 -2.1266 -2.29 
ln(σu) -2.0638 -9.26 -3.0431 -1.64 -4.7849 -0.01 

σv 0.1122  0.1080  0.1192  
σu 0.1270  0.0477  0.0084  
γ = bc

�/�bd
� + bc

�� 0.5617  0.1630  0.0049  

log-likelihood 297.119  395.297  361.849  
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Table 5.  Descriptive statistics of annual efficiency scores. 

 

  Composites Statistic 2001 2002 2003 2004 

 None Mean 90.42 90.39 90.50 90.52 
  St.dev. 4.23 4.08 3.77 3.70 
  Max 95.82 96.72 96.43 96.84 
  Min 75.56 75.27 78.44 76.55 

 SIR Mean 96.26 96.27 96.27 96.28 
  St.dev. 0.76 0.73 0.72 0.68 
  Max 97.52 97.89 97.79 97.96 
  Min 93.36 93.26 93.89 94.07 

 PCA Mean 99.34 99.34 99.34 99.34 
  St.dev. 0.02 0.02 0.02 0.02 
  Max 99.38 99.40 99.39 99.40 
  Min 99.28 99.28 99.28 99.29 
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ANNEX 1 

 

Table A. Parameter estimates of the composite variables. 

 SIR composites PCA composites 

  Coef. t-ratio Coef. t-ratio 

c1 0.0424 3.01 -0.0015 -0.18 
c2 0.0223 2.29 0.0308 3.53 
c3 0.0552 3.27 0.0406 5.19 
c4 0.0076 0.55 -0.0124 -1.85 
c5 0.0276 2.61 0.0015 0.61 
c1^2 -0.0584 -2.45 0.0077 2.59 
c2^2 0.0260 1.58 0.0057 2.34 
c3^2 -0.0657 -2.89 -0.0069 -3.91 
c4^2 -0.0276 -1.51 -0.0029 -1.57 
c5^2 0.0233 3.43 0.0053 4.64 
c1*c2 -0.0317 -2.72 0.0068 3.30 
c1*c3 -0.0982 -5.35 -0.0072 -4.21 
c1*c4 0.0409 2.15 0.0064 5.85 
c1*c5 -0.0145 -2.27 0.0054 4.46 
c2*c3 -0.0200 -1.40 -0.0040 -2.56 
c2*c4 0.0092 0.72 -0.0007 -0.44 
c2*c5 0.0110 1.61 -0.0049 -4.03 
c3*c4 0.0548 3.66 0.0007 0.62 
c3*c5 -0.0483 -5.83 0.0016 1.73 
c4*c5 0.0506 7.62 0.0005 0.71 

 


