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Abstract

Supervised dimension reduction methods have bewmmsxely applied in
different scientific fields like biology and medi@ in recent years.
However, they have hardly ever been used in mi@@ne@mics, and in
particular cost function modeling. Nonethelesss¢éhenethods can also be
useful in regulation of natural monopolies suclgas, water, and electricity
networks, where firms’ cost and performance canaffected by a large
number of environmental factors. In order to de#hwhis ‘dimensionality’
problem we propose using a supervised dimensionctiesh approach that
aims to reduce the dimension of data without Idssformation. Economic
theory suggests that in the presence of other amteproduction (cost)
drivers, the traditionadll-inclusive assumption is not satisfied and, hence,
production or cost predictions (and efficiency msiies) might be biased.
This paper shows that purging the data using aapaegression approach
allows us to address this issue when analyzingetfext of weather and
geography on cost efficiency in the context of terwegian electricity
distribution networks.

Keywords. supervised composites, environmental conditioglectricity
networks.
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1. Introduction

New technologies allow researchers to collect amalyae large amounts of data at
relatively low cost. Examples of large-size datss sme plentiful, among others, in
computational biology, climatology, geology, new®y}, health science, economics,
and finance. The availability of massive data alenth new scientific problems has
reshaped statistical thinking and data analysisluReg the dimensions of data is a
natural and sometimes necessary manner in orgeoteed with such analysis. The act
of replacing a set of regressors with a lower-disn@mal function is calledlimension
reduction; and the reduction is labeled s#ficient or supervised when this reduction is
achieved without loss of informatidn.

In a seminal paper, Li (1991) introduced the finséthod for sufficient dimension
reduction, i.e. sliced inverse regression (SIRY amce then various types of inverse
regressions have been propo$ddhese inverse regression methods are computdsional
simple and practically useful, and have been imehs applied in fields such as
biology, genome sequence modeling, pattern redognihvolving images (e.g. face
recognition, character recognition, etc.), or spe@cg. auditory models). However, the
potential of sufficient dimension reduction methddisreducing economic datasets has
barely been explored. An exception is Naik et 2000) that use the SIR techniques to
aggregate marketing data.

The purpose of this paper is to show how superviBegension reduction techniques
can be used in economic analysis. We focus on ftogttion modeling with an
application to the effect of weather and geograpiyost efficiency of electricity, gas,
and water distribution networks. Weather and geugcaconditions are among the
most commonly debated factors perceived to be taffgche performance of network
utilities, as severe weather conditions and diffi¢arrains tend to increase service
interruptions and costs associated with repladimgdamaged equipment and restoring
power. Controlling for the effect environmental ttars is particularly important in the
case of incentive regulation and benchmarking e€tekity networks where the results
of efficiency analysis have important financial imptions for the firms. However,
while the effect of weather and geographic condgion the performance of the utilities
is of academic and economic interest, the empigealence is rather limited, with Yu
et al. (2009a) and Growitsch et al. (2012) as Hetakceptions.

Taking into account the effect of weather and gaplgy on cost of production and
quality of service is a challenging task. It isfidiflt to either formulate hypotheses or
impose restrictions derived from production theonythe technology and weather and
other non-discretionary influences that consistaolarge number of factors with

! Fisher (1922) formulated the concept of sufficisttistic as a means of reduction without loss of
information. See Cook (2007) and Adragni and Ca2B09) for a formal definition and overviews of
sufficient dimension reduction in regression.

% The literature on sufficient dimension reductiersiill evolving. See Cook (1998) for an early suamyn

of this literature. For a brief survey, see Burd diang (2011) and references therein.



complex interactions. This leads to a ‘dimensidgalissue which becomes acute in
non-parametric settings or when parametric flexibfectional forms are to be estimated
(e.g. Translog). The most common strategy to woith \ligh dimensional data in
production and efficiency analysis is dimensionuabn (e.g. principal components or
explanatory factor analyses), where the input dsimnspace is reduced into a small
number of composites for further analysis usingnadr combination of the original
variables® This approach is used in the abovementioned stuatid in Nieswand et al.
(2009), Adler and Ekaterina (2010) and Zhu (1998)e main drawback of principal
component analysis (PCA) and similarsupervised dimension reduction techniques is
that they might misspecify the fundamental relaglop between a dependent variable
(for instance cost) and weather and geography kectiey ignore information on the
dependent variable when reducing the dimensiorhefdata. Therefore, predictions
might be biased because relevant predictive vasalshn be underweighted, while
factors irrelevant for cost can be overweighed.

In contrast, the so-calleslpervised methods for reducing the dimension of the data
assume that the dependent variable is known, alitdo account the relationship
between the variable to be predicted (e.g., cast),the vector of explanatory variables
to be aggregated (e.g. weather and geographicbles)a A common characteristic of
these methods is that they aim to replace a higiedsional vector of explanatory
variables with a lower-dimensional function, predd that it captures all the
information about the dependent variable. Anotleature of these techniques is that
they require no pre-specified model for the proauncor cost function and, except for
the traditional exogeneity assumption, no otheumgtions are made about the error
term. This characteristic is especially importanteifficiency analysis where the error
term is composed into a (symmetric) noise term afdsymmetric) random efficiency
term.

In our empirical application we use non-nested rhaeéection tests to examine the
relative performance of PCA and two of the most c@n supervised methods, viz. the
sliced inverse regression introduced by Li (1991) &s parametric counterpart PIR (for
parametric inverse regression). To our knowledge,present paper is the first attempt
to apply supervised methods to production econamdisscontrolling for the effect of
environmental factors is particularly important éfficiency analyses of regulated
electricity networks, we also examine whether edficy analyses are robust with
respect to using either unsupervised or supervisggregation methods. This is
achieved using a simple model of firms’ inefficigndVhile previous papers have
examined the robustness of efficiency results wébpect to controlling or not for
environmental factors (See, for instance, Growitschl., 2012), they have not carried
out the above mentioned robustness analysis.

% An alternative approach to avoid the curse of disienality is variable selection and regression
shrinkage (see Fan and Li, 2006 for overviews).



Unlike in other settings, we need to address arortapt empirical issue caused by the
fact that our dependent variable (i.e. electridistribution costs) not only depends on
the weather and geographic factors to be aggregatedilso on a set of economic and
technical variables (e.g. number of customers, @ndelivered, network length, etc.)
that might be correlated with the environmentaliatades. If this is the case, the
exogeneity assumption of Li (1991) is violated &md procedure will likely give poor
predictive composites. Indeed, sliced inverse =yom and other sufficient dimension
reduction methods do not consider the presencethadr explanatory variables than
those that are to be aggregated, a feature thitheéas thall-inclusive assumption. In
order to relax this assumption and address thenpateroblems of endogeneity, we
propose purging the data before using any superrisethod. Moreover, to purge the
data, we propose using a partial regression apprtiat requires estimating auxiliary
regressions where original variables are repladéu nesiduals obtained from previous
regressions. The proposed empirical strategy tdldathis issue is one of the
contributions of the present paper. In additionwasare primarily interested in weather
and geographic factors, we also adapt traditionatmested model selection tests in the
analysis of a subset of the variables in a multrplgression. The adaptation is carried
out by reversing the procedure used to purge tteerdantioned above.

Our test results show the superior performancel@f &d its parametric counterpart
over the traditional variable reduction techniquitreover, using reasonable upper
and lower bounds to identify utilities operatingareas with “normal” environmental

conditions, we find evidence of the superior apitf SIR and PIR methods to identify
utilities disadvantaged by (enjoying) adverse (fabte) environmental conditions. A

traditional efficiency analysis indicates that,haligh there is scope for different
degrees of inefficient performance in the Norweggerctricity distribution sector, the

model that utilises PCA composites is not able dptare any performance variation
among the utilities.

Section 2 introduces SIR and other popular sufficidmension reduction methods.
Section 3 describes the data, the composite vagat#rivation, and the specification of
the cost function used in the empirical exercisecti®n 4 presents the main results
using PCA, SIR and other supervised methods. Sebtaresents the conclusions.

2. Sufficient dimension reduction methods

Since Li (1991) introduced the sliced inverse regi@n, sufficient dimension reduction
methods have become popular to use with large-slegitesets in fields such as biology,
genome sequence modeling, or face recognition Becemassive datasets have been
available in these fields for a relatively long &nThe huge dimensionality problem in
these fields boosted up the researchers interdisisilssue and since Li's seminar paper
various types of inverse regressions have beenopenfincluding the sliced average
variance estimation (SAVE) (Cook and Weisberg, }99tincipal hessian directions



(PhD) (Li, 1992), parametric inverse regressionRjP(Bura and Cook, 2001a), and
partial SIR (Chiaromonte et al., 2002) with catécadrvariablesThe popularity of these
inverse regression methods is due to the fact i@t of them are computationally
simple and have been demonstrated to be practicalyul in the abovementioned
fields.

We next describe briefly the procedure of the oagsliced inverse regression method
and later on we relax the all-inclusive assumptioderlying the sufficient dimension
reduction method.

Let Y; denote the variable to be predicted (e.g., firomst) and xbe ap-dimensional
column vector of regressors that are to be aggedgéd.g., weather and geographic
variables). Let X denote a matrix of observations ofx{, Y be a vector ofn
observations of Y andZ, be the covariance of X. A common characteristianaist
popular sufficient dimension reduction methods hattthey aim to replace the
dimensional vector X with a smaller set of lineambinations of the original variables,
provided that it captures all of the informatiomttlX contains about the variables to be
predicted. A statistical formulation for addressthgs issue is given in Li (1991), using
the following fairly general model:

Yi = f(B1'Xi, o, B 'Xi) + & (1)

where 3,...,0k) are px1 vectors of unknown coefficients, ads a random term
which is assumed to be independent;offkis model makes no assumption about either
f(-) or the distribution of the error term. The pesse variable Y is related to tpe
dimensional  regressor ;x only through the reduced K-dimensional
variable(B;'x;, ..., Bk'xi). When this model holds, the projection of ireimensional
explanatory variablexonto the K-dimensional subspa@®, 'x;, ..., Bx'x;) captures all
the information about Y

SIR and other sufficient dimension reduction methace developed to find the space
generated by the K unknowfvectors, called theffective dimension reduction (e.d.r.)
space. This space should be estimated from the atadais based on the spectral
decomposition of a kernel matrix M that belongstie central subspace, that is
S(M)DSY|X.4 Most sufficient dimension reduction methods arselolaon the same logic
but use different kernel matrices. Once a samplesiv@ of M is obtained, the
eigenvectors corresponding to the largest eigeegatiiM are used to estimate a basis
of the central subspace.

For effective dimension reduction, Li (1991) propdsto reverse the conventional
viewpoint in which Y is regressed on X (forward megsion) and showed that if X is
standardized to have the zero mean and the idertitstriance, the inverse regression
curven(Y)=E(X|Y) fall into the e.d.r. space. Hence a pipal component analysis on

* The central subspace is the smallest dimensionctieth subspace @®? that provides the greatest
dimension reduction in the predictor vector.



an estimation of E(X|Y) and its covariance matfix=cov[E(X|Y)] can be used to
estimate e.d.r. directions.

The computation of SIR is quite simple and candrei@d out in five steps:

1) Standardize X toZ = f;l/z(x—i) where 2;1/2 is any square root of the
inverse of the sample covariance matrix for X (ethe inverse of the lower
triangular Cholesky factor df, ) andX is the sample mean of X. In this scaling,
Z has a zero mean and identity sample covariantexma

2) Divide the range of Y into H slices and computertiean of Z in each slice,,,
h=1,..., H.

3) Form the weighted covariance matrix of these slicean vectorsMgr =
>i . PnZnzZn', wherepy, is the proportion of cases falling into slice h.

4) Find the eigenvalues and eigenvectorsMgyy.

5) Letnk (k=1,...,d) be thed largest eigenvector dgz. The e.d.r. directions can

be estimated by rescaling the previous eigenvedterf, = S /.

After standardizing X, step 2 produces a nonparamedistimate of the inverse
regression curve E(Z|Y), which is the slice mearZ @ffter slicing the range of Y into
several intervals and partitioning the whole dait® iseveral slices according to the Y
value® These slice means of Z are used in step 3 torohtaestimate of the conditional
covariance matriZ,=cov[E(X|Y)], i.e. matrixMgz. In step 4, a PCA is applied to these
slice means of Z in order to find the e.d.r. dii@ts. Finally, step 5 simply retransforms
the scale back to the original one.

Several comments are in order. First, the abovenemjue decomposition differs from
that of the traditional PCA. Here, the dependemiaée is used to form slices while the
standard PCA does not use any information from ¥cofd, Chen and Li (1998)
showed that SIR can be interpreted as a (multipleat) regression analysis and
established that SIR searches for the best e.dactidns without knowledge of the
functional form f(-). Third, Li (1991) and Cook afdeisberg (1991) pointed out that
the performance of SIR is not sensitive to the nemds slices used in partitioning the
data matrix. Finally, under general conditions timearity assumption by Li (1991)
holds asymptotically for high dimensional data (sedl and Li, 1993)Therefore, when
the dimensions are high, SIR can work well. Thes¢ures lead us to focus our analysis
on SIR or its parametric counterpart PIR, as oetlibelow.

In SIR, Z are regressed on a discrete version oésulting from slicing its range in
order to obtain a rather crude estimate of therseveurve E(Z|Y). If Y is a continuous
variable, its transformation to a categorical Maeamight imply ignoring much

® Note that SIR uses the response variable onlyre¢ate slices and only the order of Y is needed in
slicing. Hence it is indifferent whether we use anotonic transformation of the response variabthsu
us the logarithm of Y.



information about the inverse relationship betweerand Y. PIR is another first-
moment based method for effective dimension redocthat aims to estimate the
central subspace without imposing any restrictioms the nature of the response
variable Y. This is achieved using least squargsmates of each standardized
explanatory variable on a set of arbitrary funcsiaf Y. The fitted values of E(Z|Y) are
then used as an estimate of M, that is

Mpir = (Fi'F; )'F'Z; (2)

where F=F(Y;) is a matrix of centered functions of Y. For imsta, Bura and Cook
(2001a) suggest using a quadratic function of YcdBee polynomial functions of Y are
used, this method is known as a polynomial invesgeession.

Although SIR and other supervised methods aresstati in nature, it is useful to see
the challenges faced by any supervised method wssigiple theoretical model. This
not only helps to understand better the naturdne$e challenges but also to shed light
on the nature of measurement errors in (un)supEhdsmposites.

Assume that the theoretically model to be estim&ét= a,x; + a,x,. Note that the
coefficients of both observed variableg,anda,, capture the theoretical effect of each
variable on Y. From a theoretical point of viewistkffect does not rely on how and

Xo are aggregated using statistical techniques. Anvatgnt way to write the model
above using dheoretical composite ff(x,,x;) iISY =a - [(o; /@)%, + (a/a)x;] =

a - f(xq,X3), wherea = a; + a, measures the overall effect of both variables. The
latter specification simply indicates that both lkexgtory variables should be weighted
using their relative effects on Y in order to estimmthe same. In other words, the
empirical composite should aggregate the explanatory vasalbdking into account
(somehow) the dependent variable. This is precidadyaim of thesupervised methods
for reducing the dimension of the data. In contrastsupervised methods only use
information on how xand % are statistically distributed, how large theirigaces are,
or whether they are highly correlated.

So far we have assumed that the p-dimensional veGtincludes the whole set of
available variables and, hence, equation (1) do¢<onsider the presence of omitted
explanatory variables that might be correlated Within particular equation (1) ignores
both the basic economic theory on production ecac®rand the available empirical
literature on the electricity distribution networtkeat demonstrate that utilities’ costs are
increasing functions oéconomic-in-nature variables, such as number of customers,
amount of energy delivered, network length, andiamnd capital prices, etc. Under the
presence of additional regressors, not only we laatraditional endogeneity problem
but also the performance of supervised composiightndegenerate drastically. If we
add the economic variables to equation (1), thertteal-consistent model to be
estimated can be written as

Y; = f(c;, 8) + g(Qi, B, y) + 5 (3)



where © andy are parameters to be estimated= (B;'x;, ..., Bx'x;) is the matrix
containing the estimated composites that were wétaiusing PCA, SIR and other
supervised methods, angl-) can be viewed as the traditional cost function in
production economics which, by theory, should baasing in outputs, iQincreasing

in input prices, B and linearly homogeneous in input prices. As welats a complex
phenomenon and its overall effect on cost is unknowe take an agnostic position and
do not make specific assumptions about the prolplaletial) effect of specific weather
composites on distribution costs.

In order to address both the likely endogeneitybfmm and poor performance of
supervised composites, we rewrite (3) as follows:

Y =Y —g(Q;,P) =1f(c;, 0) + g (4)

Hence, the above equation suggests that previoukon® on sufficient dimension

reduction can still be used after we have propeotyected the dependent variable for
the effect of the economic variables. In order ¢hi@ve this objective we propose the
so-calledpartial regression approach used to measure the contribatia subset of the

explanatory variables (in our case, economic dsivar costs) in multiple regression
models taking into account that other explanatogriables (in our case, the
weather/geographic composites) are already inclindélde model and that they might
be correlated with the economic variables.

An adjusted dependent variable can be obtainedwaolly Frisch-Waugh (1933)’s
theorem by estimating an auxiliary regression wloeiginal variables are replaced with
residuals obtained from previous regressions (seer@, 2002, p. 26). The aim of this
regression is to net out the effect of the weadimel geographic composites on both the
dependent variable (i.e. costs) and the economiabltas. This procedure allows us to
isolate the effect of the economic variables ont,cos. g(-) to purge the dependent
variable.

In particular, a properlgorrected dependent variable can be obtained as followst,Fir
we regress Yon the weather and geographic variables usingrilgenal data and obtain
the associate residudls:

e = e(YIX) = Y; — Vi(X) )

Second, we regress each economic variable on tl¢hereand geographic variables
and obtain the residuals:
di = dl(ZIX) =7Z; — ZAL(XI) where z = P or Q (6)

® Note that here we are not interested in the iné¢aion of individual coefficients or in the skittal
properties (i.e. t-ratios) of the estimated coddfits. We carry out this regression in order tolement
the two-step Frisch-Waugh (1933) procedure. Onentiatl problem could be the number of geographic
and weather variables. If these are too large,awdacarry out this regression by replacing theviiddial
variables with PCA composites. Recall that PCA does require using information on the response
variable. In this case, we use PCA as an internedi@ol in our procedure in order to control for
endogeneity issues when using supervised varialigction techniques.



Finally, we regress the first set of residualsimgecond set of residuals and obtain g(-)
from the parameters of tlaixiliary regression

ej = g(dy) +v; (7)

The coefficients of (7) allow us to compute the tsoattributedonly to economic
variables taking into account that the weather gemhraphic composites are also costs
drivers and that they might be correlated with élsenomic variables. This estimate is
then used to obtairj". As this the new dependent variable is purgedhefdffect of
economic variables, it should provide a better tistgr point to implement our
supervised methods to aggregate our set of weatltegeographic variables.

3. Data, composite variables derivation, and cost function specification

The data used to illustrate the relative perforreanicthe different variable reduction
methods is a balanced panel for 128 Norwegianraggtdistribution networks for the
years 2001 to 2004. Norway presents a particulatéresting case to study the effect of
environmental factors. First, Norway was among fhst countries to introduce
efficiency benchmarking (based on the non-paramedata envelopment analysis
techniqgue) and incentive-based regulation in thast@® in 1997. As a result, the
managerial inefficiency of the networks has beeluced (Fgrsund and Kittelsen, 1998;
Edvardsen et al., 2006). Second, unlike most camsjtthe Norwegian electricity sector
consists of a large, though slowly declining (daertergers and acquisitions), number
of network utilities which allows the use of moxphisticated analytical methods, such
as supervised methods and semiparametric estimdtimally, the Norwegian energy
regulator has made efforts to take the effectsnefrenmental factors on the cost and
service quality performance into account and ineltltese in the benchmarking models.
In particular, the regulator intends to analyzargeé number of geographic and weather
variables with a view to use unsupervised dimensgatuction techniques to construct
composite indices. The composites are then to ld us a second-stage regression
model to adjust for their effect on the estimatetitive inefficiencies. This approach
implies that the (geographic and weather) compssiftiect the firms’ efficiency rather
than their cost function.

We specify a simple cost model with two outputs f€ustomer numbers, and
ED=energy delivered), two input prices (KP=capgate and LP=labor price), a proxy
for size of the system (NL=network length), and timdices capturing technological
characteristics of the network (HV and TR). The tedputs are the number of final
customers and the energy supplied measured in nagghours (MWh). These two
variables reflect the different marketable goodstlud joint service of electricity
distribution” The first technological index is HV, i.e. the pemtage of high-voltage

" Customer numbers and units of energy deliveredrarenost commonly used outputs in benchmarking
of distribution network utilities (Giannakis et ,aR005; and Yu et al. 2009a, 2009b). These output
variables are important cost drivers and influetheepricing of distribution services.



network in total network, which is included as axplanatory variable to capture
differences in maintenance or acquisition of eq@ptlikely more expensive for high-
voltage network). This is an empirical questionhagh-voltage grid might be cheaper
than low-voltage grid if the latter is mostly ungeyund cable in urban areas. TR is the
number of transformers and is used as proxy foetasand network capacity.
Alternatively, we can interpret the coefficient R in terms of changes in tmatio of
transformers to network length (i.e. changes inew riechnological index) because
network length is already included as a cost driVee labor price is the average salary
in electricity sector (NOK/month) and the priceaaipital is the price index for power
sector goods.

Regarding the dependent variable, and following therwegian benchmarking
approach, we incorporate quality of service into mwdel by using, as dependent
variable,social costs instead of total production costs. In additioroperating expenses
and capital expenditures, social costs, C, inckxternal quality costs. External quality
costs are calculated by the multiplication of tnergy not supplied with the estimated
customer willingness-to-pay for an uninterrupte@rgy supply. Summary of statistics
of the economic data are shownriable 12

[Insert Table 1]

Given the abovementioned cost drivers, basc cost function to be estimated can be
written as:

InC;; = g1"“(CUj, EDjy, NLyg, TRy, @) + gSP (LPy, KPy, v) + & (8)

where the subscripts i and t stand respectivelyufdity and time,a andy are the
parameters to be estimated, and our former depéndeable has been replaced with
the log of social costs, IRCSuperscript TL irgT1(+) stands for Translog specification,
and superscript CD igSP(-) indicates that only a Cobb-Douglas specificatien i
estimated. We add the log of capital and laboregrito our cost function because they
do not vary across utilities, but only vary ovendi. This precludes using quadratic
terms and interactions with these variables.

In addition to the previous economic variables,im@rporate a varied set of weather
and geographic variables in our analysis. Thisuide$s variables for temperature,
precipitation, wind speed, distance to coast, slpppulation concentration, forests and
so forth. Once we drop variables that are lineactions of others, our data consist of
35 weather variables and 32 geographic variahtesrder to further reduce the number
of environmental variables to a manageable numiper ta avoid the problem of

multicollinearity, we estimate composite factorsr fthe geographic and weather
conditions using two sufficient dimension reductioethods: SIR and its parametric
counterpart, i.e. PIR. We also use PCA as a benthasait is the dominant method of

8 All monetary variables are in 2004 real terms.
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dimension reduction in production economics andcieficy analysiS. Then, we
incorporate the estimated geographic and weathapaosites as additional cost drivers
in our model. The final cost function that includgsographic and weather composites
can then be written in a compact form as:

InCj; = g}‘L(O() + ggD(Y) + fTL(Cit' 0) + &t 9)

where ¢ is a previously computed vector of environmentaiposites, and function
f(-) i1s estimated using a Translog specificatiomovdtsch et al. (2012) applied
dimension reduction to separable types of varialftesugh not all weather and
geographic variables together as we do here) becausather and geographic
conditions are different in nature. This somewtlzailitates interpretation, but ignores
the feedback effects among weather and geographititions™®

So far we have described the deterministic path@fmodel, i.e. the effect on the firms’
cost function of both economic and environmentaiades. However, the estimated
residual in (12) can be used to explore whetheativel efficiency depends on the
method selected to control for geographic and vezatbnditions. In order to achieve
this we follow the well-known stochastic frontieraysis (SFA) literatureé and assume
that the error termef) can be decomposed into a traditional noise tergh dnd a
random efficiency term (), i.e. g;; = v;; + u;.. In particular, we apply standard SFA
techniques to a normal-half-normal model, and asstimat ¥~N(0,0,) and  is a
nonnegative half normal, i.egtN"(0,0,).

In order to obtain the efficiency scores for earmfwe use a three-stage approach
advocated in various models in Kumbhakar and Lof000). In the first stage, we
estimate the cost function (12) using ordinary tesguares, OL$? The above
distributional assumptions are then invoked to iob&stimates of the parameter(s)
describing the variance of;\and , conditional on the first-stage residu&igsinally,

°® We have also used the most popular second-monzesetdbmethods, such as SAVE, SIR-Il or pHd.
Results from these alternative methods are not slow next sections due to space limitations, and
because their performance was (and often consilygralmrse than that of SIR and PIR. They are,
however, available from the authors upon request.

% |n a previous version of this paper we examinecetiver a separable or joint analysis is more
appropriate applying the Voung tests to two conmgetnodels, one with two composites derived from
weather and geographic information, and other med#i one separable composite for weather and
geography respectively. Our results indicated thet should not treat weather and geographic
information differently when computing our compesit

> For an overview of this literature see Kumbhakat hovell (2000) and Coelli et al. (2005).

 Note that here the expectation of the composedr ¢emn is not zero as the expectation of the
inefficiency term is positive. This implies thatettOLS estimate of the intercept in (12) is biased.
However, a consistent estimate of this coefficiemn be obtained once the parameters describing the
distribution of y are estimated.

® The second-stage estimators are obtained by manrinthe likelihood function associated to the
residuals that can be obtained from an estimatieofirst-stage cost function (12). The residuatsf the

first stage aré;, = vj; + (u;; — E(u;)). If uy follows a half-normal distribution, theB(u;,) = +/2/7 -
o,. Thus, the stochastic frontier model in the secetae isg;, = vi + uy. —+/2/7 - 0, wWhere the
parameters, ando, are estimated by ML.

11



efficiency scores are estimated for each firm ughg conditional distribution ofju
giveng;; introduced by Jondrow et al. (1982). The main athwge of this procedure is
that no distributional assumptions are used irfitsestage (i.e., in OLS) and that in the
first stage the error components are allowed to figely correlated. Standard
distributional assumptions o and \ are only used in the second and third stages of
the procedure.

4. Results

Before presenting the parameter estimates, weekaitnine the relative performance of
alternative composites using non nested model tsatetests. In particular, for model
selection we consider the widely-used the Bayesi#ormation Criterion (BIC),
proposed by Schwarz (1978). BIC involves minimizargindex that balances the lack
of fit (too few composites) and overfitting (too nyacomposites) as it includes a
penalty that increases with the number of regressdence, models with lower BIC are
generally preferred’

If we apply directly any model selection criter@dquation (3), none of them will be
quite informative about the relative performance asfy methods for aggregating
weather and geographic factors because the economature variables explain most
variation in electricity distribution costs As we are mainly interested in the correlation
between the costs and weather and geographic $aeter adapt the traditional model
selection tests to the analysis of a subset o¥dni@bles in a multiple regression setting.
In order to address this issue, we make use ofsthealledpartial R* in multiple
regression models. partial R? allows us to measure the contribution of a subséte
explanatory variables (in our case, the weathergaudjraphic composites) taking into
account that: i) other explanatory variables (im case, drivers of economic costs) are
already included in the model, and ii) they mightdorrelated with the environmental
variables. In particular, partial R? for the weather and geographic composites can be
obtained as follows. First, regresson the economic variables @hd R and obtain the
residuals. Second, regress each environmentalbl@ar@a the economic variables Q
and R, and obtain again the residuals. Finally, regeess d, and obtain the Rstatistic
between these two sets of residuals. The computdtbR the last regression can be
interpreted as partial R? because it measures the (pure) relationship beteests and
environmental variables once we have controlledtfereffect of economic variables.

The above model selection procedures have beenizzid because the deterministic
nature of these criteria means that no informaisgorovided as to “how much” better

14 An alternative model selection statistic is thedely-used Akaike’s Information Criterion (AIC)
proposed by Akaike (1973). We use the BIC formalatbecause it uses a larger penalty than AIC, and
hence it tends to favor more parsimonious modeds tAIC, which in turn help estimate models
coefficients with more precision (see Verbeek, 200&1).

'3 In our application, only one explanatory variafdeg. customer number or energy delivered) explains
about 97% of the cost variations.
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is the chosen model (i.e., they do not allow prdistic statements to be made
regarding model selection). Therefore, we also yagpe Vuong’'s (1989) model
selection framework to select the most adequateemddsigned to test the null
hypothesis that two competing models fit the dajaadly well versus the alternative
that one model fits better. If the null is not g we can conclude that both
competing models are equivalent. Otherwise, we lodecthat the competing models
can be statistically differentiated, and the signtlee test indicates which model
dominates the other in the sense of being closeretdrue model.

Based on the cost function ($igure 1shows the overall R and the partial Rand
BIC values obtained by including different numbefscomposites. Both weather and
geography variables are used to compute up to aosites. The figure indicates that
the overall goodness-of-fit for all models is vemgh. This high value is the
consequence of size effect as most of cost vaniagoexplained by the number of
customers, energy delivered or network length. dditeon, these economic variables
are strongly correlated with both weather and gaolgic variables and hence they are
also capturing the effect on cost of environmergalables. For these two reasons, the
overall R statistic does not help us to analyze the relgtiedormance of PCA, SIR
and PIR when aggregating weather and geographioréa€igures 1b and 1show, as
expected, that the partia®Rind the partial BIC are much more informative keesyt
isolate the contribution of weather and geogramamposites. These figures clearly
show the superior performance of SIR and its pamameounterpart, PIR. Only for
large numbers of composites the performance of BGAmilar to that of SIR and PIR.
Note, on the other hand, that the BIC figure reacti® minimum value when five
composites are used. For this reason, a cost &metith five SIR composites is,
hereafter, our preferred model.

[Insert Figure 1]

The supervised composites have been computed @ists were purged using the
procedure outlined in Section 3. The partial BlQuea for SIR and PIR using actual
cost are shown iRigure 2 Two comments are in order. First, the performanfceoth
types of composites is similar for large numbersahposites. However, for small or
moderate number of composites, the figure makegeatvithe superior performance of
supervised methods that control for potential eedegy based on corrected costs.
Second, this better performance is especially ewithe PIR composites. This result is
likely due to the fact that SIR uses a crude measitithe inverse curve E(X|Y), while
PIR uses a parametric but more precise estima&>ql’) and, hence, more sensitive to
the presence of additional regressors correlatddweather and geographic variables.

[Insert Figure 2]

As a robustness analysis, we examine again theiveelgerformance of different
dimension reduction methods imable 2 but this time we use the Vuong test that
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compares the goodness-of-fit of two competing (pesused vs. supervised) models
when using different number of composites. A pesisign in this table indicates that
the model that appears on the right is closer @arlie model than the model that is on
the left, and vice versa. [nables 2a and 2we test the relative performance of the most
commonly used dimension reduction method, PCA,reg&IR and PIR. The estimated
values of the Voung test are positive except whghte&omposites are used, indicating
again that PCA tends to perform worse than SIR Rl It should be noted that the
estimated differences in goodness-of-fit are dtetily significant for moderate
numbers of composites even though the Voung teghitmot perform well because our
models are highly overlapped (Shi, 2011). This ltaswadditional evidence in favour of
SIR and PIR. On the other handible 2cshows that both supervised methods perform
similarly, although SIR clearly outperforms PIR wih&o or eight composites are used.

[Insert Table 2]

In Table 3we show the estimated coefficients of the costtion using our preferred
model, i.e. the cost function with five SIR compesi For comparison, we present the
parameter estimates of a model without environnmerdamposites and the
corresponding model using the most commonly usededsion reduction method,
PCA. The variables are measured in deviations fteengeometric mean and hence
first-order coefficients are elasticities (or datives) evaluated at the sample mean.
Table 3shows that all elasticities of social cost witlsgect to customer numbers,
energy delivered, and network length in our prefrmodel have the expected
(positive) signs at the sample mean. As the firdeocoefficients of the outputs are in
sum the scale elasticity and if this is smallentbae, scale advantages indicate natural
monopoly characteristics (see also Salvanes anttaTj&998). Although the scale
elasticity is similar using either SIR or PCA corsjtes, there are remarkable
differences in individual variables. For instanttes first-order coefficient of customer
numbers (energy delivered) using PCA is much higloever) than that found using a
SIR specification. This suggests that our resudty with the method used to construct
environmental composites. The first-order coeffitieof HV is also positive and
statistically significant, indicating that an inas® in high-voltage network percentage
yields higher maintenance costs. It might alsodatdi that high-voltage equipment is
more expensive. The second technological index, dl&) has a positive first-order
coefficient, indicating that a higher ratio of teimrmers to network length tends to
increase electricity distribution cost. It is wortientioning the positive and significant
coefficient of the labor price. The coefficientadpital price is positive as well, though
not statistically significant.

[Insert Table 3]

Regarding the environmental factors, the estimatedfficients are shown in the
Appendix. Although we take an agnostic position dndchot make specific assumptions
about the sign of these coefficients, it is wortlemmoning that most of them are
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statistically significant. Hence, we can conclukat tweather and geographic conditions
matter and that they should be included as costmétants® Moreover, the estimated
coefficients suggest the existence of remarkabterdnces among utilities in cost
attributed to different environmental conditionid is likely what regulators wish to
control for. The estimated differences are sumnedrinFigure 3where we plot kernel
density functions of the percentage of cost attetuo (unfavourable) environmental
conditions, measured in relation to the “averageh fthat have been obtained using
our preferred model based on SIR composites.

The distribution of the estimated SIR environmentalst differences is slightly
symmetric. However, we find the existence of a emiation mass in both tails of the
distribution for the SIR model. The observationdobging to any of these two
concentration masses are utilities that are likgdgrating in areas with either extreme
bad or good environmental conditions. This issuexjgored in more detail later using a
new figure, but-igure 3shows that the SIR model predicts up to 44% lovests for
utilities operating in an area with favourable eammental conditions. A simple
correlation analysis suggests that the lower castsmostly associated with “urban”
factors and the relative importance of districttmgasystems, i.e. a higher urbanisation
and more output delivered of district heat in ca@soen area lead to a decrease in cost.
Higher shares of agricultural land around roads #&nds reduce cost as well.
Distribution costs also tend to decrease in wanpaets of Norway. On the other hand,
for utilities operating in an area with unfavoumt@nvironmental conditions higher
costs up to about 35% are predicted using the SIBeinThese higher costs are mostly
caused by weather conditions: an increase in sraw precipitations, and wind tend to
increase cost. Geographic factors such as thedsli and slope of the ground and the
presence of water bodies (e.g. wetlands or lakeshallow soil that may be easily
moved by wind seem to be also correlated with higleribution costs.

[Insert Figure 3]

As the above correlations make sense, we can amc¢hat our empirical strategy to
control for environmental factors based on SIR cosites performs well. Recall that a
SIR specification of the model is preferred becatlmse PCA specification is rejected
using the Vuong test (see Table 2) and partfa(BRC) statistic is higher (lower). We
next examine the results in comparison to PCA cags. Figure 4shows a scatter
plot of the estimated environmental cost differengsing SIR and PCA composites. As
shown, the estimated cost differences from these ¢emposites are not highly
correlated. In addition, the coefficient of corteda (0.43) between the competing
models is quite small. These results indicate ¢batrolling for the effect of differences
in environmental factors is a difficult task an@nle, the results of efficiency analysis

18 Growitsch et al. (2012) have found similar resuliing a similar specification of the technologytiod
Norwegian electricity distribution networks.

" The so-called average firm is obtained by addimg first-order coefficients of the five composite
variables as all explanatory variables are in d®na with respect to their respective means.
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in an incentive regulation framework might be bthseregulators do not select the
proper method to construct environmental compaskes instance, regulators might
reward some utilities in excess because they haea wrongly labelled as suffering
from harsh environmental conditions.

[Insert Figure 4]

Figure 5shows the box plots of the percentage of costbated to unfavourable
environmental conditions, measured in relatiorht“average” firm. We might assume
that values smaller or larger (smaller) than th@eup(lower) adjacent values are
identifying utilities operating in areas with extte bad (good) environmental
conditions. It is conceivable that a firm lying hiit these bounds has 'normal’ weather
and geographic conditions. The range of valueshefdstimated environmental cost
differences using SIR is wider than those usingCé Pnodel*® However, the number
of observations with 'normal’ weather or geograptoaditions in the SIR model is
somewhat lower than those detected using a PCA Imbbdether words, while PCA
only detects 8 observations (in fact 2 utilities)hwover-cost percentages larger than the
upper adjacent value, SIR detects 55 observatiansapout 13 utilities) with extremely
good (8 utilities) or bad (5 utilities) environmahtonditions. We can intrepret this as
an additional evidence of the higher ability of StiRthods to identify utilities suffering
(or enjoying) extreme bad (good) environmental d@ions. Moreover, PCA only
detects utilities with extreme unfavourable comdfis, while SIR is able to detect
utilities with both good and bad extreme conditidhss noteworthy that the SIR set of
utilities does not nest the PCA set as the twdatieslidentified using the PCA model do
not appear in the SIR set.

[Insert Figure 5]

So far we have analysed the results regarding stien&ed cost function, i.e. the
deterministic part of the model. We have made ratridutional assumptions when
estimating the coefficients of the cost functiong able 3 We next assume, following
the SFA literature, that the estimated error teem be decomposed into a noise term
(viN(0,0v)), and a one-sided random term capturing firmsffiniency (u~N"(0,0.))

in order to form an idea about the robustnesstodditional efficiency analysis if either
unsupervised or supervised aggregation methodssag an issue not examined yet.

Table 4shows the ML parameters estimates of (the log off) Istandard deviations,
and o, describing the structure of the error terms, coowaidl on the first-stage
estimated parameters. The variance of the ineffogigerm is higher than the variance
of the traditional noise term when no compositesuaed. In particular the statisyien
Table 4indicates that random shocks, which are captuyethé traditional symmetric

'8 This result makes sense because PCA compositesoameuted ignoring their relationship with the
dependent variable. As the potential explanatonygvoof PCA composites is weaker than that of SIR
composites, OLS tends to soften the cost effeatezther and geographic conditions.
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error term, explain 56% of the overall variancetef composed error terti However,
when either SIR or PCA composites are includedhimm hodel, the variance of the
inefficiency term tends to be much lower. This fesiconsistent with our expectation
as ignoring relevant factors in efficiency analysgads to overestimate the efficiency
scores because the relative differences among\waigaTs tend to be much higher.

[Insert Table 4]

Table 5 provides summary statistics of the estimated ieficy scores from the
compared models. On average, the efficiency sauvegned from the more restrictive
model (about 90.5%) are relatively lower than tffeciency scores using SIR or PCA
composites (about 96% and 99% respectively). Tinisease is particularly high in
specifications that use PCA composites. Moreovbeg Variance estimate of the
inefficiency term in the PCA model is not statiatlg significant. This result indicates
that, although there is scope for different degrekesnefficient performance in the
Norwegian electricity distribution sectttthe model that uses PCA composites is not
able to capture any variation in (relative) perfamoe among utilities. Clearly this
result (i.e. the lack of inefficiency) might notgpen in other applications. We simply
give some evidence about the consequences of lesagaccurate methods to control
for environmental conditions in traditional effioiey analyses.

[Insert Table 5]

5. Summary and conclusions

Although supervised dimension reduction methodscaremonly used with large-scale
data sets in biology, genome sequence modelinga® fecognition, they have hardly
ever been used in applied economics, and in p&tiea production or cost function
modeling. However, these methods can be usefuégulated sectors and efficiency
analysis where firms’ performance is affected byather and geographic conditions
which involve a large and varied number of nondiSonary factors with complex
interactions, leading to a ‘dimensionality’ probleriVe have shown how these
techniques can be used in production or cost fanatodeling with an application to
the effect of weather and geography on electridisgribution costs in Norway. To our
best knowledge, this is the first attempt to apiplgse techniques to production and
efficiency analyses.

In our empirical analysis we also addressed issaased by the fact that our response
variable (i.e. electricity distribution costs) nonhly depends on the weather and
geographic factors to be aggregated, but also @etaof economic variables (e.g.
number of customers, energy delivered, networkttenetc.) that might be correlated

19 The expressiory = 62/(c2 + 02) is often used in the SFA literature to measure rilative
importance of inefficiency in total variation.

 This is expected as this sector is incentive regdlasing cost benchmarking and efficiency analysis
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with the environmental variables. In order to addréhese issues we have proposed
using the Frisch-Waugh (1933)'s theorem that allavgsto work with subsets of
explanatory variables in a multiple regressionisgtt

Regarding our application, we first examined thiatree performance of alternative
composites using a model selection approach. Qairrésults are quite robust and
clearly show the superior performance of SIR arsdpérametric counterpart, PIR.
Moreover, PCA performs much worse than other supedvmethods. However, its
performance tends to be similar to that of SIRId&oge numbers of composites. Overall,
our preferred model is a cost function with fivédRlomposites.

Regardless of the methodology used to avoid thensmonality problem, the estimated
coefficients of our environmental composites aegigically significant indicating that
weather and geographic conditions matter and tey should be included as cost
determinants. We also found large differences amatilgies in cost attributed to
different environmental conditions. Our preferreddal predicts up to 44% lower costs
for utilities operating in areas with favourableveanmental conditions. For utilities
operating in an area with unfavourable environmerdaditions higher costs of up to
about 35% are predicted. While lower costs are Iypastsociated with “urban” factors,
district heating systems, and agrarian farms arawads and lines, higher costs are
mostly caused by weather conditions and two geduagdpctors reflecting the hilliness
and slope of the ground and the presence of waigdie® (e.g. wetlands or lakes), or
shallow soil. Moreover, using reasonable upper lamgr bounds to identify utilities
operating in areas with “normal” environmental ciiodis, we found evidence of the
superior ability of SIR methods to identify utié8 disadvantaged by (enjoying) or
adverse (favorable) environmental conditions.

Finally, we examined the robustness of a tradili@fiéciency analysis in order to use
different aggregation methods to control for enwimntal factors. The variance of the
inefficiency term tends to be much lower when eitBéR or PCA composites are

included in the model. This result is consisterthvaiur expectation as ignoring relevant
factors in an efficiency analysis often tend to &fnghe relative differences among

observations. Our analysis also indicates thahoatih there is scope for different
degrees of inefficient performance in the Norweggerctricity distribution sector, the

model that utilizes PCA composites is not able dptare any performance variation
among the utilities.
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Figure 1. Overall and partial goodness-of-fit
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Figure 2. Partial BIC with actual and purged cost
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Figure 3. Histograms and Kernel density plots of estimaedronmental cost differences
using SIR composites.
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Figure 4. Estimated environmental cost differences using SIRRCA models
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Figure5. Box plots of % of estimateenvironmental cost differenc.
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Table 1. Summary statistics of the economic data

Variable Obs Mean Std. Dev. Min Max

IN(SOTEX) 512 10.4190 1.1261 8.5261 14.284
In(CU) 512 0 1.2605 -2.0206 4.3041
In(ED) 512 0 1.3575 -2.3100 4.5338
In(NL) 512 0 1.0882 -2.1162 3.2718
HV 512 0 7.9380 -14.448 24.922
In(TR) 512 0 1.1008 -2.1887 3.4337
In(KP) 512 0 0.1027 -0.1662 0.0951
In(LP) 512 0 0.0550 -0.0858 0.0626
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Table 2. Model selection Vuong tests

a) Null Hypothesis: SIR=PCA

No Composites  Value Model Accepted

1 0.688 SIR

2 4414 SIR***

3 4.18 SIR***

4 3.546 SIR***

5 2.725 SIR***

6 1.45 SIR*

7 1.078 SIR

8 -0.12 PCA

b) Null Hypothesis: PIR=PCA

No Composites  Value Model Accepted
1 0.298 PIR
2 3.933 PIR***
3 4.129 PIR***
4 3.534 PIR***
5 2.085 PIR***
6 0.917 PIR
7 0.333 PIR
8 -2.035 PCA**

¢) Null Hypothesis: SIR=PIR

No Composites  Value Model Accepted

1 0.553 SIR

2 1.724 SIR**

3 -0.324 PIR

4 -0.294 PIR

5 1.149 SIR

6 0.457 SIR

7 0.825 SIR

8 2.385 SIR***

Notes: the Vuong test statistic is distributed ataamdard normal variable, N(0,1). * significantL&®o,
** gignificant at 10%, and *** significant at 5%.rfical values: 1.44 at 15%, 1.64 at 10%, 1.96 at
5%.
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Table3. OLS parameter estimates of the cost function.

No composites SIR composites PCA composites

Coef. t-ratio Coef. t-ratio Coef. t-ratio
Intercept 10.3749 828.2 10.3449 678.3 10.3424 533.2
In(CU) 0.5532 10.25 0.4832 8.86 0.5735 10.30
In(ED) 0.0751 2.05 0.1262 3.57 0.0476 1.18
In(NL) 0.1211 2.79 0.0078 0.16 -0.0569 -1.02
HV 0.0111 9.17 0.0069 4.56 0.0032 1.87
In(TR) 0.1802 3.75 0.3200 5.52 0.2971 4.80
Y-In(CU)? 0.3182 0.80 -0.0528 -0.13 0.2708 0.65
Y. In(ED)? 0.5014 3.21 0.9494 6.35 0.4006 2.62
Y-In(NL)? 0.0114 0.03  -0.5087 -1.29 0.2175 0.54
Yo HV? -0.0002 -0.93 -0.0003 -1.61 -0.0003 -1.50
Y-In(TR)? 0.8661 1.89 0.0346 0.07 0.0873 0.19
In(CU)-In(ED) -0.3831 -1.69 -0.4389 -1.98 -0.4409 -1.98
In(CU)-In(NL)  0.4286 1.80 0.1924 0.83 0.2711 1.12
In(CU)- HV -0.0087 -1.16  -0.0392  -5.15 -0.0174 -2.09
In(CU)-In(TR) -0.2735 -0.92  0.4922 1.61 0.1064 0.31
In(ED)-In(NL)  -0.0418 -0.25 0.0323 0.21 -0.1395 -0.87
In(ED)- HV 0.0029 0.62 0.0119 2.58 -0.0069 -1.28
In(ED)-In(TR)  -0.1571 -0.73  -0.6952 -3.36 0.0952 0.44
In(NL)*HV -0.0009 -0.15  0.0127 2.14 0.0132 2.01
IN(NL)*In(TR)  -0.4054 -1.03  0.2252 0.58 -0.3722 -0.97
HV-In(TR) 0.0047 0.67 0.0135 1.90 0.0121 1.64
In(KP) 0.0912 0.98 0.0901 1.15 0.0895 1.07
In(LP) 0.3824 2.17 0.3983 2.67 0.4204 2.63
Composites No Yes Yes
R® 0.985 0.990 0.988
AIC -3.904 -4.214 -4.083
BIC -3.713 -3.858 -3.727

29



Table 4. ML estimates of the parameters describing thecgire of the error term.
No composites SIR composites PCA composites
Coef. t-ratio Coef. t-ratio Coef. t-ratio

In(o,) -2.1879 -22.38 -2.2252 -16.74 -2.1266 -2.29
In(oy) -2.0638 -9.26 -3.0431 -1.64 -4.7849 -0.01
oy 0.1122 0.1080 0.1192
(ot 0.1270 0.0477 0.0084
Yy =02/(c? +02) 0.5617 0.1630 0.0049
log-likelihood 297.119 395.297 361.849
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Table5. Descriptive statistics of annual efficiency s=or

Composites Statistic 2001 2002 2003 2004
None Mean 90.42 90.39 90.50 90.52
St.dev. 4.23 4.08 3.77 3.70
Max 95.82 96.72 96.43 96.84
Min 75.56 75.27 78.44 76.55
SIR Mean 96.26 96.27 96.27 96.28
St.dev. 0.76 0.73 0.72 0.68
Max 97.52 97.89 97.79 97.96
Min 93.36 93.26 93.89 94.07
PCA Mean 99.34 99.34 99.34 99.34
St.dev. 0.02 0.02 0.02 0.02
Max 99.38 99.40 99.39 99.40
Min 99.28 99.28 99.28 99.29
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Table A. Parameter estimates of the composite variables.

ANNEX 1

SIR composites

PCA composites

Coef. t-ratio Coef. t-ratio
cl 0.0424 3.01 -0.0015 -0.18
c2 0.0223 2.29 0.0308 3.53
c3 0.0552 3.27 0.0406 5.19
c4 0.0076 0.55 -0.0124 -1.85
c5 0.0276 2.61 0.0015 0.61
cln2 -0.0584 -2.45 0.0077 2.59
c2"2 0.0260 1.58 0.0057 2.34
c372 -0.0657 -2.89 -0.0069 -3.91
c4n2 -0.0276 -1.51 -0.0029 -1.57
c5"2 0.0233 3.43 0.0053 4.64
cl*c2 -0.0317 -2.72 0.0068 3.30
cl*c3 -0.0982 -5.35 -0.0072 -4.21
cl*c4 0.0409 2.15 0.0064 5.85
cl*ch -0.0145 -2.27 0.0054 4.46
c2*c3 -0.0200 -1.40 -0.0040 -2.56
c2*c4 0.0092 0.72 -0.0007 -0.44
c2*c5 0.0110 1.61 -0.0049 -4.03
c3*c4 0.0548 3.66 0.0007 0.62
c3*c5 -0.0483 -5.83 0.0016 1.73
c4*ch 0.0506 7.62 0.0005 0.71
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