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Abstract: 

The recent trend in the intensification of dairy farming in Europe has sparked an interest 

in studying the economic consequences of this process. However, classifying 

empirically farms as extensive or intensive is not a straightforward task. In recent 

papers, Latent Class Models (LCM) have been used to avoid an ad-hoc split of the 

sample into intensive and extensive dairy farms. A limitation of current specifications of 

LCM is that they do not allow farms to switch between different production systems 

over time. This feature of the model is at odds with the process of intensification of the 

European dairy industry in past decades. We allow for changes of production system 

over time by estimating a single LCM model but splitting the original panel into two 

periods and find that the probability of using the intensive technology increases over 

time. Our estimation proposal opens up the possibility of studying the effects of 

intensification not only across farms but also over time.  
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1. Introduction 

The number of dairy farms in the European Union has fallen dramatically over recent 

decades and continues to decline. Given that farm output remains roughly at quota level, 

over the same period the average size of dairy herds has increased steadily. At the same 

time, genetic and management improvements in dairy cattle have permitted large 

increases in milk production per cow. These structural changes have provided the basis 

for the propagation of intensive systems of production in the dairy sector. 

 

Extensive dairy farming, on the other hand, consists of producing milk using mainly on-

farm produced forage with low stocking rates. Fostering production using extensive 

systems has often been an explicit goal of agricultural policy, justified by factors such 

as environmental soundness, improved animal welfare, or use of abundant land in some 

areas. In contrast to this, many dairy farms in Europe have gone in the opposite 

direction, adopting more intensive production systems.  

 

Despite the importance of the intensification process and the intense policy debates it 

has generated, few papers have studied the intensification of dairy farming using 

economic analysis. Most articles have adopted a technical perspective, describing the 

physical changes of the process (e.g., Simpson and Conrad, 1993), while very few have 

analyzed the economic consequences of this process (some exceptions are Alvarez et 

al., 2010, and Nehring et al., 2011).  

 

From an empirical point of view, the coexistence of both extensive and intensive farms 

implies that there are two different technologies in the sector. This runs contrary to the 

assumption of a common technology for all farms which is the most frequent in the 

production literature. However, there is also awareness among researchers of the 

estimation bias that arises if such an assumption is unrealistic. For this reason, several 

approaches have been followed in dairy sector studies in order to account for the likely 

existence of different technologies. The most basic one is to drop a number of farms 

from the sample on the grounds that they may operate under a different technology 

(Tauer and Belbase, 1987). A second approach is to split the sample into several groups 

based on some observable farm characteristics. For example, Hoch (1962) divided the 

sample into two groups based on the location of farms, while Newman and Matthews 
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(2006) consider two different technologies depending on the number of outputs each 

farm produces. 

 

Classifying farms as intensive or extensive is not as straightforward as it might appear. 

For example, Nehring et al. (2011) used the number of cows per hectare in order to split 

the sample. However, the stocking rate partition does not fully describe the production 

system. Other aspects such as the productivity of cows or the share of concentrates in 

the feed ration could also be taken into account. In this paper we avoid an ex-ante 

classification of farms as extensive or intensive by estimating a Latent Class Model 

(LCM). This model assumes that several unknown technologies (classes) have generated 

the sample, and allows for the estimation of the parameters of the different technologies 

plus the probability that each observation has been generated by a specific technology.  

 

To the best of our knowledge, the starting point of previous models in the literature is a 

set-up and estimation proposal that assumes that the probability of each observation 

belonging to a class (i.e. using an intensive or extensive technology) is constant over 

time. This implies that changes during the period of analysis, no matter how dramatic, 

do not lead to a farm being labeled as belonging to a different class (use of a different 

technology). Such an assumption becomes increasingly untenable as the number of 

observed periods gets larger. 

 

The objective of the present paper is twofold. First, we wish to determine whether the 

intensification process that has been taking place in the past decades has come to an end 

or dairy farms are still switching from extensive to more intensive production systems. 

For this purpose, we make a simple methodological proposal to circumvent the 

assumption of class probability being constant over time. Second, we are interested in 

analyzing the effects of intensification on farms’ efficiency. In particular, for given 

inputs we would like to know if intensive farms have the potential to produce more 

output than extensive farms, and if so, the degree to which intensive farms fulfill such 

potential. 

 

In order to fulfill these two objectives, in the empirical section of the paper, we use a 

panel of dairy farms in Northern Spain to illustrate the feasibility of estimating a LCM 
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with time varying probabilities. Our objectives are first to measure the changes over 

time in the probability of belonging to a class (technology) and second to analyze the 

effects on production potential and efficiency of dairy farm intensification3. Our 

methodological proposal allows us to look specifically at the farms that might have 

tilted towards a more intensive production system.  

 

The organization of the paper is the following. In next section we describe the model. In 

section 3, we present the data and the empirical model. In section 4 we show the 

econometric estimation of the latent class models. In section 5 there is a discussion of 

the empirical results. The paper ends with some conclusions.  

 

2. The Model 

We use a LCM to analyze the extent of intensification in our dataset. Our objective is to 

check whether the LCM identifies different technologies and if those technologies 

represent different degrees of intensification. The starting point is a log-linear stochastic 

production frontier (Orea and Kumbhakar, 2004) such as:  

 

( )it it j it j it jln y ln f x | v | u |= + −     (1) 

 

where x is a vector of inputs, y a single output, v a symmetric random disturbance, and u 

a one-sided random disturbance that measures technical inefficiency. Subscript i 

(i=1,…,N) denotes firms, t (t=1,…,T) denotes time, and subscript j (j=1,…,J) indicates a 

technology in a finite set. The vertical bar means that there is a different production 

function (different parameters) for each class j. We assume that, conditional on each 

class, the random disturbances v and u follow a normal and a truncated normal random 

distribution respectively.  

 

In a latent class model we need to consider three likelihood functions. The first is the 

likelihood function of a firm i at time t belonging to class j: 

 

                                                 
3 The present paper is related with a strand of literature linking technological choices with efficiency. As 
an example, Kompas and Nhu Che (2006) studied the effect of different technologies on the efficiency of 
dairy farms by including in the inefficiency model a set of variables reflecting technological choices. 
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( )ijt it it jLF g y ,x ,= Θ      (2) 

 

where Θj represents the set of parameters of technology (class) j, and g denotes the 

likelihood function of a production frontier (Kumbhakar and Lovell, 2000). The second 

is the likelihood function of a firm i conditional on class j, obtained as the product of the 

likelihood functions in each period. 

 

( )
T T

ij ijt it it j
t 1 t 1

LF LF g y ,x ,
= =

= = Θ∏ ∏     (3) 

 

Finally, the unconditional likelihood function of firm i is calculated averaging the 

likelihood conditional on each class using the prior probabilities of class membership Pij 

as weights:  

J

i ij ij
j 1

LF LF P
=

=∑      (4) 

Prior probabilities can be interpreted as the probabilities attached to membership of 

class j (Greene, 2005). These prior probabilities can be parameterized using a 

multinomial logit model such as: 

 

( )
( )

j i

ij J

j i
j 1

exp z
P

exp z
=

δ
=

δ∑
     (5) 

 

where zi is a vector of “separating variables” and δj a vector of parameters to be 

estimated. The “separating variables” are related to the adoption of a technology and, as 

a result, can be used as explanatory variables of the prior probability of using that 

technology.  

 

After estimation of the model in (1) by maximum likelihood a “posterior probability” 

can be computed as: 
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ij ij
ij J

ij ij
j 1

LF P
Pr

LF P
=

=
∑

      (6) 

 

As equation (6) shows, the prior probability of class membership for each farm is 

weighted by the empirical likelihood that the farm belongs to that class. This implies 

that the ability of each technology to explain the observed production of a farm is 

incorporated in the calculation of the posterior probability.  In a sense, the estimates 

obtained with the parsimonious parametric model of the prior probability are 

complemented with information on individual fit to provide a more accurate evaluation 

of the probability of class membership. In fact, the posterior probability is considered 

the best estimate of class membership (Greene, 2005), and as such, the value of this 

probability is the criterion that we will use for determining whether a farm is using a 

particular technology. 

 

As mentioned above, a subtle feature of the LCM for panel data is that prior 

probabilities are modeled as time invariant. In practical terms, time-invariant 

probabilities amount to assuming that changes in farms over time don’t affect the 

adscription of a farm to a class (intensive or extensive technology). However, we expect 

some farms to change the use of inputs during the period of analysis in ways that 

suggest tilting towards intensive farming.  

 

Our aim, therefore, is to circumvent the assumption of time-invariant probabilities in the 

empirical analysis. For that purpose, we estimate a single LCM model for the whole 

period of analysis but split the observations for each farm into two periods, where the 

first period roughly corresponds to (t=1,…,T/2) and the second period to 

(t=T/2+1,...,T). In this approach, farm i is considered to be a different farm in each of 

the two periods. As a result, the probability of class membership is constant for a given 

farm during each of the two periods but can change from the first period to the second. 

 

An alternative approach to obtain time-varying probabilities would be to estimate a 

pooled model. This amounts to considering the dataset as a cross section of farms 

instead of taking into account the existence of a panel. In this case, in each observation 

farm i is treated as a different farm, thereby allowing probabilities of class membership 
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to vary freely over time. The downside is that we disregard the information provided by 

observing the same farm in several periods and that the computed probabilities of class 

membership are not necessarily parsimonious. Indeed, it would be possible to observe 

some farms moving repeatedly from one class to the other. All in all, this approach 

seems prone to numerical problems and to difficulties for interpreting the results. In 

fact, in the empirical application that we propose the LCM with pooled data failed to 

converge.  

 

3. Data and empirical model 

The data used in the empirical analysis consist of a balanced panel of 128 Spanish dairy 

farms observed over the 12 year period from 1999 to 2010. In general, the units 

considered are small to medium-sized family farms. 

 

The empirical specification of the production function is a translog. We have chosen a 

flexible functional form in order to avoid imposing unnecessary a priori restrictions on 

the technologies to be estimated. The empirical counterpart of equation (1) is the 

following translog production frontier: 

 

5 5 5 12

it 0 j k j kit kl j kit lit m j m it j it j
k 1 k 1 l 1 m 2

1
ln y | | lnx | ln x lnx | TD v | u |

2
β β β γ

= = = =
= + + + + −∑ ∑∑ ∑  (7) 

 

The dependent variable (y) is the production of milk (liters). We have considered only 

one output since these farms are highly specialized (more than 90% of farm income 

comes from dairy sales).  Five inputs are included: (x1) number of cows, (x2) purchased 

feed (kilograms), (x3) ‘farm expenses’ (includes expenditure on inputs used to produce 

forage crops, namely seeds, sprays, fertilizers, fuel, and machinery depreciation), (x4)  

‘animal expenses’, such as veterinary, medicines, milking and other expenses, and (x5) 

land. All monetary variables are expressed in constant euros of 2004. Additionally, 11 

time dummy variables (TDm=1 if t=m, TDm=0 otherwise ) were introduced to control 

for factors that affect all farms in the same way each year but which vary over time, 

such as weather (the excluded period is 1999).  
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Prior to estimation each input was divided by its geometric mean. In this way, the first 

order coefficients of the Translog production function ( j
kβ ) can be interpreted as output 

elasticities evaluated at the geometric mean of the inputs. 

 

The prior probabilities of class membership are assumed to be a function of two 

“separating variables”: the natural logarithm of the stocking rate (cows per hectare) and 

the natural logarithm of the concentrate feed per cow4.  

 

4. Econometric estimation 

In this section, we report the main results of the estimation of two latent class models by 

maximum likelihood:  

 

a) Panel model, i.e. using panel data and time-invariant class membership 

probabilities. 

 

b) Split-panel model, i.e., estimating a single LCM model but allowing the 

probabilities of class membership to differ over time by splitting the sample into 

two periods where the probability of class membership is constant within each 

period but can change for the ‘same’ farm from the first period to the second. 

Precisely, the estimation proceeds by treating each farm as a different farm in 

the second period.   

 

In both models two latent classes were found.5 As mentioned above, we make the prior 

probability of belonging to a latent class a function of two variables: ‘cows per hectare 

of land’ and ‘feed per cow’. Since these variables measure the degree of intensification 

of a dairy operation, we have labeled as “intensive” the latent class which provides 

positive estimates of the coefficients of both ‘separating’ variables in the prior 

probability equation. The estimates of the prior probability function of the intensive 

class for both models are shown in Table 1.  

                                                 
4 Since prior probabilities are modeled as time-invariant for a given period of time, the explanatory 

variables are averaged over such period.  

5  We also tried to fit a model with three classes but it did not converge.  
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Table 1: Prior probability equation for the intensive class 

 Panel model Split-panel model 

Constant -11.906* -13.112** 

ln(cows/land)  1.7919** .8632* 

ln(concentrate/cows) 1.3510* 1.5513** 

*, **, Significantly different from zero at 0.05 and 0.01 significance levels respectively 

Standard errors reported in Tables A1 and A2 in the Appendix 

 

Next, the farms were classified as Intensive using the highest (greater than 0.5) 

estimated posterior probabilities (equation 6) since these provide the best estimates of 

class membership for an individual (Greene, 2005). In Table 2 we show descriptive 

statistics of the two groups (intensive and extensive) for the two models estimated.  

 

Table 2. Characteristics of the estimated production classes (sample means)  

 Panel model Split-panel model 

 Intensive Extensive Intensive Extensive 

Observations 804 732 798 738 

Milk (l) 365442 280884 371525 274994 

Cows  42.7 40.3 43.2 39.9 

Land (ha) 18.0 19.8 18.3 19.6 

Cows per hectare 2.45 2.16 2.4 2.1 

Milk per cow (l) 8129 6745 8202 6677 

Milk per hectare (l) 20329 14779 20428 14718 

Feed per cow (Kg) 3533 3352 3579 3304 

 

The descriptive statistics of each group agree with the labels we gave to the classes 

based on the effects of intensification variables on the probability of being in each class.  

As expected, intensive farms have larger values of key variables such as milk per cow, 

milk per hectare and feed per cow. Intensive farms are also larger in terms of milk 

production but are rather similar in terms of land. In our view, the explanation for this 

result is that marginal increases of land are unlikely to be an option for farmers due to 

the fact that most abandonments take place in less favored areas (mountainous) while 

remaining farms are mainly located in the coastal plain, yielding useless the land 
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available after some farms shut down. For this reason, farmers who wish to increase 

production need to use more feed per cow and in some cases buy more productive cows, 

thereby becoming more intensive. 

 

In Table 3 we report the output elasticities for the two groups evaluated at the geometric 

mean of the sample. The differences in the elasticities across groups can be seen as 

evidence of different technological characteristics. The complete set of estimated 

parameters of the production functions are reported in Tables A1 and A2 in the 

Appendix.   

 

Table 3. Output elasticities evaluated at the geometric mean of the sample 

 Panel model Split-panel model 

 Intensive Extensive Intensive Extensive 

Cows      .7176**      .4626**     .7491**      .4553**   

Feed      .2969**      .3623**     .2737**       .3685**   

Farm expenses      .0405**      .0718**     .0508 **      .0767**   

Animal expenses      .0296**      .0964**     .0206 *      .0789**   

Land      .0368**      .0339**     .0214       .0295*   

*, **, Significantly different from zero at 0.05 and 0.01significance level, respectively 

 

All elasticities, with one exception, are significantly different from zero at conventional 

levels of significance. Despite the different assumptions behind the two models the 

output elasticities evaluated at the sample geometric mean are similar across models. 

However, it is interesting to note that there are wide differences between the parameters 

of the two latent classes (within each model). For example, the output elasticity with 

respect to cows is almost twice as large in the intensive group as it is in the extensive 

group. On the other hand, the output elasticity of feed is always larger in the extensive 

group. These different elasticities imply large differences in marginal productivity of 

inputs across technologies (extensive or intensive), especially for cows and feed.  

  

5. Empirical extensions 

In this section we use the results of the estimation of the LCM to analyze a set of 

questions with important policy implications. First, we are interested in studying the 
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evolution of the intensification process over time. Second, we want to analyze the 

differences in technical efficiency between intensive and extensive farms. 

 

5.1. Evolution of intensification over time 

We want to check if the probability of adopting the intensive technology increases over 

time. We should note that this analysis is only possible in the split-panel model and not 

in the conventional panel LCM. 6 

 

For this purpose, we regress the posterior probabilities of being in the intensive class 

against individual dummies (fixed effects) and a binary variable (dt) that takes the value 

zero for the first half of the period analyzed and one for the second half. This is an 

unconditional analysis over time. It is clearly different from the conditional analysis of 

prior probabilities that could be achieved by including a time trend in equation (5). In 

the conditional analysis, prior probabilities could change over time, keeping input use 

and separating variables constant. In the unconditional analysis performed here, the 

posterior probability varies over time due to changes in the use of key inputs such as 

feed, cows or land.  

 

The equation to be estimated is the following: 

       ijt i j j t it jPr a | b | d w |= + +                                                    (8)  

where j denotes the latent class and w is a random disturbance. For each class, we have 

an estimated posterior probability for each individual (i=1,…,128) and for each period 

(t=1,..,12). Expression (8) represents a general proposal with J different classes. In this 

case, there would only be J-1 free equations since the dependent variable, the posterior 

probability, adds up to one. As we are considering only two latent classes (Intensive and 

Extensive) in our setting, we have only one relevant equation. We choose to estimate 

the equation corresponding to the posterior probability of the Intensive Class.  

 

 

                                                 
6 At this point, we should note that Alvarez and del Corral (2010) report time-varying probabilities of 
class membership in the conventional Panel LCM. They get that result through a slight modification of 
equation (6). They use as weighting factor of prior probabilities the likelihood function of each 
observation in each year (LFijt in equation 2) instead of the likelihood function of each farm (LFij in 
equation 3).   
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Table 4. Analysis of the evolution over time of posterior probabilities 

Coefficient (b|intensive) Standard Error t-statistic 

.0363 .0099 3.28 
 

Table 4 shows the estimated coefficient of the time binary variable (b|j) for the Posterior 

probability of Intensive Class in the Split-panel model. This coefficient is positive and 

significantly different from zero indicating that the probability of being classified as an 

intensive farm is larger in the second period. We interpret this result as evidence of 

“intensification” of dairy production in our sample over the period analyzed. 

 

In our view, the average change over time of the probability of belonging to the 

intensive class provides evidence of farms in the sample tilting towards an intensive 

production system. Additionally, the change in class probability between the two 

periods allows for some descriptive analysis of the subset of farms that have switched 

production system in the conventional sense of crossing the threshold defined by a class 

probability of 0.5. In particular, 13 extensive farms became intensive in the second 

period, while 8 farms switched from intensive to extensive. In table 5 we show the 

characteristics of the farms that change to a different production system. 

 

Table 5. Characteristics of the farms that switch production system over time  

 From extensive to intensive From intensive to extensive 

 Period 1 

Extensive 

Period 2  

Intensive 

Period 1 

Intensive 

Period 2 

Extensive 

Farms 13 13 8 8 

Milk (l)   279777   383108   269831   301237 

Cows    37.2   42.9   35.3   42.5 

Land (ha)   16.5   16.6   14.8   17.7 

Cows per hectare   2.1   2.4   2.4   2.4 

Milk per cow (l)   7061   8381   7456   7004 

Milk per hectare (l)   15796   21242   18246   17191 

Feed per cow (Kg)   3483   3824   3307   3204 

 

The farms that become intensive in the second period reflect the typical transformation 

pattern: increase in the stocking rate and feed per cow, resulting in higher milk per cow 
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and per hectare. On the other hand, the farms that switch from the intensive to extensive 

class keep the stocking rate unchanged but reduce the amount of feed per cow, lowering 

milk per cow and per hectare. 

 

5.2. The effect of intensification on dairy farm efficiency 

In this section, we want to explore the effect of intensification on production efficiency. 

Two questions are addressed. First, are intensive farms more efficient than extensive 

farms? Second, which technology is more productive (i.e., does one of the two frontiers 

lie above the other one)?  

 

The level of technical efficiency can be calculated as the ratio between current output 

and potential output, as defined by the technological frontier. An output-oriented index 

of technical efficiency can be computed as: 

( )it j it jTE | exp u |= −                                                   (9) 

Subscript j in equation (9) indicates that the technical efficiency index can be calculated 

with respect to each of the Latent Class frontiers (Orea and Kumbhakar, 2004). In our 

case, we can thus consider two different frontiers. Table 6 shows the average technical 

efficiency for the two technologies.  

 

Table 6. Average efficiency by model and Latent Class (intensive/extensive)  

 Panel Model Split-Panel Model 

Intensive 

Frontier 

Extensive 

Frontier 

Intensive 

Frontier 

Extensive 

Frontier 

Full sample  .92 .92 .91 .93 

Intensive farms .94 .96 .94 .96 

Extensive farms .88 .89 .87 .89 

 

We would like to point out two results. First, for the full sample, the average level of 

technical efficiency is quite similar both across models (Panel vs. Split-Panel) and 

across latent technologies (Intensive frontier vs. Extensive frontier). However, if we 

consider the two groups of farms separately, a very interesting result is found: intensive 

farms have higher level of technical efficiency in all the four frontiers considered. 
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Additionally, the average technical efficiency is higher in the extensive frontier than in 

the intensive one. 

 

This last result seems to indicate that the latent frontier of the Intensive Group 

dominates the other, that is, for any given set of inputs it is possible to produce more 

output with the intensive technology. We try to shed some light on this issue by 

calculating the difference in frontier output between the frontiers using the actual inputs 

of the farms: 

I E
it it it

ˆ ˆD ln y ln y= −                                                         (8) 

where I
it

ˆln y  ( E
it

ˆln y ) is the (log of) frontier output of farm i at time t evaluated at the 

intensive (extensive) technology. Table 7 shows the average value of Dit for the full 

sample as well as for the two classes.  

 

Table 7: Average difference between intensive and extensive production frontiers 

 Panel model Split-panel model 

Full sample .0962 .1080 

Intensive farms .0883 .0988 

Extensive farms .1049 .1180 

 

As the differences between the frontiers are calculated using natural logs, Dit  can be 

interpreted approximately as the percentage difference of potential output between both 

frontiers. For the panel model, the intensive frontier is, on average, 9.6% above the 

extensive frontier. For the split-panel model, the intensive frontier is, on average, 10.8% 

above the extensive frontier.  

 

Additionally, two interesting issues can be studied: the evolution of technical efficiency 

over time and the relationship of technical efficiency with the probability of being in a 

latent class.  These two issues can be analyzed both in the conventional panel model and 

the Split-panel model proposed in the present paper. However, in the Split-Panel model 

the probability of class membership can change over time. This feature suggests the 

need for a joint analysis of the effects of time and probability of class membership. 
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Table 8. Relationship of technical efficiency with intensification 

 Panel model Split-panel model 

 OLS OLS OLS with farm 

dummies 

 Intensive 

frontier 

Extensive 

frontier 

Intensive 

frontier 

Extensive 

frontier 

Intensive 

frontier 

Extensive 

frontier 

Probability 

of intensive 

class   

0.0607** 0.0658** 0.0786** 0.0753** 0.0545** 0.0444** 

Time 

dummy 

-0.0053** 0.0044 -0.0082** 0.0018 -0.0074** 0.0028 

*, **, Significantly different from zero at 0.05 and 0.01significance level, respectively 

 

In Table 8, we show the results of regressing the level of technical efficiency against the 

probability of being in the intensive class and a time dummy that takes the value 1 for 

the second period. We show the results for both models (Panel and Split-panel) and for 

both frontiers (Intensive and Extensive). In the Split-panel model we perform two 

different estimations: standard OLS and OLS with farm dummy variables. The inclusion 

of individual effects is not possible in the conventional Panel model because the 

probability of class membership is constant over time.  

 

We find common patterns of results for both models and estimators. The probability of 

being in the intensive class increases the level of technical efficiency with respect to 

both frontiers for the two models and the two estimation methods. The coefficient of the 

time dummy indicates that the index of technical efficiency estimated using the 

extensive frontier increases over time while the index of technical efficiency estimated 

using the intensive frontier decreases over time. This result is probably due to different 

patterns across frontiers of the yearly shifts of the production frontier measured by the 

coefficients of the time dummy variables. The time dummy coefficients of the intensive 

frontier show a clear upward trend at the beginning of the period followed by a fall in 

the last few years. The time upward shift of the production frontier is compatible with 

decreasing technical efficiency if the movements of the frontier are due to productive 
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improvements of a subset of leading farms while other farms do not move immediately 

towards the shifted frontier. On the other hand, the extensive frontier features smaller 

and erratic shifts over time. In our view, it is not surprising to observe farms 

approaching, on average, a production frontier with no sudden upper shifts.   

 

Additionally, the Split-panel model provides a subtle result: the probability of being in 

the intensive class changes across farms and increases over time (on average). In other 

words, we have two sources of variation. The coefficient of the probability using plain 

OLS is estimated using both sources of variation. However, the coefficient of the 

probability using OLS with farm dummy variables is estimated using only the changes 

over time of probability. The results show that the estimates of the coefficient of 

probability are 0.0545 (intensive) and 0.0439 (extensive) when using only changes over 

time, while the same estimates increase to 0.0786 (intensive) and 0.0752 (extensive) 

when using both cross-section and time variation of the posterior probability. In 

summary, it seems that the bulk of the change of efficiency caused by changes in the 

probability of being in the intensive class can be attributed to changes over time of this 

probability. 

 

 

4. Conclusions 

The assumption of time-invariant prior probability of a latent class can be circumvented 

by estimating a single LCM but splitting the original panel into two or more periods. 

This proposal allows for the estimation of the technology of different production 

systems without an assumption untenable as the period of years analyzed increases. By 

doing that, we find in our empirical application that the probability of being in the 

“intensive dairy” class increases over time. This result can be interpreted as evidence of 

dairy farming intensification over the sample period.  

 

We find differences in technical efficiency if we split the sample in terms of the 

production system using the posterior probability of each latent class. More precisely, 

the average technical efficiency is higher for farms that belong to the intensive latent 

class. Additionally, the intensive frontier dominates the extensive frontier, indicating 

that the intensive technology is more productive that the extensive one. This result can 
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be seen as an economic rationale for the observed trend towards the intensification of 

dairy farms. 

 

What are the policy implications of this findings? Given that the intensive technology is 

more productive and that intensive farms are more efficient, i.e. produce closer to their 

frontier, than extensive farms it seems that the trend towards intensification will 

continue in the near future. 

 

The new reform of the Common Agricultural Policy may also affect farmers’ 

technology choices. On the one hand, the phasing out of milk quotas may result in 

higher production. In this sense, intensive farms will find it easier to boost production 

since they do not depend heavily on forage. On the other hand, the new direct payment 

scheme which will move towards a uniform payment per hectare may lower the 

incentives to adopt intensive systems. 
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Appendix  

Table A.1: Estimation of the Panel Model 

 Class 1  Class 2  
Variable Coefficient Std. Error Coefficient Std. Error 
Constant 12.5724 .0158     12.542        .0152 

Cows (lnx1) .7176 .0213      .4626        .0241 

Feed (lnx2) .2969 .0137      .3623        .0152 

Crop (lnx3) .0405 .0067      .0718        .0080 

Animal (lnx4) .0296 .0091      .0964        .0110 

Land (lnx5) .0368 .0104      .0339        .0125 

(lnx1)
2 .2030 .1445     -.0854        .1096 

(lnx2)
2 .0257 .0486     -.1737        .0612 

(lnx3)
2 .0575 .0152      .0523        .0149 

(lnx4)
2 -.0731 .0247      .0069        .0320 

(lnx5)
2 .2857 .0398     -.0624        .0542 

lnx1lnx2 -.3277 .0641      .0663        .0732 

lnx1lnx3 -.0999 .0395      .0103        .0301 

lnx1lnx4 .3738 .0532     -.0394        .0561 

lnx1lnx5 -.2055 .0584     -.0263        .0657 

lnx2lnx3 .1055 .0238     -.0608        .0219 

lnx2lnx4 -.0960 .0321      .0827        .0369 

lnx2lnx5 .1288 .0405     -.0160        .0413 

lnx3lnx4 -.0307 .0149      .0025        .0164 

lnx3lnx5 -.0426 .0196      .0196        .0231 

lnx4lnx5 -.0619 .0275      .0138        .0282 

TD00 .0206 .0129      .0072        .0172 

TD01 .0366 .0131     -.0046        .0173 

TD02 .0358 .0130      .0243        .0175 

TD03 .0313 .0131     -.0181        .0173 

TD04 .0519 .0131      .0038        .0171 

TD05 .0707 .0132      .0359        .0172 

TD06 .0952 .0132      .0366        .0173 

TD07 .0839 .0132      .0378        .0175 

TD08 .0529 .0134     -.0156        .0175 

TD09 .0559 .0134     -.0275        .0177 

TD10 .0661 .0139      .0032        .0172 

Sigma .0909 .0078      .1537        .0064 

Lambda 1.0506 .3484     2.7329        .3866 

Prior probability equation   

Constant -11.906 5.2881 

ln(cows/land) 1.7919 .6078 

Ln(concentrate/cows) 1.3510 .6600 
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Table A.2: Estimation of the Split-Panel Model  

 Class 1  Class 2  
Variable Coefficient Std. Error Coefficient Std. Error 
Constant 12.5754 .0135 12.536 .0146 

Cows (lnx1) .7491 .0203 .4553 .0211 

Feed (lnx2) .2737 .0148 .3685 .0149 

Crop (lnx3) .0508 .0068 .0767 .0078 

Animal (lnx4) .0206 .0093 .0789 .0118 

Land (lnx5) .0214 .0115 .0295 .0136 

(lnx1)
2 .2943 .1448 -.0405 .1092 

(lnx2)
2 .0121 .0460 -.0964 .0645 

(lnx3)
2 .0732 .0147 .0410 .0134 

(lnx4)
2 -.0530 .0263 -.0447 .0331 

(lnx5)
2 .2786 .0400 .0407 .0609 

lnx1lnx2 -.3067 .0613 -.0549 .0693 

lnx1lnx3 -.1158 .0375 -.0217 .0316 

lnx1lnx4 .2953 .0530 .0704 .0591 

lnx1lnx5 -.2457 .0563 .0135 .0596 

lnx2lnx3 .0825 .0226 -.0131 .0217 

lnx2lnx4 -.0526 .0331 .0418 .0396 

lnx2lnx5 .1130 .0410 -.0562 .0452 

lnx3lnx4 -.0275 .0151 .0003 .0160 

lnx3lnx5 -.0263 .0199 -.0053 .0224 

lnx4lnx5 -.0350 .0274 .0306 .0289 

TD00 .0201 .0126 -.0013 .0162 

TD01 .0376 .0129 -.0108 .0174 

TD02 .0351 .0133 .0238 .0188 

TD03 .0283 .0130 -.0151 .0166 

TD04 .0471 .0132 .0099 .0165 

TD05 .0660 .0128 .0408 .0167 

TD06 .0917 .0130 .0457 .0167 

TD07 .0790 .0129 .0463 .0172 

TD08 .0531 .0131 -.0143 .0171 

TD09 .0563 .0131 -.0292 .0172 

TD10 .0697 .0134 .0007 .0170 

Sigma .0883 .0067 .1497 .0060 

Lambda 1.1750 .3155 3.0344 .4630 

Prior probability equation   

Constant -13.112 4.2444 

ln(cows/land) .8632 .3943 

Ln(concentrate/cows) 1.5513 .5247 

 

 

 


