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Abstract:

The recent trend in the intensification of dairgnfigng in Europe has sparked an interest
in studying the economic consequences of this gscdHowever, classifying
empirically farms as extensive or intensive is mostraightforward task. In recent
papers,Latent Class Model¢LCM) have been used to avoid an ad-hoc split of the
sample into intensive and extensive dairy farmBmitation of current specifications of
LCM is that they do not allow farms to switch betwekiffierent production systems
over time. This feature of the model is at oddswiite process of intensification of the
European dairy industry in past decades. We allowchanges of production system
over time by estimating a singleCM model but splitting the original panel into two
periods and find that the probability of using th&ensive technology increases over
time. Our estimation proposal opens up the po#yibdf studying the effects of
intensification not only across farms but also auae.
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1. Introduction

The number of dairy farms in the European Union fallen dramatically over recent
decades and continues to decline. Given that fartpub remains roughly at quota level,
over the same period the average size of dairyshiead increased steadily. At the same
time, genetic and management improvements in deatyle have permitted large
increases in milk production per cow. These stmattchanges have provided the basis
for the propagation of intensive systems of proiucin the dairy sector.

Extensive dairy farming, on the other hand, cossi$tproducing milk using mainly on-
farm produced forage with low stocking rates. Faste production using extensive
systems has often been an explicit goal of agdecaltpolicy, justified by factors such
as environmental soundness, improved animal weléarase of abundant land in some
areas. In contrast to this, many dairy farms inopar have gone in the opposite

direction, adopting more intensive production syste

Despite the importance of the intensification pescand the intense policy debates it
has generated, few papers have studied the intaigh of dairy farming using
economic analysis. Most articles have adopted lanteal perspective, describing the
physical changes of the process (e.g., SimpsorCandad, 1993), while very few have
analyzed the economic consequences of this prdsesse exceptions are Alvaret
al., 2010, and Nehringt al, 2011).

From an empirical point of view, the coexistencéoth extensive and intensive farms
implies that there are two different technologieghe sector. This runs contrary to the
assumption of a common technology for all farmsalhis the most frequent in the
production literature. However, there is also awass among researchers of the
estimation bias that arises if such an assumpsamrealistic. For this reason, several
approaches have been followed in dairy sector esuidi order to account for the likely
existence of different technologies. The most basie is to drop a number of farms
from the sample on the grounds that they may opewatier a different technology
(Tauer and Belbase, 1987). A second approachgpliiothe sample into several groups
based on some observable farm characteristicseXxamnple, Hoch (1962) divided the

sample into two groups based on the location oh$arwhile Newman and Matthews
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(2006) consider two different technologies depegdin the number of outputs each

farm produces.

Classifying farms as intensive or extensive isa®straightforward as it might appear.
For example, Nehring et al. (2011) used the nurobeows per hectare in order to split
the sample. However, the stocking rate partitioasdoot fully describe the production

system. Other aspects such as the productivityowsmr the share of concentrates in
the feed ration could also be taken into accoumtthls paper we avoid an ex-ante
classification of farms as extensive or intensiyeestimating a Latent Class Model

(LCM). This model assumes that several unknown techreddclasses) have generated
the sample, and allows for the estimation of thepeters of the different technologies

plus the probability that each observation has lgegerated by a specific technology.

To the best of our knowledge, the starting poinpi@vious models in the literature is a
set-up and estimation proposal that assumes tleaprbbability of each observation
belonging to a class (i.e. using an intensive demsive technology) is constant over
time. This implies that changes during the peribamalysis, no matter how dramatic,
do not lead to a farm being labeled as belonging tifferent class (use of a different
technology). Such an assumption becomes incregsingienable as the number of

observed periods gets larger.

The objective of the present paper is twofold. tFinge wish to determine whether the
intensification process that has been taking pla¢ee past decades has come to an end
or dairy farms are still switching from extensiverhore intensive production systems.
For this purpose, we make a simple methodologicapgsal to circumvent the
assumption of class probability being constant divee. Second, we are interested in
analyzing the effects of intensification on farnggficiency. In particular, for given
inputs we would like to know if intensive farms leathe potential to produce more
output than extensive farms, and if so, the detweghich intensive farms fulfill such

potential.

In order to fulfill these two objectives, in the pimcal section of the paper, we use a
panel of dairy farms in Northern Spain to illustréhe feasibility of estimating aCM
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with time varying probabilities. Our objectives diest to measure the changes over
time in the probability of belonging to a classcfteology) and second to analyze the
effects on production potential and efficiency ddirg farm intensification Our
methodological proposal allows us to look specilficat the farms that might have

tilted towards a more intensive production system.

The organization of the paper is the followingnkxt section we describe the model. In
section 3, we present the data and the empiricaleindn section 4 we show the
econometric estimation of the latent class modaelsection 5 there is a discussion of

the empirical results. The paper ends with somelosions.

2. TheModéd
We use d.CM to analyze the extent of intensification in outag&t. Our objective is to
check whether the.CM identifies different technologies and if thosehtealogies
represent different degrees of intensification. $tating point is a log-linear stochastic

production frontier (Orea and Kumbhakar, 2004) sash

Iny, =Inf(x)]+v |-y 1)

wherex is a vector of inputs; a single outputy a symmetric random disturbance, and
a one-sided random disturbance that measures tathmefficiency. Subscript i
(i=1,...,N)denotes firmst (t=1,...,T)denotes time, and subscrjj=1,...,J) indicates a
technology in a finite set. The vertical bar me#mst there is a different production
function (different parameters) for each clas¥ve assume that, conditional on each
class, the random disturbanseandu follow a normal and a truncated normal random

distribution respectively.

In a latent class model we need to consider thkedHood functions. The first is the

likelihood function of a firm at timet belonging to clasg

® The present paper is related with a strand afdlitee linking technological choices with efficignd\s
an example, Kompas and Nhu Che (2006) studiedfteet®f different technologies on the efficiendy o
dairy farms by including in the inefficiency modeket of variables reflecting technological choices
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LF :g(}{t % rej) (2)

where 0 represents the set of parameters of technologgs)daand g denotes the
likelihood function of a production frontier (Kumakar and Lovell, 2000). The second
is the likelihood function of a firmconditional on clasg obtained as the product of the

likelihood functions in each period.
T T
L, =[] LR =[] o(% x &) 3)

Finally, the unconditional likelihood function ofrrh i is calculated averaging the
likelihood conditional on each class using the ppmbabilities of class memberstp

as weights:
J
LF =) LR P (4)

Prior probabilities can be interpreted as the podib@s attached to membership of
classj (Greene, 2005). These prior probabilities can laeameterized using a

multinomial logit model such as:

where z is a vector of “separating variables” anda vector of parameters to be
estimated. The “separating variables” are relatethé adoption of a technology and, as
a result, can be used as explanatory variablehefptior probability of using that

technology.

After estimation of the model in (1) by maximumdiihood a “posterior probability”

can be computed as:



P = 6
s (6)

As equation (6) shows, the prior probability of sdamembership for each farm is
weighted by the empirical likelihood that the fabmlongs to that class. This implies
that the ability of each technology to explain thieserved production of a farm is
incorporated in the calculation of the posterioolability. In a sense, the estimates
obtained with the parsimonious parametric model tio¢ prior probability are

complemented with information on individual fit ppovide a more accurate evaluation
of the probability of class membership. In facg thosterior probability is considered
the best estimate of class membership (Greene,)2808 as such, the value of this
probability is the criterion that we will use foetgérmining whether a farm is using a

particular technology.

As mentioned above, a subtle feature of teM for panel data is that prior
probabilities are modeled as time invariant. In cpcal terms, time-invariant
probabilities amount to assuming that changes rmgaover time don’t affect the
adscription of a farm to a class (intensive or esiee technology). However, we expect
some farms to change the use of inputs during #reog of analysis in ways that

suggest tilting towards intensive farming.

Our aim, therefore, is to circumvent the assumptibtime-invariant probabilities in the
empirical analysis. For that purpose, we estimagingle LCM model for the whole
period of analysis but split the observations fackefarm into two periods, where the
first period roughly corresponds tot={,...,T/2 and the second period to
(t=T/2+1,...,7). In this approach, farmis considered to be a different farm in each of
the two periods. As a result, the probability acfss membership is constant for a given
farm during each of the two periods but can chdrgma the first period to the second.

An alternative approach to obtain time-varying f@iohities would be to estimate a
pooled model. This amounts to considering the éatas a cross section of farms
instead of taking into account the existence o&iaeh In this case, in each observation

farmi is treated as a different farm, thereby allowingb@bilities of class membership
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to vary freely over time. The downside is that vimehard the information provided by
observing the same farm in several periods andtilgatomputed probabilities of class
membership are not necessarily parsimonious. Inde&uld be possible to observe
some farms moving repeatedly from one class toother. All in all, this approach
seems prone to numerical problems and to diffieslfior interpreting the results. In
fact, in the empirical application that we propdise LCM with pooled data failed to

converge.

3. Dataand empirical model
The data used in the empirical analysis consist ldlanced panel a8 Spanish dairy
farms observed over th&2 year period from1999 to 201Q In general, the units

considered are small to medium-sized family farms.

The empirical specification of the production fuoatis a translog. We have chosen a
flexible functional form in order to avoid imposingnecessary a priori restrictions on
the technologies to be estimated. The empiricainmpart of equation (1) is the

following translog production frontier:

5 1 5 5 12
Iny, =8 | +>. A | Inx, +§ZZ/JL. | I g +> 1, | TR+ |-yl ()
k=1 nE 2

k=1 F1

The dependent variablg)(is the production of milk (liters). We have catesied only
one output since these farms are highly specialipeale than 90% of farm income
comes from dairy sales). Five inputs are included:number of cows,xt) purchased
feed (kilograms),Xs) ‘farm expenses’ (includes expenditure on inpugsduto produce
forage crops, namely seeds, sprays, fertilizersl, fand machinery depreciation¥,)(
‘animal expenses’, such as veterinary, medicineking and other expenses, ang)(
land. All monetary variables are expressed in @nsturos of 2004. Additionally, 11
time dummy variablesTD=1 if t=m, TD,=0 otherwise) were introduced to control
for factors that affect all farms in the same wagheyear but which vary over time,

such as weather (the excluded period is 1999).



Prior to estimation each input was divided by g®metric mean. In this way, the first
order coefficients of the Translog production fimet(3’) can be interpreted as output

elasticities evaluated at the geometric mean oiripets.

The prior probabilities of class membership areuamex to be a function of two
“separating variables”: the natural logarithm of #tocking rate (cows per hectare) and

the natural logarithm of the concentrate feed pefc

4. Econometric estimation
In this section, we report the main results oféeemation of two latent class models by

maximum likelihood:

a) Panel model, i.e. using panel data and time-inmariéass membership

probabilities.

b) Split-panel model, i.e., estimating a sing€M model but allowing the
probabilities of class membership to differ ovendiby splitting the sample into
two periods where the probability of class membigrsh constant within each
period but can change for the ‘same’ farm from fir& period to the second.
Precisely, the estimation proceeds by treating ¢ach as a different farm in

the second period.

In both models two latent classes were fotidé mentioned above, we make the prior
probability of belonging to a latent class a fuontof two variables: ‘cows per hectare
of land’ and ‘feed per cow’. Since these variable=asure the degree of intensification
of a dairy operation, we have labeled as “interisihe latent class which provides
positive estimates of the coefficients of both @eping’ variables in the prior
probability equation. The estimates of the prioolgability function of the intensive

class for both models are shown in Table 1.

* Since prior probabilities are modeled as time-itarmt for a given period of time, the explanatory

variables are averaged over such period.

® We also tried to fit a model with three classesibdid not converge.



Table 1: Prior probability equation for the intensive class

Panel model Split-panel model
Constant -11.906* -13.112**
In(cows/land) 1.7919* .8632*
In(concentrate/cows) 1.3510* 1.5513*

* ** Significantly different from zero at 0.05 dr®.01 significance levels respectively
Standard errors reported in Tables A1l and A2 inAlppendix

Next, the farms were classified dstensive using the highest (greater than 0.5)
estimated posterior probabilities (equation 6) aitltese provide the best estimates of
class membership for an individual (Greene, 200%)Table 2 we show descriptive

statistics of the two groups (intensive and exte)dior the two models estimated.

Table 2. Characteristics of the estimated production classes (sample means)

Panel model Split-panel model

I ntensive Extensive I ntensive Extensive
Observations 804 732 798 738
Milk (1) 365442 280884 371525 274994
Cows 42.7 40.3 43.2 39.9
Land (ha) 18.0 19.8 18.3 19.6
Cows per hectare 2.45 2.16 2.4 2.1
Milk per cow (1) 8129 6745 8202 6677
Milk per hectare (1) 20329 14779 20428 14718
Feed per cow (Kg) 3533 3352 3579 3304

The descriptive statistics of each group agree With labels we gave to the classes
based on the effects of intensification variableshe probability of being in each class.
As expected, intensive farms have larger valudsegfvariables such as milk per cow,
milk per hectare and feed per cow. Intensive faares also larger in terms of milk
production but are rather similar in terms of lahdour view, the explanation for this
result is that marginal increases of land are ehjfiko be an option for farmers due to
the fact that most abandonments take place inféessed areas (mountainous) while

remaining farms are mainly located in the coastainp yielding useless the land
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available after some farms shut down. For thisaeagarmers who wish to increase
production need to use more feed per cow and ireszagses buy more productive cows,

thereby becoming more intensive.

In Table 3 we report the output elasticities far thvo groups evaluated at the geometric
mean of the sample. The differences in the eléisscacross groups can be seen as
evidence of different technological characteristifhe complete set of estimated

parameters of the production functions are reportedrables A1 and A2 in the

Appendix.

Table 3. Output elasticities evaluated at the geometric mean of the sample

Panel model Split-panel model
I ntensive Extensive Intensive Extensive
Cows 176** A4626** .7491** 4553**
Feed .2969** .3623** 2737 .3685**
Farm expenses .0405** .0718* .0508 ** 0767*
Animal expenses .0296** .0964** .0206 * .0789**
Land .0368** .0339** .0214 .0295*

* ** Significantly different from zero at 0.05 dr.01significance level, respectively

All elasticities, with one exception, are signiintly different from zero at conventional
levels of significance. Despite the different asptions behind the two models the
output elasticities evaluated at the sample geamatean are similar across models.
However, it is interesting to note that there aréendifferences between the parameters
of the two latent classes (within each model). &xample, the output elasticity with
respect to cows is almost twice as large in thensive group as it is in the extensive
group. On the other hand, the output elasticitjeetl is always larger in the extensive
group. These different elasticities imply largefeliénces in marginal productivity of

inputs across technologies (extensive or intensasgecially for cows and feed.

5. Empirical extensions
In this section we use the results of the estimatb the LCM to analyze a set of

questions with important policy implications. Firste are interested in studying the
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evolution of the intensification process over ting&econd, we want to analyze the

differences in technical efficiency between intgasand extensive farms.

5.1. Evolution of intensification over time
We want to check if the probability of adopting th&ensive technology increases over
time. We should note that this analysis is onlysgas in the split-panel model and not

in the conventional panelCM. °

For this purpose, we regress the posterior proitiakilof being in thentensive class
against individual dummies (fixed effects) and maly variable ¢;) that takes the value
zero for the first half of the period analyzed amtke for the second half. This is an
unconditional analysis over time. It is clearlyfdient from the conditional analysis of
prior probabilities that could be achieved by intthg a time trend in equation (5). In
the conditional analysis, prior probabilities coualdange over time, keeping input use
and separating variables constant. In the uncamditi analysis performed here, the
posterior probability varies over time due to chemin the use of key inputs such as

feed, cows or land.

The equation to be estimated is the following:

Pro=a | +b| d +w | ®)
wherej denotes the latent class ands a random disturbance. For each class, we have
an estimated posterior probability for each indinb(=1,...,128 and for each period
(t=1,..,12. Expression (8) represents a general proposhlJadifferent classes. In this
case, there would only kel free equations since the dependent variable, ds&epor
probability, adds up to one. As we are consideonky two latent classes (Intensive and
Extensive) in our setting, we have only one reléwaquation. We choose to estimate

the equation corresponding to the posterior pradibabif the IntensiveClass.

® At this point, we should note that Alvarez and @elrral (2010) report time-varying probabilities of
class membership in the conventional Panel LCM.yTdet that result through a slight modification of
equation (6). They use as weighting factor of probabilities the likelihood function of each
observation in each yeaLKj in equation 2) instead of the likelihood functioheach farm I(F; in
equation 3).
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Table 4. Analysis of the evolution over time of posterior probabilities

Coefﬂ C| ent (blintensivé

Standard Error

t-statistic

.0363

.0099

3.28

Table 4 shows the estimated coefficient of the tmmary variable l§};) for the Posterior

probability of Intensive Classn the Split-panel model. This coefficient is pgos and

significantly different from zero indicating thdte probability of being classified as an
intensive farm is larger in the second period. Werpret this result as evidence of

“intensification” of dairy production in our sampbeer the period analyzed.

In our view, the average change over time of thebability of belonging to the
intensive class provides evidence of farms in tame tilting towards an intensive
production system. Additionally, the change in slgwobability between the two
periods allows for some descriptive analysis of¢hbset of farms that have switched
production system in the conventional sense ofsingsthe threshold defined by a class
probability of 0.5. In particular, 13 extensive rfeg became intensive in the second

period, while 8 farms switched from intensive tdemsive. In table 5 we show the

characteristics of the farms that change to amdiffeproduction system.

Tableb5. Characteristics of the farmsthat switch production system over time

From extensive to intensive

From intensive to extensive

Period 1 Period 2 Period 1 Period 2

Extensive I ntensive Intensive Extensive
Farms 13 13 8 8
Milk (1) 279777 383108 269831 301237
Cows 37.2 42.9 35.3 42.5
Land (ha) 16.5 16.6 14.8 17.7
Cows per hectare 2.1 24 2.4 24
Milk per cow () 7061 8381 7456 7004
Milk per hectare (1) 15796 21242 18246 17191
Feed per cow (Kg) 3483 3824 3307 3204

The farms that become intensive in the second ghegflect the typical transformation

pattern: increase in the stocking rate and feectcper resulting in higher milk per cow
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and per hectare. On the other hand, the farmsthiath from the intensive to extensive
class keep the stocking rate unchanged but rethecamount of feed per cow, lowering

milk per cow and per hectare.

5.2. Theeffect of intensification on dairy farm efficiency

In this section, we want to explore the effectraénsification on production efficiency.
Two questions are addressed. First, are intensiirasf more efficient than extensive
farms? Second, which technology is more produdiiee, does one of the two frontiers

lie above the other one)?

The level of technical efficiency can be calculatesdthe ratio between current output
and potential output, as defined by the technolidgrontier. An output-oriented index

of technical efficiency can be computed as:

TE, |=ex{- y ) 9)(
Subscript in equation (9) indicates that the technical e&ficy index can be calculated
with respect to each of the Latent Class front{@sa and Kumbhakar, 2004). In our

case, we can thus consider two different fronti€esble6 shows the average technical

efficiency for the two technologies.

Table 6. Average efficiency by model and L atent Class (intensive/extensive)

Panel Mode Split-Panel Model
I ntensive Extensive Intensive Extensive
Frontier Frontier Frontier Frontier
Full sample .92 .92 91 .93
Intensive farms .94 .96 .94 .96
Extensive farms .88 .89 .87 .89

We would like to point out two results. First, fibre full sample, the average level of
technical efficiency is quite similar both acros®dals (Panel vs. Split-Panel) and
across latent technologies (Intensive frontier Ezstensive frontier). However, if we

consider the two groups of farms separately, a weggyesting result is found: intensive

farms have higher level of technical efficiency atl the four frontiers considered.
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Additionally, the average technical efficiency ighrer in the extensive frontier than in

the intensive one.

This last result seems to indicate that the lafeontier of the Intensive Group

dominates the other, that is, for any given seinplits it is possible to produce more
output with the intensive technology. We try to dheme light on this issue by
calculating the difference in frontier output beemethe frontiers using the actual inputs

of the farms:
D, =In yl _Inyf (8)
where Iny;, (In¥y;) is the (log of) frontier output of farmat timet evaluated at the

intensive (extensive) technology. Takleshows the average value PBf; for the full

sample as well as for the two classes.

Table 7: Average difference between intensive and extensive production frontiers

Panel model Split-panel model
Full sample .0962 .1080
I ntensive farms .0883 .0988
Extensive farms .1049 1180

As the differences between the frontiers are catedl using natural log®;; can be
interpreted approximately as the percentage diffe¥ef potential output between both
frontiers. For the panel model, the intensive fiemts, on average).6% above the
extensive frontier. For the split-panel model, ititensive frontier is, on averagd).8%

above the extensive frontier.

Additionally, two interesting issues can be studité@ evolution of technical efficiency

over time and the relationship of technical efinag with the probability of being in a

latent class. These two issues can be analyzédrbtie conventional panel model and
the Split-panel model proposed in the present pap@wever, in the Split-Panel model

the probability of class membership can change twee. This feature suggests the
need for a joint analysis of the effects of timeé @nobability of class membership.
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Table 8. Relationship of technical efficiency with intensification

Panel model Split-panel model

OoLS OoLS OLSwith farm

dummies

Intensive | Extensive | Intensive | Extensive | Intensive | Extensive

frontier frontier frontier frontier frontier frontier

Probability | 0.0607** | 0.0658** | 0.0786** | 0.0753**| 0.0545**| 0.0444
of intensive

class

Time -0.0053** 0.0044 -0.0082** 0.0018 -0.0074* 0.0028

dummy

* **_Significantly different from zero at 0.05 dr®.01significance level, respectively

In Table 8, we show the results of regressingekiellof technical efficiency against the
probability of being in the intensive class andnaetdummy that takes the value 1 for
the second period. We show the results for bothetso@anel and Split-panel) and for
both frontiers (Intensive and Extensive). In thdit§mnel model we perform two

different estimations: standa@l SandOLSwith farm dummy variables. The inclusion
of individual effects is not possible in the conttenal Panel model because the

probability of class membership is constant oveeti

We find common patterns of results for both modeld estimators. The probability of
being in the intensive class increases the levdkdinical efficiency with respect to
both frontiers for the two models and the two eation methods. The coefficient of the
time dummy indicates that the index of technicdiceincy estimated using the
extensive frontier increases over time while thadei of technical efficiency estimated
using the intensive frontier decreases over tinieés Tesult is probably due to different
patterns across frontiers of the yearly shiftsha& production frontier measured by the
coefficients of the time dummy variables. The tiduenmy coefficients of the intensive
frontier show a clear upward trend at the beginrmhghe period followed by a fall in
the last few years. The time upward shift of thedpiction frontier is compatible with

decreasing technical efficiency if the movementshef frontier are due to productive
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improvements of a subset of leading farms whileptarms do not move immediately
towards the shifted frontier. On the other hane, ¢lxtensive frontier features smaller
and erratic shifts over time. In our view, it istnsurprising to observe farms

approaching, on average, a production frontier walsudden upper shifts.

Additionally, the Split-panel model provides a dabesult: the probability of being in
the intensive class changes across farms and sega@aer time (on average). In other
words, we have two sources of variation. The cokeiffit of the probability using plain
OLS is estimated using both sources of variation. H@rethe coefficient of the
probability usingOLS with farm dummy variables is estimated using ahlky changes
over time of probability. The results show that tegtimates of the coefficient of
probability are 0.0545 (intensive) and 0.0439 (esiee) when using only changes over
time, while the same estimates increase to 0.0i#86ngive) and 0.0752 (extensive)
when using both cross-section and time variationthef posterior probability. In
summary, it seems that the bulk of the change fafieficy caused by changes in the
probability of being in the intensive class canalieibuted to changes over time of this

probability.

4. Conclusions
The assumption of time-invariant prior probabilitiya latent class can be circumvented
by estimating a singleCM but splitting the original panel into two or magperiods.
This proposal allows for the estimation of the temlbgy of different production
systems without an assumption untenable as thedoefiyears analyzed increases. By
doing that, we find in our empirical applicationaththe probability of being in the
“intensive dairy” class increases over time. Tleisult can be interpreted as evidence of
dairy farming intensification over the sample pdrio

We find differences in technical efficiency if welis the sample in terms of the
production system using the posterior probabilityeach latent class. More precisely,
the average technical efficiency is higher for farthat belong to the intensive latent
class. Additionally, the intensive frontier domiesitthe extensive frontier, indicating

that the intensive technology is more productivet the extensive one. This result can
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be seen as an economic rationale for the obseread towards the intensification of

dairy farms.

What are the policy implications of this findingS&®/en that the intensive technology is
more productive and that intensive farms are méteient, i.e. produce closer to their
frontier, than extensive farms it seems that thendrtowards intensification will

continue in the near future.

The new reform of the Common Agricultural Policy ynalso affect farmers’
technology choices. On the one hand, the phasingobwmilk quotas may result in
higher production. In this sense, intensive farnis fiund it easier to boost production
since they do not depend heavily on forage. Orother hand, the new direct payment
scheme which will move towards a uniform payment pectare may lower the

incentives to adopt intensive systems.
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Appendix

Table A.1: Estimation of the Panel Modd

Class1 Class2
Variable Coefficient Std. Error Coefficient Std. Error
Constant 12.5724 .0158 12.542 .0152
Cows (Inx) 7176 .0213 4626 .0241
Feed (Inx) .2969 .0137 .3623 .0152
Crop (Inx) .0405 .0067 .0718 .0080
Animal (Inx) .0296 .0091 .0964 .0110
Land (Inx) .0368 .0104 .0339 .0125
(Inx)? .2030 1445 -.0854 .1096
(Inxy)? .0257 .0486 -.1737 .0612
(Inxs)? .0575 .0152 .0523 .0149
(Inx,)* -.0731 .0247 .0069 .0320
(Inxs)? .2857 .0398 -.0624 .0542
INX;INX, -.3277 .0641 .0663 .0732
InX;Inxs -.0999 .0395 .0103 .0301
InX;Inx, .3738 .0532 -.0394 .0561
InX,Inxs -.2055 .0584 -.0263 .0657
INX,INxs .1055 .0238 -.0608 .0219
InX,Inx, -.0960 .0321 .0827 .0369
INXoINXs .1288 .0405 -.0160 .0413
InXslnX, -.0307 .0149 .0025 .0164
INXgInXs -.0426 .0196 .0196 .0231
INX4INXs -.0619 .0275 .0138 .0282
TDoo .0206 .0129 .0072 .0172
TDo; .0366 .0131 -.0046 .0173
TDo, .0358 .0130 .0243 .0175
TDo3 .0313 .0131 -.0181 .0173
TDoq4 .0519 .0131 .0038 0171
TDos .0707 .0132 .0359 .0172
TDos .0952 .0132 .0366 .0173
TDo, .0839 .0132 .0378 .0175
TDos .0529 .0134 -.0156 .0175
TDoo .0559 .0134 -.0275 .0177
TDyo .0661 .0139 .0032 .0172
Sigma .0909 .0078 1537 .0064
Lambda 1.0506 3484 2.7329 .3866
Prior probability equation

Constant -11.906 5.2881

In(cows/land) 1.7919 6078

Ln(concentrate/cows) 1.3510 6600
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Table A.2: Estimation of the Split-Panel Model

Class1 Class2
Variable Coefficient Std. Error Coefficient Std. Error
Constant 12.5754 .0135 12.536 .0146
Cows (Inx) 7491 .0203 4553 0211
Feed (Inx) 2737 .0148 .3685 .0149
Crop (Inx) .0508 .0068 .0767 .0078
Animal (Inx) .0206 .0093 .0789 .0118
Land (Inx) .0214 .0115 .0295 .0136
(Inx,)? .2943 1448 -.0405 11092
(Inx)? 0121 .0460 -.0964 .0645
(Inxg)* .0732 .0147 .0410 .0134
(Inx,)* -.0530 .0263 -.0447 .0331
(Inxg)? .2786 .0400 .0407 .0609
INXyInx, -.3067 .0613 -.0549 .0693
InX;INXs -.1158 .0375 -.0217 .0316
InxyInx, .2953 .0530 .0704 .0591
INX;INXs -.2457 .0563 .0135 .0596
INX,INxg .0825 .0226 -.0131 .0217
INXolNX, -.0526 .0331 .0418 .0396
INX,INxs 1130 .0410 -.0562 .0452
INxslnx, -.0275 .0151 .0003 .0160
INXslNXs -.0263 .0199 -.0053 .0224
INX4INxs -.0350 .0274 .0306 .0289
TDoo .0201 .0126 -.0013 .0162
TDo; .0376 .0129 -.0108 0174
TDo, .0351 .0133 .0238 .0188
TDo3 .0283 .0130 -.0151 .0166
TDoq4 0471 .0132 .0099 .0165
TDos .0660 .0128 .0408 .0167
TDos .0917 .0130 .0457 .0167
TDy7 .0790 .0129 .0463 0172
TDog .0531 .0131 -.0143 0171
TDoo .0563 .0131 -.0292 0172
TDyo .0697 .0134 .0007 .0170
Sigma .0883 .0067 1497 .0060
Lambda 1.1750 .3155 3.0344 14630
Prior probability equation

Constant -13.112 4.2444

In(cows/land) .8632 3943

Ln(concentrate/cows) 1.5513 .5247
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