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Abstract 

In this paper we advocate using the so-called latent class model (LCM) approach 
to control for technological differences in traditional efficiency analysis of regulated 
electricity networks. Our proposal relies on the fact that latent class models are designed 
to cluster firms by uncovering differences in technology parameters. Moreover, our 
approach can be viewed as a supervised method for clustering data as it takes into 
account the same (production or cost) relationship that is analyzed later, often using 
non-parametric frontier techniques. The simulation exercises confirm our expectations 
and show that the proposed approach outperforms other alternative sample selection 
procedures. The proposed methodology is illustrated with an application to a sample of 
US electricity transmission firms for the period 2001-2009. 
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1. Introduction 

Electricity networks are often regulated by implementing incentive-based 
regulation schemes that use some sort of benchmarking, i.e. a comparison of utilities’ 
performance with best-practice references. As shown by Coelli et al. (2005), the most 
commonly method used by energy regulators to measure relative firms’ inefficiency is 
data envelopment analysis (DEA). Unlike the parametric approach that requires the 
specification of a particular functional form for the cost or production functions to be 
estimated, non-parametric methods impose fewer assumptions on the shape of firms’ 
technology. 

However, a key issue that is sometimes not taken into account by regulators (and 
researchers) is the existence of heterogeneity or unobserved differences among firms. 
Moreover, it is often assumed in this setting that the whole set of benchmarked firms 
share the same technology, and hence differences in behaviour are attributed to an 
inefficient use of factors that are under control of the companies. Possible differences 
among utilities associated with different technologies are either overlooked or are 
addressed using simple sample selection procedures, most of them based on factors that 
may affect performance such as geographic location or utilities’ size. Therefore, the 
efficiency scores obtained from these analyses might be biased and some firms might be 
penalized (or rewarded) in excess if their underlying technology is less (more) 
productive than the technology used by other firms operating with more (less) 
advantageous conditions. This is particularly important in the case of incentive 
regulation and benchmarking of electricity networks where the results of efficiency 
analysis have important financial implications for the firms. 

In this paper we advocate using a more comprehensive approach to control for 
technological differences in a preliminary stage, i.e. before carrying out a traditional 
efficiency analysis of regulated electricity networks. In particular, we propose using the 
so-called latent class model (LCM) approach to split the sample of utilities into a 
number of different classes, where each class is associated with a different technology. 
We argue that this approach is an appropriate statistical procedure to cluster firms in 
these settings for two reasons. First, they are specifically designed to cluster firms by 
searching for differences in production or cost parameters, which is exactly what 
regulators are looking for. Second, our approach can be viewed as a supervised method 
for clustering data as it takes into account the same (production or cost) relationship that 
is analyzed later, often using non-parametric frontier techniques. 

The same idea is currently being developed by Agrell et al. (2013) in a very 
recent working paper where they use the LCM approach to control for technological 
differences in an application to Norwegian power distribution firms. Our paper 
reinforces the results obtained by these authors from both a theoretical and an empirical 
point of view. In particular, we carry out a simulation analysis to examine whether the 
latent class approach outperforms other alternative procedures of splitting a sample of 
observations - such as cluster analysis or simply using the median of some relevant 
variables - before the non-parametric stage. The simulation exercises confirm our 
expectations and show that the proposed approach outperforms other alternative sample 
selection procedures. On the other hand, we illustrate this procedure with an application 
to the US electricity transmission firms examined in Llorca et al. (2013). We find two 
statistically different groups of firms that should be compared or treated separately. In 
order to confirm the results from the simulation exercise, we compare the partition of 
the sample obtained through this method with those from alternative clustering 
procedures. 
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This paper is organized as follows. Section 2 introduces the two-stage procedure 
that is proposed to control for unobservable differences in firms’ technology 
(environment) in energy regulation. Section 3 introduces the simulation analysis 
performed and its main outcomes. Section 4 uses data from the US electricity 
transmission industry to compare the relative performance of our approach and 
alternative procedures. Section 5 concludes. 

 

2. A two-stage procedure to deal with unobserved heterogeneity in energy 
regulation  

As Brophy Haney and Pollitt (2009) pointed out, regulators have been using 
several statistical methods to determine the performance of energy utilities. Obtaining 
reliable measures of firms’ performance requires dealing with controllable factors and 
monitoring for the different environmental conditions under each firm operates. 
However, both regulators’ reports and academic studies do not usually deal with these 
technological differences. Statistical methods have recently been developed to address 
this issue. In most of these methods, heterogeneity is understood as an unobserved 
determinant of the production/cost frontier, while inefficiency is interpreted as the 
‘distance’ to the frontier once heterogeneity has been taken into account.  

Following Greene (2005a, 2005b) we can distinguish two sorts of models that 
allow us to achieve this aim, namely the so-called true fixed/random effects models and 
the latent class stochastic models, also known as finite mixture models. Both 
approaches have their own strengths and weaknesses. In the true fixed/random effects 
models, unobserved heterogeneity is captured through a set of firm-specific intercepts 
that are to be estimated simultaneously with other parameters. Hence, using this 
approach implies assuming that there are as many technologies as firms.1 However, as it 
imposes common slopes for all firms, all of them share the same marginal costs, 
economies of scale and other technological characteristics.  

In contrast, the latent class model approach allows estimating different 
parameters for firms belonging to different groups as can be easily seen where the 
general specification of a cost function in this framework is expressed as follows: 

ln ��� = �� + 
� ln ��� + ���|�     (1) 

where i stands for firms, t for time and j = 1,…, J for class. Cit is a measure of firms’ 
cost, Xit is a vector of explanatory variables, and the random term vit follows a normal 
distribution with zero mean and variance σv

2. The number of classes J should be chosen 
in advance by the researcher or regulator. As both αj and βj, are j-specific parameters, 
the technological characteristics vary across classes.  

Letting �� denote all parameters associated with class j, the conditional 
likelihood function of a firm i belonging to class j is �������� = ∏ ���������

��� . The 
unconditional likelihood for firm i is then obtained as the weighted sum of their j-class 
likelihood functions, where the weights are the probabilities of class membership, Pij. 
That is: 

�����, �� = ∑ ����  ������������
��� ,          0 ≤ ������� ≤ 1,          ∑ ��������

��� = 1    (2) 

                                                 
1 This idea can be considered to underlie the negotiations between regulators and utilities, where utilities 
wield uniqueness as a reason to avoid being compared with their peers. 
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where, θ=(��,…, ��), δ=(��,…, ��) and the class probabilities are parameterized as a 
multinomial logit model: 

������� =  
"#$�%&

'()�

∑ "#$�%&
'()�*

&+,
,          - = 1, … , /,          �� = 0  (3) 

where qi is either an intercept or a vector of individual-specific variables.  Therefore, the 
overall likelihood function resulting from (2) and (3) is a continuous function of the 
vectors of parameters θ and δ, and can be written as: 

01 �� ��, �� = ∑ 01 ���  ��, ��2
��� =  ∑ 013∑ ����

�
��� �������  ����42

���  (4) 

Maximizing the above maximum likelihood gives asymptotically efficient 
estimates of all parameters. A necessary condition to identify the whole set of 
parameters is that the sample must be generated from at least two different technologies 
or two noise terms.  

Three comments are in order. First, in this framework each firm belongs to one 
and only one class. Therefore, the probabilities of class membership just reflect the 
uncertainty that researchers or regulators have about the true partition of the sample. 
The estimated parameters can be used to compute posterior class membership 
probabilities using the following expression:  

��-|5) =  67)&�89&�:)& (%9&)
∑ 67)&

*
&+, �89&�:)& (%9&)     (5) 

These posterior probabilities of membership can then be used to allocate each 
firm to a particular class, e.g., each firm is allocated to the class with the higher 
posterior probability.  

On the other hand, only between-groups and not individual heterogeneity is 
controlled using a latent class model because all firms belonging to a particular group 
share the same technology. This situation is possible in energy economics if, as happens 
in our application, firms operating in areas with different environmental conditions must 
choose between a limited number of technical standards2 to expand and maintain their 
networks. As each class has a different set of parameters, the latent class approach is 
able to control for the aforementioned differences in environmental conditions and 
technologies. 

Finally, it should be noted that the random term in (1) follows a symmetric 
distribution and hence it does not include a traditional one-sided inefficiency term. In 
other words, unlike previous studies estimating latent class stochastic frontier models,3 
we advocate using a non-frontier model in a first stage as a “statistical” tool to cluster 
firms before carrying out a traditional efficiency analysis of regulated electricity 
networks (second stage). Compared to other sample-separating methods, our proposal 
relies on the fact that latent class models are designed to cluster firms by searching for 
differences in production or cost parameters, which is exactly what regulators are 
looking for.4 Moreover, our approach can be viewed as a supervised method for 
                                                 
2 These standards are either proposed by the International Electrotechnical Commission or the Institute of 
Electrical and Electronics Engineers. 
3 See, for instance, Orea and Kumbhakar (2004). 
4 Another tool that could be used in the first stage to split the sample and to reduce heterogeneity among 
firms is the k-means cluster analysis method. Although this procedure was proposed by Lloyd in 1957 (it 
was not published until 1982), this name was first used by MacQueen (1967). This method is a popular 
unsupervised algorithm for clustering data which is widely used in scientific research. The aim of cluster 
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clustering data as it examines the same (production or cost) relationship that is analyzed 
later in the traditional efficiency analysis. Indeed, the simulation exercises carried out in 
next section show that the proposed approach outperforms other alternative sample 
selection procedures, such as cluster analysis or the simple use of median of some 
relevant variables. 

As mentioned above, although it is possible to estimate a stochastic cost frontier 
in the first stage of our procedure, we propose obtaining the efficiency scores later. 
There are three reasons for this. First, ignoring the asymmetric error term traditionally 
associated with inefficiency prevents the appearance of convergence problems in 
practice when estimating a latent class model, which by nature is highly non-linear. This 
facilitates replication of the procedure when researchers or regulators compare different 
specifications of the underlying technology. Second, this empirical strategy allows us to 
compute efficiency scores using more flexible representation of firms’ technologies if 
non-parametric techniques such as DEA are employed. Finally, DEA is the method 
mainly used by regulators.  

In a second stage we apply DEA. As noted by Zhou et al. (2008), DEA has 
become a very popular tool in energy and environmental studies, especially for 
benchmarking electric utilities. It is a type of efficiency analysis which involves 
mathematical programming to construct a frontier of best performing companies. Farrell 
(1957) was the first to propose this type of frontier analysis and since then there have 
been many authors who have developed and applied different models which have 
enlarged the literature in DEA methodology (see Coelli et al., 2005). 

In this paper, as we will assume that the output level cannot be modified by 
firms we will use an input-oriented DEA model. This assumes that technical 
inefficiency can be viewed as a proportional reduction in input usage or cost while 
maintaining the output levels constant. In our simulation exercise we impose constant 
returns to scale (CRS), so any efficient firm should be operating at an optimal scale 
level. The optimization problem in this case can be represented as: 

        ;518,<�,  

        =>     −@� + AB ≥ 0, 
      �D� − �B ≥ 0, 

 B ≥ 0            (6) 

where λ is a vector of constants and � is a scalar calculated for each observation which 
represents the efficiency score for the i-th firm. qi and xi are the vectors of inputs and 
outputs for the i-th firm respectively, while Q and X are the input and output matrices 
for all I firms. This linear programming problem must be solved I times and gives an 
efficiency score � equal or lower than one for each firm. It should be noted in addition 
that in our empirical application we do not assume that all the companies exhibit 
                                                                                                                                               
analysis is to divide the observations into homogeneous and distinct groups by taking advantage of the 
information contained in variables or attributes of interest. It involves minimizing the following objective 
function: 

/ = ∑ ∑ ED�
(�) − F�EGH

���
I
���       

where k is the chosen number of clusters, n the number of data points, and ED�
(�) − F�EG

is the distance 
between a certain data point xi

(j) and the cluster centre, cj. 
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constant returns to scale as we use a variable returns to scale (VRS) specification,5 
which only requires adding the convexity constraint J1′B = 1 to the minimization 
problem in (6). I1 is a vector of ones, and multiplying by the vector of weights λ 
basically ensures that firms are only compared with firms of a similar size. 

 

3. Simulation analysis 

In this section we carry out a simulation exercise to examine whether a latent 
class approach is a good procedure to find groups of comparable companies within a 
sample when we want to apply a benchmarking with DEA, commonly used in 
regulatory processes. 

The simulation exercise can be summarized as follows. We initially generate 
1,000 observations of two hypothetical outputs (Y1, Y2) using an uniform distribution 
between 0 and 1. We have chosen this distribution instead of the normal distribution 
because these variables cannot take negative values, and outputs in DEA must be 
positive. Inefficiency levels are obtained assuming that the inefficiency term, 
represented as u+, is a positive half-normal distribution with zero mean and KLG variance. 
Random noise is simulated assuming that the noise term v follows a normal distribution 

with zero mean and KMG variance. We impose K = NKLG + KMG equal to 1 which, given the 
specification that we have chosen (see below), implies that the size of the random term 
in our function is relatively low, i.e. our levels of generated efficiency are quite high. 
We also fixed O = KLG (KLG + KMG)⁄  equal to 0.5, which implies that the weights of 
inefficiency and noise in the function are the same. Given the previous values, this 
implies that KL = KM = 0.71, and therefore is equivalent to generating a value of 
B = KL KM⁄  equal to 1.6 

Firms’ costs are simulated following the normalized linear specification 
proposed by Bogetoft and Otto (2011) for the regulation of electrical Distribution 
System Operators in Germany. This functional form allows us to easily introduce 
heteroscedasticity in our data generation process. Following this type of specification, 
our cost function can be expressed as follows: 

S)
T,)

= 
� + 
G
TU)
T,)

+ V�
W + ��    (7) 

where β1 and β2 stands for the marginal costs of the outputs Y1 and Y2 and define our 
technologies. With this functional form, we are imposing constant returns to scale. This 
prevents size effects when comparing our sample separating methods. As the random 
noise term takes both positive and negative values, we impose on all technologies that 
(β1 + β2) =10 to get positive costs. Technologies thus differ in the relative weight of 
each β, i.e. in relative marginal costs. In particular, have simulated three possible 
technologies: 

- Technology A:   
G = 
�     ,     (
� = 5, 
G = 5) 

- Technology B:   
G = 2
�     ,   Z
� = �[
\ , 
G = G[

\ ] 

                                                 
5 Although is quite common to presume that electricity transmission firms are natural monopolies, this is 
confirmed by the increasing returns to scale obtained from different authors: Huettner and Landon (1978), 
Pollitt (1995), Dismukes et al. (1998) and Llorca et al. (2013). 
6 Although the values of these parameters have been arbitrary chosen, the results obtained from the 
simulation are consistent respect to changes in them as long as we keep the underlying efficiency at 
‘normal’ levels. 
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- Technology C:   
G = 4
�    ,    (
� = 2, 
G = 8) 

Both coefficients are the same in technology A, while marginal costs are increasingly 
different in the other two technologies, B and C.  

Next, we will examine the robustness of our results by adding differences between 
outputs. In particular, we modify the original statistical distribution of one of the outputs 
by doubling and quadrupling its range of values, that is: 

- Distribution 1:   ̀�~b(0,1)   ,     G̀~b(0,1) 
- Distribution 2:   ̀�~b(0,1)   ,     G̀~2 · b(0,1) 
- Distribution 3:   ̀�~b(0,1)   ,     G̀~4 · b(0,1) 

Taking into account that we always apply the technology A to the first 500 
observations and then B or C to the following 500 observations, and that we have three 
output distributions, 6 possible scenarios are obtained. In Table 1, we show the 
scenarios and the percentage of success predicting the underlying class membership. 
This percentage is computed by comparing the ratios of β that can be recovered after 
applying an OLS regression to different groups of observations with the real ones. The 
estimated ratios are also shown in Table 1. The estimated values give an idea about how 
well each procedure is able to identify the different underlying technologies. 

[Insert Table 1] 

The first empirical exercise has to do with the case in which DEA is applied using 
the real separation of our data (i.e. the first 500 observations belonging to technology A 
and the later 500 observations belonging to B or C). By construction the percentage of 
success in this case is 100%. For this reason, this exercise is used as a benchmark to 
study the performance of four sample separation methods: the median of the cost7, 
cluster analysis considering the outputs, cluster analysis including both outputs and cost, 
and the latent class model (that involves both output and cost information). 

Looking at the percentages of success and the β-ratios we can confirm that the 
LCM is the method that is most precise in assigning observations to technologies and is 
also the best at identifying the relationship between technologies. As we move to a 
different scenario where there are more unequal features among groups we observe that 
there is a clear divergence in the behaviour of the procedures: whereas the LCM 
improves its percentage of success in the prediction8, the alternative procedures only 
slightly improve their performances.  

In Table 2, we show the average efficiencies that are obtained after DEA is 
applied separately to each group of firms. The last column shows the sums of squared 
differences with respect to the real separation case. Leaving aside the ‘true’ partition of 
the sample, i.e. the real separation case, the LCM is the approach that gives the largest 
efficiency scores. Moreover, the sums of squared differences in the last column indicate 
that the LCM is not only the procedure that gives us a higher average efficiency level 
(and closest to the real separation case) but also is the best at predicting individual 
efficiencies.  

[Insert Table 2] 

                                                 
7 The sample separation using the median of a variable can be viewed as a cluster analysis in which a 
dummy variable that takes value 1 for values above the median, and 0 otherwise, is considered as a 
classification variable. 
8 The estimated probabilities for the most likely latent class also increase, so the LCM not only improves 
its prediction capacity but also the precision with which each observation is assigned. 



8 
 

Once unobserved heterogeneity is taken into account and ‘removed’ in a first 
stage, larger efficiency scores are obtained when carrying out a traditional DEA 
analysis. It should be noted that as inequalities between groups rise, the average 
efficiency score obtained using the LCM as a sample separation method even exceed 
the average efficiency score from the real separation case. This shows that an imperfect 
assignment of firms to groups can lead us to obtain higher levels of efficiency or, in 
other words, the closest frontier to a firm is not always its real reference frontier. This 
result is quite interesting from a firm’s perspective as in some cases this procedure can 
be more favourable for them than a ‘true’ benchmarking. In spite of this, it seems that 
the efficiency level is a good indicator of how well each procedure performs and assigns 
firms to groups. 

 In Figure 1 we show the positive correlation that exists between efficiency and 
success in assigning observations to technologies using the LCM approach. This figure 
allows us to examine the discriminatory power of the model when there are either larger 
differences between technologies (illustrated as the shift from the blue to the red line) or 
between output data generation processes (illustrated as movements along the red and 
blue lines). As expected, the percentages of success are much larger when the two 
technologies differ notably in their characteristics. It is worth mentioning that this 
increase in percentages of success is especially important when there is no separating 
information on the output side, i.e. when both outputs are similarly generated. When 
additional information for splitting the sample is contained in the way both outputs are 
generated, both efficiency levels and percentages of success increase regardless of 
whether the technologies are similar or diverse.  

[Insert Figure 1] 

In summary, the above results clearly indicate that the LCM deals with 
unobserved heterogeneity much better than the others. This conclusion is one of the 
main contributions of the paper because it provides evidence in favour of using the 
LCM as a simple statistical sample separation method in energy regulation.9 We 
attribute this better performance to the fact that the LCM, unlike other methods, splits 
the data taking into account the objective of the second stage, where a relationship 
between outputs and inputs (or costs) is estimated in order to compute inefficiency 
scores. Alternative sample separating methods only try to find statistical differences in 
the mean values of a set of variables. In this sense, and borrowing the terminology used 
for dimension reduction, this approach can be interpreted as a ‘supervised’ method to 
split the data. 

 

4. Application to the US electricity transmission industry 

We next illustrate the proposed procedure with an application to the US 
electricity transmission industry. The database used in this paper is the same as in 
Llorca et al. (2013) and contains 405 observations on 59 US electricity transmission 
firms for the period 2001-2009.  

Following the literature,10 we specify a standard cost function with four outputs 
where our cost variable is Totex (which includes operation and maintenance expenses, 

                                                 
9 In this sense, our paper can be used to justify the approach first suggested by Agrell et al. (2013). 
10 As is highlighted by Brophy Haney and Pollitt (2012), benchmarking of electricity transmission utilities 
is a challenging task due to the small number of transmission utilities that usually operate in the 
jurisdiction of a particular regulator. This likely explains why there are few empirical papers published on 
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annual depreciation on capital assets, and annual return on the balance of capital). The 
four outputs are: Peak Load (PL), which is the maximum peak load of the year during 
60 minutes; Electricity Delivered (DE), which is the total annual energy delivered by 
the system; Total Energy11 (TE), which stands for the total energy of the system, 
including total net own generation, total purchases from others, net exchanges in the 
system (received-delivered), net transmission for others and transmission by others; and 
Network length (NL), which is a measure of the geographic spread of each company and 
is obtained as the sum of all transmission lines in miles regardless of the number of 
power cables on each power line. The four outputs considered (explanatory variables) 
and the cost variable (dependent variable) will be used later on in the DEA stage. 

To analyse robustness, we extend the standard model by adding four 
environmental variables to split the sample of transmission utilities. Three of these are 
weather variables: Temperature (TMIN), which represents the annual minimum 
temperature in Fahrenheit degrees; Wind speed (WIND), which is the average of the 
daily mean wind speeds in knots; and Precipitation (PRCP), which is the average of 
daily precipitation in inches. The last environmental variable is the Growth in Demand 
(GDEM) for each firm over time. The descriptive statistics of the full set of variables 
are shown in Table 3. 

[Insert Table 3] 

The specification of the cost function used in the sample-separating stage of our 
procedure is quite simple in order to avoid convergence problems and facilitate the 
replication of the procedure. Unlike our simulation, we have preferred to use a Cobb-
Douglas (or logarithm) specification of the cost function due to its widespread use and 
acceptance in previous empirical studies. Convergence problems prevented us from 
estimating the LCM for more than two classes. However, these problems did not appear 
using the Cobb-Douglas functional form. As we do not know the true number of 
underlying technologies, this is an interesting advantage of the logarithm specification 
of the model. The coefficients for the Cobb-Douglas specification are shown in Table 4. 
Except for total energy (TE) for one of the classes, all estimated coefficients are 
statistically significant and positive.12 

[Insert Table 4] 

In Figure 2 we illustrate the individual efficiency scores obtained after applying 
DEA as the number of classes is increased. As expected, the average efficiency score 
for the so-called non-separation model13 is 65%, much lower than the average efficiency 
obtained from the model with two classes (77%). The most comprehensive model that is 
estimated is a LCM with 7 classes. Although the average efficiency score for this model 

                                                                                                                                               
efficiency analysis of electricity transmission firms. Exceptions are Huettner and Landon (1978), Pollitt 
(1995), Dismukes et al. (1998) and von Geymueller (2009). However, none of these articles deal with 
unobserved heterogeneity or technological differences. 
11 Although Electricity Delivered and Total Energy are both variables that measure electricity flows, it 
can be observed in Table 3 that they are quite different since Total Energy includes transmission for 
others. We have decided to include both output variables as they help to increase the efficiency scores 
obtained with DEA in the second stage. 
12 As shown in the Appendix, for two groups the linear specification gives reasonable parameter 
estimates. It also gives similar group membership probabilities and efficiency scores. For instance, the 
percentage of coincidence in the assignment of observations is 87.7%, and the average efficiency score is 
higher using the Cobb-Douglas (77.03%) than using the linear form (72.45%). 
13 Note that in the non-separation model the sample of firms is not divided into several groups and hence 
can be viewed as a model with one class. 
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goes up to 87%, the largest change in efficiencies occurs when we move from one class 
to two classes. The values of both the AIC and BIC criteria for model selection are 
shown in Figure 3. While the AIC always decreases when we move to a larger number 
of classes, the BIC statistic has its minimum value for two classes. Taking the BIC 
statistic into account and given that the main improvement in efficiency levels is 
observed when we move from one class to two, we chose the model with two classes as 
our preferred model.14 

[Insert Figure 2] 

[Insert Figure 3] 

We show in Figure 4 the efficiency scores obtained using different methods to 
split the sample into two groups of firms. As expected, the lowest efficiency levels are 
obtained when there is no separation of firms and when we use cluster procedures where 
we include the size of the network and the cost as separating variables.15 A simple 
division using the median of cost seems to produce larger scores of efficiency in the 
second stage. As in the simulation exercise, the largest efficiency scores are obtained 
when the LCM is used as a statistical tool to account for unobserved differences among 
firms. 

[Insert Figure 4] 

We next introduce some environmental variables (i.e., three weather variables 
and demand growth) as sample-separating variables in the first stage of procedure to 
analyse the robustness of our results. Table 5 shows the estimated coefficients for the 
extended LCM. The coefficients of the variables included in the cost function do not 
undergo major changes with the exception of electricity delivered (DE), which is no 
longer statistically significant in one of the classes. Regarding the sample-separating 
variables, temperature, wind and growth of the demand are statistically significant, 
which implies that they have helped the procedure to split the sample in two groups. 
Despite this, there are not many differences between our previous LCM that ignored 
this information and the extended LCM that includes separating variables. For instance, 
the percentage of coincidence in allocating observations of both specifications is quite 
high (88%). In addition, Figure 5 shows that both LCMs give us larger efficiency scores 
than extended k-means procedures that include environmental variables (alone or with 
information about the cost function). As with the simulation exercise, these results 
suggest that the latent class approach is the best procedure for finding ‘homogeneous’ 
groups of firms when we do not have information about the environment in which these 
firms operate. When this information is available, the LCM still outperforms other 
sample separating methods. 

[Insert Table 5] 

[Insert Figure 5] 

 

 

 

                                                 
14 Both criteria are based on the maximum value of the logarithm of the likelihood function and the 
number of parameters estimated. However, as the BIC penalizes more adding successive parameters, it is 
our favoured criterion. 
15 The separation when we take into account all the outputs and the cost or just the network and the cost is 
the same. 
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5. Conclusions 

In energy regulation, differences in technologies or unobserved heterogeneity 
between firms are often not taken into account despite the theoretical importance of 
environmental features on utilities performance. As in Agrell et al. (2013), in this paper 
we propose using a latent class approach as a statistical method to split the sample into 
groups of more comparable firms before carrying out a traditional efficiency analysis 
using DEA, the most common frontier technique used by regulators in utility 
benchmarking. 

We have demonstrated through a simulation exercise that the latent class 
approach allocates each observation to its reference group better than the alternative 
procedures and that the efficiency scores obtained in the second stage are larger. It has 
also been shown that when large differences between technologies or output 
distributions arise, the discriminatory capacity and the assignment success of the 
procedure increases and the second-stage efficiency levels converge to the true 
underlying levels. An additional outcome of our simulation exercise is the large 
correlation between average efficiency levels and the percentage of success allocating 
observations into classes. This outcome is very important because it suggests that the 
average efficiency level obtained in a second stage can be used in practice as a good 
proxy of the relative performance of any sample-separating method that has been 
carried out before the traditional efficiency analysis. 

Finally, we illustrate the proposed method with an application to a sample of US 
electricity transmission firms for the period 2001-2009. We find that the largest change 
in efficiency scores occurs when we move from a model without any partition of the 
sample to a LCM that only splits the sample into two classes. Like the simulation 
exercise, our empirical application suggests using a latent class approach as a statistical 
method to deal with unobserved heterogeneity and differences in environmental 
characteristics. 

  



12 
 

References 
 
Agrell, P.J., Farsi, M., Filippini, M. and Koller, M. (2013), Unobserved heterogeneous 

effects in the cost efficiency analysis of electricity distribution systems, CER-
ETH Economics working papers series 13/171, CER-ETH - Center of Economic 
Research (CER-ETH) at ETH Zurich. 

Bogetoft, P. and Otto, L. (2011), Benchmarking with DEA, SFA, and R, Springer, New 
York. 

Brophy Haney, A. and Pollitt, M. (2009), “Efficiency analysis of energy networks: an 
international survey of regulators”, Energy Policy, 37: 5814-5830. 

Brophy Haney, A. and Pollitt, M. (2012), International benchmarking of electricity 
transmission by regulators: Theory and practice, Electricity Policy Research 
Group Working Paper 1226, University of Cambridge. 

Coelli, T.J., Prasada Rao, D.S., O'Donnell, C.J. and Battese, G.E, (2005), An 
introduction to efficiency and productivity analysis, 2nd ed., Springer, New 
York. 

Dismukes, D.E., Cope III, R.F. and Mesyanzhinov, D. (1998), “Capacity and economies 
of scale in electric power transmission”, Utilities Policy, 7, 3, 155-162. 

Farrell, M.J. (1957), “The measurement of productive efficiency”, Journal of the Royal 
Statistical Society. A, 120, 253-281. 

Greene, W. (2005a), “Fixed and random effects in stochastic frontier models”, Journal 
of Productivity Analysis, 23, 7-32. 

Greene, W. (2005b), “Reconsidering heterogeneity in panel data estimator of the 
stochastic frontier model”, Journal of Econometrics, 126, 269-303. 

Huettner, D.A., and Landon, J.H. (1978), “Electric utilities: scale economies and 
diseconomies” Southern Economic Journal, 44, 4, 883-912. 

Llorca, M., Orea, L. and Pollitt, M. (2013), Efficiency and environmental factors in the 
US electricity transmission industry, Efficiency Series Papers 02/2013, Oviedo 
Efficiency Group. 

Lloyd, S.P. (1982), "Least squares quantization in PCM", IEEE Transactions on 
Information Theory, vol. it-28, 129-137. 

MacQueen, J.B. (1967), Some methods for classification and analysis of multivariate 
observations, Proceedings of 5th Berkeley Symposium on Mathematical 
Statistics and Probability. University of California Press, 281–297. 

Orea, L. and Kumbhakar, S. (2004), “Efficiency measurement using stochastic frontier latent 
class model”, Empirical Economics, 29, 169-183. 

Pollitt, M. (1995), Ownership and performance in electric utilities, Oxford University 
Press, Oxford. 

Von Geymueller, P. (2009), “Static versus dynamic DEA in electricity regulation: the 
case of US transmission system operators”, Central European Journal of 
Operations Research, 17: 397-413. 



13 
 

Zhou, P., Ang, B.W. and Poh, K.L., (2008), “A survey of Data Envelopment Analysis in 
energy and environmental studies”, European Journal of Operational Research, 
189, 1-18. 

  



14 
 

Table 1. Success of the procedures identifying technologies 
 
Simulation 

 
Procedure 

 
% Success 
  

Underlying technology 
Group 1 (β1 / β2) Group 2 (β1 / β2) 

A&B Simulation - 1.000 0.500 
(OD 1) Real separation 100.00 1.080 0.597 
 Median (C) 49.60 0.890 0.756 
 Cluster (Y1, Y2) 46.50 0.849 0.815 
 Cluster (Y1, Y2, C) 49.30 0.894 0.763 
 LCM 65.70 1.063 0.555 
     
A&C Simulation - 1.000 0.250 
(OD 1) Real separation 100.00 1.080 0.331 
 Median (C) 50.20 0.678 0.575 
 Cluster (Y1, Y2) 46.50 0.646 0.642 
 Cluster (Y1, Y2, C) 49.90 0.684 0.593 
 LCM 79.20 1.162 0.337 
     
A&B Simulation - 1.000 0.500 
(OD 2) Real separation 100.00 1.077 0.597 
 Median (C) 55.00 0.834 0.799 
 Cluster (Y1, Y2) 54.00 0.822 0.812 
 Cluster (Y1, Y2, C) 55.10 0.822 0.802 
 LCM 79.30 1.110 0.596 
     
A&C Simulation - 1.000 0.250 
(OD 2) Real separation 100.00 1.077 0.331 
 Median (C) 57.20 0.723 0.562 
 Cluster (Y1, Y2) 54.00 0.656 0.609 
 Cluster (Y1, Y2, C) 58.30 0.714 0.529 
 LCM 87.90 1.099 0.337 
     
A&B Simulation - 1.000 0.500 
(OD 3) Real separation 100.00 1.076 0.598 
 Median (C) 57.40 0.868 0.765 
 Cluster (Y1, Y2) 53.90 0.833 0.785 
 Cluster (Y1, Y2, C) 57.80 0.863 0.754 
 LCM 90.60 1.097 0.583 
     
A&C Simulation - 1.000 0.250 
(OD 3) Real separation 100.00 1.076 0.331 
 Median (C) 60.60 0.779 0.493 
 Cluster (Y1, Y2) 53.90 0.674 0.576 
 Cluster (Y1, Y2, C) 61.80 0.772 0.486 
 LCM 94.70 1.102 0.328 
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Table 2. Efficiencies with DEA 

Simulation Procedure Av. Eff. SSD 
A&B Real separation 76.73 - 
(OD 1) No separation 67.15 135,252 
 Median (C) 73.29 118,885 
 Cluster (Y1, Y2) 70.38 108,590 
 Cluster (Y1, Y2, C) 72.91 118,993 
 LCM 73.35 40,268 
    
A&C Real separation 75.16 - 
(OD 1) No separation 54.70 533,029 
 Median (C) 65.26 322,549 
 Cluster (Y1, Y2) 61.65 379,683 
 Cluster (Y1, Y2, C) 64.65 338,483 
 LCM 78.93 139,993 
    
A&B Real separation 83.61 - 
(OD 2) No separation 73.28 151,038 
 Median (C) 76.75 121,264 
 Cluster (Y1, Y2) 75.93 119,387 
 Cluster (Y1, Y2, C) 76.22 124,400 
 LCM 85.75 51,232 
    
A&C Real separation 83.14 - 
(OD 2) No separation 63.22 507,703 
 Median (C) 69.29 372,090 
 Cluster (Y1, Y2) 68.14 386,773 
 Cluster (Y1, Y2, C) 68.32 389,718 
 LCM 85.87 45,663 
    
A&B Real separation 89.26 - 
(OD 3) No separation 78.75 180,309 
 Median (C) 80.36 158,268 
 Cluster (Y1, Y2) 79.99 160,646 
 Cluster (Y1, Y2, C) 80.20 159,799 
 LCM 90.76 29,598 
    
A&C Real separation 89.24 - 
(OD 3) No separation 70.49 511,481 
 Median (C) 73.45 429,212 
 Cluster (Y1, Y2) 72.86 446,596 
 Cluster (Y1, Y2, C) 72.95 438,210 
 LCM 90.15 16,511 
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Table 3. Descriptive statistics 

 

  Variable Units Mean Max. Min. Std.Dev. 
Totex Cost US$ 144,602,000 667,127,000 20,713,600 120,324,000 
Peak Load Output MW 6,173 23,111 380 5,533 
Electricity Delivered Output MWh 6,280,310 74,584,700 56,730 8,839,980 
Total Energy Output MWh 34,557,900 116,415,000 2,339,000 26,752,600 
Network Length Output Miles 4,064 16,292 1,087 3,253 
Minimum Temperature Weather °F -10.35 19.90 -59.80 16.51 
Wind Speed Weather Knots 6.84 9.60 4.63 1.01 
Precipitation Weather Inches 0.07 0.16 0.01 0.03 
Growth in Demand Other % 0.03 244.11 -74.96 17.72 
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Table 4. Parameter estimates for the Cobb-Douglas specification 

 

 LCM – CD 

  CLASS 1 CLASS 2 
Variable Coefficient t-ratio Coefficient t-ratio 

Constant 14.257 7.852 8.211 16.037 
ln PLit 0.808 4.853 0.144 3.109 
ln DEit 0.044 1.900 0.054 5.258 
ln TEit -0.261 -1.357 0.415 7.817 
ln NLit 0.184 2.038 0.136 6.192 
     
Sigma 0.380 22.982 0.119 11.332 
Log LF -39.666    
     

 

Prior class 
probabilities 0.444 0.556 
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Table 5. 

Parameter estimates for the Cobb-Douglas specification with separating variables 

 

 LCM – CD (Weather, Demand) 

  CLASS 1 CLASS 2 
Variable Coefficient t-ratio Coefficient t-ratio 

Constant 13.957 8.070 8.286 17.580 
ln PLit 0.800 4.907 0.166 3.881 
ln DEit 0.042 1.457 0.060 5.823 
ln TEit -0.237 -1.300 0.401 7.785 
ln NLit 0.182 2.085 0.123 5.133 
     
Sigma 0.381 22.078 0.111 11.382 
Log LF -26.726    
     

 

Prior class 
probabilities 0.479 0.521 

 

 

Estimated prior prob. for class membership 

Variable Coefficient t-ratio   
Constant -0.088 -0.416  
TMIN i -0.065 -3.001  
WIND i -0.373 -2.153  
PRCPi 11.910 1.535  
GDEMi 0.092 1.744  
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Figure 1. Average efficiency and percentage of success for the LCM 
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Figure 2. Efficiency scores obtained with LCM 

 

 
 

 

Figure 3. AIC and BIC for the different LCM 
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Figure 4. Efficiency scores obtained with different procedures 

 

 

Figure 5. Efficiency scores including environmental variables 
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APPENDIX 

 
Parameter estimates for the linear specification of the LCM 

 

 LCM - Linear 

  CLASS 1 CLASS 2 
Variable Coefficient t-ratio Coefficient t-ratio 

Constant 16,326,900 1.044 23,246,900 10.070 
PLit 22,756.088 12.640 3,442.459 4.990 
DEit 4.194 7.653 0.546 5.318 
TEit -0.698 -1.287 1.521 10.312 
NL it 6,211.166 3.343 4,234.141 6.327 
     
Sigma 57,039,600 15.028 16,185,400 22.864 
Log LF -7,580.103    
          

 

Prior class 

probabilities 0.444 0.556 

 


