
 
 
 

 

 

ECONOMIC DISCUSSION PAPERS 
 

 

 

 

Efficiency Series Paper 4/2014 
 
 

A latent class approach for estimating energy 
demands and efficiency in transport: An 

application to Latin America and the Caribbean 
 
 

Manuel Llorca, José Baños, José Somoza, Pelayo Arbués 

 

 

 

 
 
 

 

DDeeppaarrttaammeennttoo  ddee  EEccoonnoommííaa  
 

 

 

UUnniivveerrssiiddaadd  ddee  OOvviieeddoo  
 

 

 

 

 

 

Available online at:      http://economia.uniovi.es/investigacion/papers 



1 
 

A LATENT CLASS APPROACH FOR ESTIMATING ENERGY DEMANDS 
AND EFFICIENCY IN TRANSPORT: AN APPLICATION TO LATIN 

AMERICA AND THE CARIBBEAN 
 

Manuel Llorca* 
Oviedo Efficiency Group, Department of Economics, University of Oviedo 

 
José Baños 

Oviedo Efficiency Group, Department of Economics, University of Oviedo 
 

José Somoza 
Marine Research Centre, University of Havana 

 
Pelayo Arbués 

Oviedo Efficiency Group, Department of Economics, University of Oviedo 
 

8 October 2014 
 
Abstract 

In this paper, we use a stochastic frontier analysis approach to estimate demand 
functions for energy in the transport sector. The estimation of frontier functions allows 
us to obtain energy efficiency measures that are a robust alternative to the energy 
intensity indicators that are commonly used for international comparisons. Due to the 
likely unobserved heterogeneity among countries, we propose the use of a latent class 
model that allows to test for the existence of groups of countries with clearly 
differentiated demands that are associated with distinct price and income elasticities. 
This study is the first to use a latent class stochastic frontier approach in the estimation 
of energy demand functions. The proposed procedure is applied to Latin America and 
the Caribbean, where the transport sector represents a large share of the total energy 
consumption. 

These energy demand functions call for the inclusion of energy price in their 
estimation. As the transport of both goods and passengers implies the consumption of 
different types of energy, an index that aggregates various energy prices is thus required 
for the analysis. However, international agencies do not provide specific indicators of 
aggregate energy prices in transport for the majority of the countries analysed. For this 
reason, in this paper we propose the construction of a transitive multilateral index 
which, in contrast to those frequently presented by the aforementioned agencies, 
facilitates international comparisons over time. 
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1. Introduction 

Since the 1970s oil crisis, the measurement and control of energy efficiency has 
become an essential goal of the economic and energy policies of a large majority of 
countries, especially in those that import energy. This interest subsequently arose in the 
late 1980s as a result of the growing awareness of global warming. A key issue in the 
strategy of the countries that aim to reduce their energy consumption and mitigate their 
greenhouse gas emissions is the adoption of measures that improve the efficiency of 
energy use in all economic sectors and especially in those that are energy intensive, 
such as transport. 

Figure 1 shows that transport is the sector with the highest energy consumption 
in Latin America and the Caribbean. In recent decades, this sector used, on average, 
43% of the total energy consumption, followed by manufacturing at 37%, household 
consumption at 14% and the service sector at 6%. The Economic Commission for Latin 
America and the Caribbean (ECLAC, 2010) indicates that the transport of passengers 
and goods will increase in the future. Combined with the dissociated manner in which 
public policy on infrastructure and transport has been conducted, this will result in an 
increase in the future use of energy, which implies a significant amount of oil 
derivatives consumption in the near future. Nevertheless, little published information on 
the transport sector in Latin America and the Caribbean is available. It is thus necessary 
to conduct studies focused on the energy consumption of this sector that can help to 
mitigate the environmental sustainability issues that are mentioned in the “Millennium 
development goals” proposed by ECLAC (2005). 

[Insert Figure 1 here] 

Per capita energy consumption in Latin America and the Caribbean is currently 
low in comparison with other world regions. However, since the 1990s, it has 
experienced significant growth, as shown in Figure 2. This low per capita consumption 
does not necessarily indicate high efficiency in the use of energy, as a significant part of 
the population of these countries lack the funds to have access to a private car. In this 
context, the rapid development of the region in the medium term might lead to 
unsustainable increases in the energy consumption of the transport sector and to the 
associated emissions of greenhouse gases. For example, between 1990 and 2007, the 
vehicle fleet that was used in Brazil, Mexico, Chile and Colombia increased by 53 
million vehicles (the amount tripled), with 40% of this increase concentrated between 
2003 and 2007. Therefore, it is crucial to elaborate orderly development strategies that 
favour public transport1 and promote energy efficiency. 

[Insert Figure 2 here] 

Figure 3 shows the change in energy price in the transport sector between 1990 
and 2010. This price is a transitive multilateral index that the current authors have 
elaborated. It adds the weighted prices of the different types of energy that are 
consumed in transport (See Appendix). The scenario of low energy prices in the 1990s 
contrasts with the inflationary process that was experienced in the first decade of the 
21st century. This process also led many Latin American countries, especially those that 
were net importers of energy, to adopt programs to improve energy efficiency. These 
measures aim, on the one hand, to modernize public transport to incentivize its use, 

                                                 
1 The lack of public services can lead to inefficient individual consumption decisions. The deficit (in 
quantity, quality or both) in the public transport services, for example, incentivizes private transport, 
which may generate high costs for the user and cause contamination and congestion in the cities. 
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renovate the vehicle fleets, introduce biofuels as alternatives to oil, promote the use of 
hybrid and electric vehicles, and promote the use of trains and subways in certain 
activities. On the other hand, the infrastructure network should be improved in tandem 
with logistical solutions to the provision of services, such as the adoption of intelligent 
measures that optimize transport routes and favour intermodality (ECLAC, 2010). 

[Insert Figure 3 here] 

An additional issue that should be addressed is the review of subsidy policies on 
transport and on products derived from oil, with the aim of transmitting adequate 
signals to the economy and achieving improvements on energy efficiency. This goal has 
frequently clashed with the pressure that has been exerted by consumers from various 
countries who rally against increases in energy prices. In that sense, Latin American 
countries should introduce a fiscal, incentive and environmental regulations system 
similar to the ones that exist in other parts of the world, such as the European Union and 
the United States (Barros and Prieto-Rodríguez, 2008; Chavez-Baeza and Sheinbaum-
Pardo, 2014). 

To help achieve the goal of reducing energy consumption, various quantitative 
indicators that are related to the energy efficiency of each country have been developed 
and have been used in international comparisons. There is no single definition totally 
accepted for the concept of energy efficiency, both in terms of the economy as a whole 
or specifically the transport sector. However, Ang (2006) and Stead (2001) indicate that 
the most common practice has been to link this idea with some thermodynamic, 
physical-based and monetary-based indicators that relate energy consumption to 
measurements of the economic activity or energy services derived from this 
consumption. The most commonly used indicator is the ratio of energy consumed to 
Gross Domestic Product (GDP). This measure of energy intensity has the advantage of 
simplicity in its calculation and easy interpretation, thus leading to its continued use in 
international statistics of the International Energy Agency (IEA), the World Bank and 
the World Energy Council. Decreasing levels of this indicator represent, on average, a 
reduction in the energy that is required to generate a unit of national production. 
Therefore, energy intensity is simply the inverse of the energy productivity indicator. 
Nonetheless, the value of energy intensity can vary significantly over time due to the 
changes in the structure of GDP, which are difficult to assimilate into the concept of 
energy efficiency.2 Furthermore, these types of measures are not “relative”, i.e. do not 
allow cross-country comparisons for countries with better practices or the calculation of 
potential energy savings. 

The main goal of this paper is to adapt the methodological proposal of Filippini 
and Hunt (2011, 2012), for energy consumption in the transport sector of Latin America 
and the Caribbean. This adaptation is performed to obtain a relative measure of energy 
efficiency that overcomes the weaknesses of other indicators and can serve for 
international comparisons that are consistent throughout time. The measures of energy 
efficiency that are obtained are bounded and allow for the determination of potential 
energy savings given the characteristics of a country. Furthermore, the current study 
estimates various functions of frontier demand using a latent class approach. This type 
                                                 
2 The IEA (2014) recognises that the use of energy intensity as a proxy for energy efficiency can generate 
untrustworthy results. Despite significant interest in the measurement of energy efficiency, its calculation 
for the transport sector is a difficult task. This organization proposes indices of energy intensity for the 
sector that are calculated using various disaggregated indicators that are obtained from large quantities of 
information. Due to this requirement, it is impossible to calculate this measure for all Latin American and 
Caribbean countries. 
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of approach takes into account the potential existing heterogeneity among the countries 
analysed, obtaining different demands that are associated with specific price and income 
elasticities for different country groups. To the best of our knowledge, this study is the 
first to apply this type of methodology for both the transport sector and the Latin 
American countries.3 

This paper is organized as follows. In Section 2, we define the general demand 
for energy in the transport sector by providing a brief review of the existing literature. 
Additionally, we propose the use of a Stochastic Frontier Analysis (SFA) approach and 
the application of a latent class model. In Section 3, we present the database and the 
econometric specification of our models. The results of the estimations are presented in 
Section 4 and finally, Section 5 ends the paper with a summary and the presentation of 
conclusions. 

 

2. Energy demand of the transport sector 

Transport demand is derivative in nature, as the goal of moving goods and 
people is not to perform the journey but to reach a certain destination. In other words, 
demand is derived from the mobility of passengers and goods. This mobility, in turn, 
leads to energy or fuel demand, which is necessary for transport. 

The previous research in the literature on the modelling of energy consumption 
for transport can be clustered into works that apply econometric techniques, those that 
use artificial intelligence approximations, those that use multi-criteria analysis and those 
that employ simulation methods (see Limanond et al., 2011 or Suganthi and Samuel, 
2012 for a review). The first group includes multiple linear regression models 
(Limanond et al., 2011), partial least square regressions (Zhang et al., 2009) and the 
analysis of time series and cointegration (Samimi, 2003; Galindo, 2005; Sa’ad, 2010; 
Hao, 2011). The second group includes studies of artificial neural networks (Dreher et 
al., 1999; Murat and Ceylan, 2006; Limanond et al., 2011) and harmony search 
algorithms (Haldenbilen and Ceylan, 2005; Ceylan et al., 2008). Some studies have 
even combined the analysis of time series and fuzzy logic (Al-Ghandoor et al., 2012). In 
the prediction of energy consumption for vehicles, the use of multi-criteria analysis 
should be noted, such as in the works of Lu et al. (2008) and Lu et al. (2009). Lastly, 
the most prominently used simulation model has been the Long-range Energy 
Alternatives Planning System (LEAP), which allows planning alternative scenarios for 
energy demand in the transport sector. The works that utilized this method include 
Bauer et al. (2003), Manzini (2006), Pradhan et al. (2006) and Islas et al. (2007). 

Therefore, there is an extensive body of literature on the economics of transport 
that estimates various functions of energy consumption or the respective functions of 
fuel use for different types of vehicles. These studies have typically aimed at predictive 
purposes. The current study belongs to the line of econometric approximations of 
energy demand from the transport sector that calculates the price and income elasticities 
that are related to energy consumption (see, for example, Dahl, 1995). In their literature 
review, Graham and Glaister (2002) observe that, as a general rule, price elasticities that 

                                                 
3 The scarcity of empirical analyses in this context has been conditioned by the availability of statistics. In 
fact, in many Latin American countries, there is no formal link between institutions that are in charge of 
providing information on energy and transport. Consequently, in this paper, all variables that are relative 
to energy consumption are based on the author’s own work on the data provided by the Latin American 
Energy Organization (OLADE in Spanish). 
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are obtained in the short term are commonly between -0.2 and -0.3 and that those 
obtained in the long term are between -0.6 and -0.8. For the case of the income 
elasticities, they find that are often greater than one (between 1.1 and 1.3) in the long 
term and between 0.35 and 0.55 in the short term. The papers that are included in their 
review generally analyse Organization for Economic Cooperation and Development 
(OECD) countries. Wohlgemuth (1997) presents elasticities for several countries that 
are not OECD members. In terms of Latin America and the Caribbean, the elasticities 
for Mexico4 and Brazil are presented. In the long term, the income elasticities for 
Mexico are between 0.99 and 1.72 and the price elasticities are between -0.04 and -0.21. 
For the case of Brazil, the income elasticities are between 0.88 and 1.10 and the price 
elasticities are between -0.10 and -0.26. 

In general, in the traditional transport literature, energy demand is understood as 
a standard demand function. As previously mentioned, in the proposal that is presented 
below, a stochastic frontier function, which is similar to the production/cost functions 
that are commonly estimated in efficiency and productivity studies, is considered. 

 

2.1. A stochastic frontier approach for energy demand in transport 

A generic function of energy demand, which positively depends on income and 
inversely depends on prices, can be presented in the logarithmic form as follows: 

ln ln ( , , , )Q f P Y X β ε= +      (1) 

where Q represents the quantity of the demanded energy, P is the price of energy, Y 
represents income, X refers to other control variables, β are the parameters that are 
associated with the variables that are included in the model and can be directly 
interpreted as elasticities, and ε is the random error, which is commonly assumed to 
follow a normal distribution with a mean of zero and constant variance, σε

2. 

This assumption for the stochastic part of the function indicates that the 
researcher assumes that any deviation in energy demand that is predicted by the 
deterministic part of the model is a result of random shocks such as measurement errors 
or uncertainty. Therefore, this model can be estimated using the common estimator of 
Ordinary Least Squares (OLS), which allows for consistent and unbiased estimates of 
the model parameters under certain assumptions. 

Although this approach has traditionally been used in empirical work, it does not 
provide direct information on one of the main issues of interest in the field of energy 
consumption in recent decades, i.e., energy efficiency. As stated in the previous section, 
there has been debate about the definition and measurement of this concept. In essence, 
this concept attempts to capture the relation between energy consumption and the 
production or service that is derived from this consumption. It should be measured in 
such a way that an improvement in the indicator implies a lower use of energy to 
produce a certain amount of output in a given economy. 

However, in contrast to the research in the energy economics literature, the 
production economics field has developed various approaches that allow for the 
inclusion of efficiency in the activities of companies (or countries) within the random 
part of the model, without the need to add new variables or rely on other indicators. 

                                                 
4 Although in the paper of Wohlgemuth (1997) Mexico is included in the group of countries that are not 
members of the OECD, this country was already a member since May 18, 1994. 
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Based on the efficiency and productivity literature, Filippini and Hunt (2011, 2012) 
suggest the use of a parametric approach of stochastic frontiers to estimate aggregate 
energy demand functions that are derived from a cost function in the provision of 
energy services. In this cost function, energy is an input. Thus, following Shephard’s 
lemma and deriving the function based on the price of energy, the demand function of 
this input can be obtained. The main goal of those authors is to obtain measures of 
energy efficiency that can be used as alternatives to the typical indicators of energy 
intensity. These efficiency measures are based on the comparison of the energy 
consumption of the countries with respect to the minimal energy consumption predicted 
by the frontier, which takes into account the optimizing behaviour of companies and 
individuals. 

The basic model that is estimated by those authors is the standard SFA model 
that was initially proposed by Aigner, Lovell and Schmidt (1977) (hereinafter ALS), but 
they also estimate other models developed in the efficiency and productivity literature, 
such as the True Random Effects model (TRE) presented by Greene (2004, 2005a, 
2005b) or the formulation of Mundlak (1978) that was proposed for an estimator of 
random effects by Farsi et al. (2005). The standard ALS model can be presented for the 
case of energy demand as follows: 

ln ln ( , , , )Q f P Y X v uβ= + +     (2) 

where the random term can be decomposed in v, which is a normal distribution that is 
analogous to that represented by ε in equation (1), and u, which is an asymmetric error 
that follows a half-normal positive distribution to capture the inefficiency of energy 
demand. In the SFA literature, it is typically assumed that u is a negative half-normal 
(or truncated normal) if the function that is estimated is a production function with a 
maximum achievable production and positive if the estimated function is a cost function 
with an achievable minimum cost. In the case of a frontier demand, such as the 
proposed by Filippini and Hunt (2011, 2012), efficient energy demand represents a 
minimum feasible consumption. Thus, the approach that is used is the same as that for a 
cost function. 

Based on the conditional mean of the inefficiency term proposed by Jondrow et 
al. (1982), the efficiency level for each observation can be obtained by applying the 
following expression: 

( )
*

ˆexpit
it it

it

Q
EF u

Q
= = −     (3) 

where Qit
* represents the aggregate energy demand of the country i in period t on the 

frontier, i.e., the minimum level of energy necessary for this economy to produce its 
output level; Qit is the aggregate energy demand that is actually observed in this 
country; and EFit, is thus a measure of efficiency that is bounded between zero and one. 
The difference between 1 and this measure of inefficiency shows the amount of energy 
consumption that could be reduced in this country (expressed as a decimal fraction) 
while maintaining the same level of transport services. Therefore, these are relative 
measures that, in contrast to energy intensity indicators, allow for direct comparisons 
between countries throughout time. 

To explain the concept of stochastic frontier, in Figure 4, we compare various 
approaches that could be used in the econometric estimation of energy demand 
functions. The blue line shows the energy demand function that is proposed in Equation 
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(1) as estimated using OLS. With this approach, we obtain a function with a negative 
slope in relation to the prices that pass through the mean of the observed values. A basic 
frontier model that would allow the identification of countries’ efficiency would simply 
assign the whole estimated error (i.e., ε̂ ) that was obtained from applying OLS to the 
inefficiency. This simple approach does not allow the separation of inefficiency from 
noise because, by definition, a deviation from the minimum possible consumption that 
can be achieved is attributed to inefficiency. This type of frontier is typically known as 
deterministic frontier and can be obtained by moving the intercept of the OLS 
estimation until all observations are to the right of the estimated frontier. This form of 
frontier attainment is known as Corrected Ordinary Least Squares (COLS). In other 
words, it allows for the attainment of a function that envelops all observations. In the 
current case, it is represented by the blue dashed line. Although Filippini and Hunt 
(2011, 2012) do not represent it graphically, the demand that is estimated when an SFA 
approach is used, is a function such as that represented by the green line. The use of this 
type of methodology allows for certain observations to be to the left of the estimated 
frontier due to the existence of negative random shocks, although the majority of 
observations are to the right of the frontier due to the inefficiency effect. 

[Insert Figure 4 here] 

Figure 5 represents the type of frontier that is estimated when using the SFA 
approach to obtain energy demand and how the Overall Random Error (ORE), i.e., the 
stochastic part of the model (v+u), can be decomposed into inefficiency and noise5 in 
the various possible cases. As shown for observation 1, an observation lies only at the 
frontier that we have presented graphically when the inefficiency term compensates the 
negative value of the noise term (or both are equal to zero). By estimating a stochastic 
frontier demand, it is assumed that the majority of observations will be located to the 
right of the frontier. This can be due to an effect either of inefficiency or noise (if it is 
positive and inefficiency is equal to zero), as in observation 2, or to both of these effects 
together, as is the case in observation 3 (in which both are positive) and 4 (in which 
only one part of the inefficiency is compensated by the negative value of the noise 
term). Nevertheless, as this is not a deterministic frontier, some observations can lie to 
the left of the estimated frontier, indicating that these countries use less energy than is 
predicted by the frontier for a specific price. Observation 5 is to the left of the estimated 
frontier because there is no inefficiency and the error term is negative. In observation 6, 
even with the existence of inefficiency, the negative noise term exceeds the value of u 
and thus, this observation is “super-efficient”. 

[Insert Figure 5 here] 

 

2.2. Treating unobserved heterogeneity with a latent class model 

Based on the influential work by ALS, a broad body of literature has been 
developed to attempt to precisely measure the efficiency of the studied individuals 
(firms, countries, etc.) with various methodological proposals that allow for solving 
specific problems that affect the obtained results. One of the main weaknesses of the 

                                                 
5 The random component v includes events which cannot be controlled by transport companies or the 
individuals who use the private vehicle, such as those caused by the weather or natural disasters. Thus, by 
considering for Latin American countries the average amount of days per year when their transport 
infrastructure (roads, bridges, etc.) is cut off due to these causes, a deviation greater than (lower than) this 
value in a given year would produce a positive (negative) shock. 
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basic model that is proposed in equation (2) is that despite the fact that its specification 
allows to control for random noise, the presence of unobserved heterogeneity between 
the studied individuals can bias the efficiency measures (see Greene, 2005a, 2005b). 

This heterogeneity is typically considered an unobserved determining factor of 
the estimated production or cost frontier, and inefficiency is interpreted as the distance 
to the frontier once heterogeneity has been taken into account. Multiple empirical 
strategies, each with specific advantages and drawbacks, have been developed to solve 
this problem. A first approach that can be applied and that is commonly used as an 
analogy to the traditional econometric literature is the use of a specification that 
includes individual effects (fixed or random), as is the case for the True Fixed Effects 
(TFE) and TRE models proposed by Greene (2004, 2005a, 2005b). These models 
include a series of country-specific intercepts that are simultaneously estimated with 
remaining parameters of the model and allow the distinction between unobserved 
heterogeneity (which does not change over time) and inefficiency. In this approach, 
unobserved heterogeneity additionally enters the model as an individual-specific 
intercept and, therefore, is a neutral or parallel movement of the function that maintains 
the remaining common parameters for all individuals. In the case of energy demand, as 
estimated in the current paper, this implies that specific characteristics of this demand, 
such as their price and income elasticities, are the same for all countries analysed. This 
assumption is difficult to justify for such a heterogeneous region as Latin America and 
the Caribbean. If there are different groups of countries in the sample with different 
demand characteristics, i.e., different parameters that are associated with the variables, 
we should estimate a model that allows us to take this feature into account. 

An alternative approach to control for unobserved heterogeneity that seems to be 
adequate for the current context is the Latent Class Stochastic Frontier Model 
(LCSFM), such as that proposed by Orea and Kumbhakar (2004) and Greene (2004, 
2005b). This model allows for estimation of different parameters for countries that 
belong to distinct groups and share similar characteristics. The characteristics of the 
countries in each group differ and thus, given that the countries that belong to the same 
class share the same set of parameters, this approach controls for the existing 
heterogeneity between the groups. In other words, the latent class procedure allows us 
to control for heterogeneity in the slopes (the coefficients of the estimated variables), 
which is unobserved and associated with country groups. The estimation of a model of 
this type implies the existence of J groups of countries, which demonstrate differences 
between themselves in terms of their behaviour function: 

( )ln ln , , ,it it it it j it itj j
Q f P Y X v uβ= + +     (4) 

where the subindex j = 1,…,J refers to class, βj is the vector for the parameters that are 
estimated for class j, and the random term, as in prior models, is composed of 
vit|j~N(0,σv

2|j) and uit|j ~N+(0,σu
2|j), which are also specific for each class. The estimation 

of this model implies the maximization of the overall likelihood function from Equation 
(4), which is the sum of the likelihood functions at each point of the sample weighted by 
the probability of belonging to each class. This, in turn, is parameterized as a 
multinomial logit model. Additional variables can be included in the probabilities of 
class membership. If such variables are not included, the model uses the goodness of fit 
of each class to identify the distinct groups.6 

                                                 
6 The estimation procedure of this type of model can be found in detail in Orea and Kumbhakar (2004) 
and Greene (2005b). 
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A necessary condition for the identification of the parameters of class 
membership probabilities in these models is that the sample has been generated by 
various behavioural functions or different error terms. In other words, J, the number of 
classes, is considered to be given. If J is greater than the “actual” number of classes and, 
thus, we attempt to estimate a model with “too many” classes, the model will be 
overspecified and the model parameters will not be able to be estimated. Thus, the 
researcher should select the number of classes J a priori. Various statistical tests can be 
used to choose the appropriate number of classes. The most commonly used tests are the 
Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and 
some of their variants. For these tests, the selected model is that with the lowest 
criterion value. Both of these criteria (and those derived from them) seek a balance 
between the lack of fit (by estimating a model with a small number of classes) and 
overfitting (by estimating a model with excessive classes). With that aim, apart from 
incorporating the value of the likelihood function, these criteria penalize (with different 
weights) the increase in the number of parameters that are estimated in each model. The 
BIC most severely penalizes the overfitting and tends to favour more parsimonious 
models than does the AIC. In this paper, we use various criteria to select the preferred 
model. 

After the model estimation, the posterior probabilities can be obtained to assign 
each country to a specific class and calculate the efficiency measures. One strategy to 
assign countries is assuming that the country belongs to a class to which it may belong 
with the highest probability. Therefore, only one of the demands is taken as the 
reference frontier to obtain the (in)efficiency measure for each country.7 An alternative 
method, as Greene (2005b) proposes, is to take all classes into account when calculating 
country efficiency, i.e., adding the specific efficiencies of belonging to each of the 
classes weighted by the probability of belonging to them. However, in this article, we 
use the first approach with the understanding that groups of countries actually have 
different demands. 

 

3. Data and econometric specification 

This section presents the data and the econometric specification of the models to 
be estimated that were presented above. Incomplete panel data are used, for the 1990-
2010 period, from the following 24 countries in Latin America and the Caribbean: 
Argentina, Barbados, Bolivia, Brazil, Chile, Colombia, Costa Rica, Ecuador, El 
Salvador, Granada, Guatemala, Guyana, Honduras, Jamaica, Mexico, Nicaragua, 
Panama, Paraguay, Peru, Dominican Republic, Suriname, Trinidad and Tobago, 
Uruguay and Venezuela.8 The econometric specification of the basic model (ALS) is the 
following: 

                                                 
7 In this paper, we estimate the models assuming a panel data structure, i.e. the probabilities of belonging 
to each class are constant over time for each country. Therefore, each country is assigned to a single 
group throughout the sample period. 
8 The sample is composed of a total of 503 observations. The observation for Barbados in 2010 is not 
included because it is unavailable. Of the 27 country members of OLADE, Belize and Haiti are not 
included due to lack of information. Furthermore, Cuba is not included in the sample, as the inclusion of 
this country in the analysis does not allow for the convergence of estimates in some models because the 
estimated function does not fulfil the convexity property and, in other models, the obtained values for 
efficiency are practically zero. Due to these results, the observations for this country are considered to be 
outliers and, thus, we exclude them from the sample. 
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2

ln ln ln ln

1
           ln

2

it Y it POP it P it ST it

DEN it t tt it it

Q Y POP P ST

DEN t t v u

α β β β β

β β β

= + + + + +

+ + + +
  (5) 

where Q, Y, P, v, u and β are defined as in the prior equations. Analogously to Filippini 
and Hunt (2011, 2012), we include other explanatory control variables such as POP, 
which represents the population; ST, which is the share of the transport sector in the 
economy; DEN, population density; and t, the time trend, which is also introduced 
squared.9 

Table 1 shows the descriptive statistics of these variables. It should be 
mentioned that the dependent variable, Q, represents the final energy consumption of 
the transport sector, expressed in thousands of toe. It is obtained by adding the total of 
the energy consumption in internal transport10 for each country for both passengers and 
goods. The types of energy that are included in this aggregate are natural gas, liquid gas, 
electricity, gasoline (which includes biofuel), kerosene (jet fuel), diesel oil and fuel oil. 
Y, is the GDP of each country and is measured in millions of 2005 US dollars at 
Purchasing Power Parity (PPP). In international analyses, the use of this exchange rate 
is indispensable for adequately comparing the GDP across countries. POP is the mean 
population for each country, as measured in thousands of inhabitants. P is an energy 
price index in the transport sector, calculated as the weighted sum of mean prices of the 
types of energy used in the sector. Because OLADE and other energy international 
agencies do not provide any price index for the total of the countries of Latin America 
and the Caribbean, we have calculated a transitive multilateral price index that allows 
for consistent comparisons between countries throughout the sample period (see 
Appendix). ST is the ratio of Gross Value Added (GVA) in transport and the total GVA 
for each economy, and it is expressed in percentages. Lastly, DEN reflects the ratio 
between the population in thousands of inhabitants and the area of each country in km2. 
This variable and the income per capita (Y/POP) are also included in the LCSFM model 
within the class membership probabilities to help with the segmentation of the sample.11 
Concerning the data sources, the variables Q, P and POP are derived from the Energy-
Economic Information System of the OLADE. The variables ST and DEN are obtained 
from ECLAC. The variable Y is obtained from the data in the Penn World Table (PWT 
7.1) presented by Heston et al. (2012). 

[Insert Table 1 here] 

If we pay special attention to the quantity and price of the consumed energy (i.e., 
the most relevant variables in a demand analysis apart from income), significant 
differences between countries can be observed. Figure 6 shows that energy consumption 
in transport for Latin America and the Caribbean evidenced a significant dynamism 
during the period analysed, with an average annual growth of 4.1%, which is more than 
double that of the growth in the UE-25 (1.3%) for the same period. Nevertheless, the 
                                                 
9 However, in this paper, we do not include meteorological variables because we analyse energy demand 
in the transport sector and such variables do not play a relevant role as in the modelling of total energy 
demand or the residential sector of a country. However, possible persistent meteorological differences 
would be controlled for in the latent class model, which precisely allows the treatment of unobserved 
heterogeneity. 
10 Internal transport includes domestic aviation, domestic shipping, roads and railways and excludes 
international maritime and air transport. 
11 The lack of homogenous information or a sufficient timeframe on the transport infrastructure, stock of 
vehicles, distances travelled or goods and passenger traffic indicators, impedes the inclusion of these 
types of variables in the estimated demands. 



11 
 

growth rates were quite different among countries, with Jamaica and Suriname 
displaying the highest growth and Argentina and Colombia presenting the lowest 
growth for the period of analysis. 

[Insert Figure 6 here] 

In Figure 7, we represent the time evolution of the price index for the group of 
countries that evidenced the greatest differences in 2010. It should be noted that during 
the years analysed, Venezuela persistently maintained the lowest prices. Furthermore, it 
is noteworthy to mention the low cost of energy in Ecuador and Mexico. By contrast, 
the highest prices are found in Colombia, Bolivia, Brazil and Argentina. Furthermore, 
we observe that the price index that is used in this paper does not require that its own 
value be equal for all countries in a base year, which is required when standard indices 
such as Laspeyres or Paasche are applied. As discussed in the Appendix, this facilitates 
a better fit of the estimated energy demand functions. 

[Insert Figure 7 here] 

 

4. Estimates and results 

Table 2 shows the results of the basic ALS model estimation. As previously 
mentioned, the model assumes the existence of a single demand and, therefore, does not 
allow for different elasticities for the various countries in the sample. All of the 
variables that are included in the models are statistically significant at 99% (except the 
time trend squared) and have the expected signs. The values of the income and price 
elasticities are 0.81 and -0.23, respectively. These elasticities are found within the value 
ranges that are obtained in the energy demand in transport papers, as discussed in 
Section 2. The coefficient of the population variable has a positive sign, which indicates 
(as expected) that a population increase leads to, ceteris paribus, an increase in the 
energy demand. A similar interpretation can be made for the share of the transport 
sector in the economy, which can be understood as a proxy for the degree of transport 
development. It can be expected that a more developed sector results in greater welfare 
for society, which is achieved through greater energy consumption. However, density 
presents a negative sign, indicating (as expected a priori) that the countries that are more 
densely populated have, ceteris paribus, lower transport energy demand due to the 
smaller average distances that companies and individuals travel. After controlling for 
the remaining variables in the estimation, the positive sign of the time trend shows that 
energy consumption increased throughout the sample period (as shown in Figure 2), 
which may indicate technical regress in the sector.12 The mean value of efficiency is 
87.4%. Nevertheless, great variability is found among the observations, with minimum 
and maximum values of 66.2% and 94.7% respectively.13 

                                                 
12 This model has alternatively been estimated by including a set of time dummies that capture the non-
linear evolution of energy consumption over time. Nevertheless, we prefer the inclusion of a time trend 
and its square, as it allows the estimation of a latent class model without renouncing the inclusion of the 
time effect in the model. 
13 A reviewer’s suggestion that the inefficiency in our model might include a behaviour that would be the 
consequence of low energy prices in certain countries led us to estimate a heteroscedastic model of the 
type proposed by Reifschneider and Stevenson (1991), Caudill and Ford (1993) and Caudill, Ford and 
Gropper (1995). The coefficients that are estimated with such a model for the variables in the frontier are 
practically identical to those obtained in the ALS model, and the price is not statistically significant in the 
inefficiency term. The values of the efficiencies that are obtained in this heteroscedastic model are similar 
to those obtained in the ALS model, with a 96% correlation between the two measures. 
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[Insert Table 2 here] 

Table 3 shows the results of the LCSFM models for two and three classes14, 
which include separating variables in the probabilities of class membership. If we 
analyse the prior probabilities of the two-class model, the separating variables (income 
per capita and density) are not statistically significant. Thus, this model is equivalent to 
a model that does not include separating variables. However, these variables are 
significant in the three-class model. These variables’ signs and values indicate that 
countries with higher income per capita and lower population density tend to be 
assigned to class 1 and, to a lesser degree, to class 2. 

[Insert Table 3 here] 

Figure 8 shows the different information criteria that are used as selection tests 
to choose the preferred model: the traditional AIC and BIC and some of their variants, 
the modified AIC criterion (AIC3), the corrected AIC (AICc), the AICu and the 
consistent AIC (CAIC), which can be considered a variation of the AIC and the BIC.15 
As mentioned in the previous section, all of these criteria are based on the maximum 
value of the likelihood function, which is obtained by estimating each model. These 
criteria only differ in that they penalize the increased number of parameters that are 
estimated for each model with different weights. The model with the best fit is that with 
the lowest criteria value. All of the presented criteria show a clear improvement in the 
fitness of the estimates when unobserved heterogeneity is addressed in the model 
through a latent class approach. Although a great improvement can be observed when 
moving from the ALS model to the LCSFM model with two classes (all criteria present 
a lower value), this heterogeneity is captured to an even greater extent by a three-class 
model. For the case of LCSFM models, the criteria values are also shown when these 
models are estimated without the inclusion of separating variables, although the 
estimated parameters are not presented in this paper. In the model with two classes, no 
improvement is observed when separating variables are included. By contrast, in the 
model with three classes, these variables have a relevant influence. This three-class 
model is the one that fits best to the characteristics of our data and, thus, we consider it 
to be the preferred choice. 

[Insert Figure 8 here] 

Table 3 shows that the majority of variables in these models are significant and 
have the expected signs, as in the ALS model. The preferred three-class model shows 
large differences in the coefficients between the classes for most of the variables. For 
example, the population variable coefficient varies between 0.247 and 0.742, the share 
of the transport sector in the economy is only significant for class 1, population density 
positively affects16 energy consumption in group 2 and negatively affects it in group 1, 
and although all of the classes demonstrate a positive time trend, this growth in energy 
consumption is increasing in class 2 and decreasing in class 3 according to the sign of 
the square term in both cases. 

                                                 
14 The model estimates with higher numbers of classes do not converge. 
15 Additional details on these criteria can be found in Fonseca and Cardoso (2007). 
16 As previously mentioned, a negative coefficient for DEN is expected because this variable mainly 
captures the effect of greater energy consumption as the territory of a country increases given its 
population. However, the coefficient of this variable is positive in class 2 of the latent class model. This 
result does not invalidate our intuition on this variable, as this ratio simply includes population divided by 
area and does not incorporate the degree of urbanization or whether the population is distributed 
homogeneously in the territory, a circumstance that may condition this result for this class. 
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The most relevant variables in demand analysis are income and price. As 
previously mentioned, the latent class model allows us to identify three classes with 
elasticities that clearly differ. The most inelastic demand for income can be found in 
class 2 (0.179), followed by class 1 (0.566) and finally, the most elastic class is 3 
(0.649). The differences in price elasticities of the demand are also evident if we 
represent the data from the sample without performing any type of estimation and only 
use the partition of the sample that is generated by the preferred three-class model, as 
can be shown in Figure 9.17 This figure shows that the demand of class 1 has the 
steepest slope and corresponds to the group with the lowest elasticity (-0.161) in the 
estimates. This group includes Argentina, Brazil, Chile, Ecuador, Guyana, Mexico, 
Paraguay, Suriname, Trinidad and Tobago and Venezuela. The demand of class 2 
corresponds to the group of intermediate elasticity (-0.288) and is composed of 
Barbados, Bolivia, Colombia, Costa Rica, Jamaica and Panama. Finally, class 3, with 
the flattest slope in the graph, is the most elastic in the estimates (-0.407) and includes 
El Salvador, Granada, Guatemala, Honduras, Nicaragua, Peru, the Dominican Republic 
and Uruguay. This figure also represents the single demand that would be obtained if 
we did not take into account the heterogeneity between countries, thus obtaining a 
biased demand with an intermediate slope between class 2 and class 1, which would 
correspond to the price elasticity value obtained from the ALS model (-0.229). 

[Insert Figure 9 here] 

The mean efficiencies that are obtained in each class are around 95%, and the 
minimum value is consistently greater than 80%. These results indicate that the groups 
are more homogenous than when one single demand is estimated. These results reflect 
that more efficient countries can reduce their energy consumption up to 5% and that the 
less efficient countries have a margin of up to 20%.18 The estimation of this latent class 
model allows us to identify the most efficient countries in each class (on average for the 
period considered). The remaining countries in each group, given their similar 
characteristics, should attempt to imitate these most efficient countries’ energy policies. 
The two countries with the greatest energy efficiencies are Brazil and Mexico in class 1, 
Barbados and Colombia in class 2, and El Salvador and Guatemala in class 3.19 

                                                 
17 In this figure, we present price to energy divided by income. This consideration allows us to 
“relativize” the weight of income and isolate, to a certain degree, the price effect on demand, which is the 
current aim. On the other hand, logarithms in the units of both axes are calculated to reduce the 
measurement scale and facilitate the representation of the demand. 
18 These potential savings are however obtained without taking into account possible “rebound effects”. 
This phenomenon basically captures the idea that part of the savings from increases in the efficiency level 
in the use of energy can be offset by increases in the demand for energy services derived from the 
marginal cost reduction of those energy services. This concept has recently received great attention in 
energy studies and especially in transportation (see for instance, Greene et al., 1999; Small and Van 
Dender, 2007; or Hymel et al., 2010). 
19 The reference countries for each of the demands seem to correspond to the countries that, according to 
ECLAC (2010), have adopted distinctive measures for the improvement of public transport in their cities. 
In this report, it is highlighted the Rapid Transit Bus (RTB) system implementation in Curitiba (Brazil). 
This system was started in 1972 as part of a general policy of urban planning. Other noted examples are 
the RTB TransMilenio, which has been developed since 2000 in Bogota (Colombia). The innovations of 
this system have made it the most solid RTB of the world and have led it to develop an extension plan of 
this system to seven additional cities. In Mexico City (Mexico), an RTB system has been implemented, 
named Metrobús, as a complement to the extensive subway system of the city. In Guatemala City 
(Guatemala), a trans-urban system was developed in 2009 with the aim of improving efficiency and 
reducing contamination indices of the transport sector in the city. 
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As mentioned in the introductory section, energy indicators are typically used to 
measure energy efficiency in countries. The most commonly used indicator of energy 
intensity is the ratio of energy consumption to GDP in a country. Table 4 shows the 
value of this indicator for the transport sector of each country and presents a ranking of 
“energy intensity”. The countries with a lower ratio of energy consumed in transport to 
GDP are identified according to this indicator as those that are the most energy efficient. 
The table also shows the mean efficiencies that are obtained for each country with a 
frontier demand such as the estimated demand.20 The correlation coefficients of both 
measures for each country are in some cases, such as the Dominican Republic (-0.982) 
and Trinidad and Tobago (-0.986), quite high and negative. This result indicates, as 
expected, that energy efficiency improvements are associated with a drop-offs in the 
energy intensity indicators. Although the correlation of these measures is high, on 
average, it is low in some countries (such as Brazil and Colombia). Furthermore, it is 
positive in two countries (Chile and Venezuela), indicating that the evolution of energy 
intensity indicators is associated with circumstances other than energy efficiency. Using 
the Spearman’s rank correlation coefficient, we observe that although the rankings that 
are obtained by alternatively applying the criterion of energy intensity and efficiency of 
an energy demand model can differ (for example, Barbados and Trinidad and Tobago 
fall by 10 places, and Panama moves from 15 to 3 when estimating a frontier model), on 
average these rankings are similar, with an approximately 70% correlation between 
them. In summary, these results seem to confirm that the efficiency measures that are 
derived from the estimation of energy demand frontier models are more appropriate 
than those that are provided by energy intensity indicators. 

[Insert Table 4 here] 

 

5. Conclusions 

In this paper, we estimate stochastic frontier demand functions to measure the 
level of energy efficiency of the transport sector in Latin America and the Caribbean by 
using panel data from 24 countries for the 1990-2010 period. The adopted approach 
constitutes a novel contribution to energy demand studies of the sector in this region, 
conferring great importance to the presented results. 

Due to the different types of energy that are used in the transport sector, it is 
necessary to employ an index that aggregates the set of energy prices for the estimation 
of these demands. International energy agencies do not provide a price index for all of 
the countries in the sample. Thus, we construct a transitive multilateral index, which 
allows for consistent comparisons of energy price among countries throughout time. 
The construction of this price index is a relevant issue often avoided in these studies. 

The estimated models are a basic stochastic frontier one and diverse latent class 
models that lead to obtaining differentiated demands. These models allow us to identify 
the reference countries in an international comparison of energy efficiency. The results 
indicate that the specification that best fits an energy demand is a model in which three 
classes are estimated using income per capita and population density as class-
identifying variables. In this model, important differences in income and price 
elasticities can be observed. Specifically, countries with higher income per capita and 

                                                 
20 For the comparisons with the rankings that are obtained based on energy intensity to make sense, the 
efficiency values that are shown in this table are obtained using the ALS model, as this is the only 
estimated model that assumes the existence of a single frontier. 



15 
 

lower population density have a higher probability of having a more inelastic demand in 
terms of price. 

The estimation of the latent class model allows us to identify countries that have 
successfully implemented programs of improved public transport in some of their cities. 
The remaining countries of each class should follow the example of these countries and 
perform the extension or adaptation of the national transport sector policies 
implemented in the most efficient areas of the region, with the aim of improving energy 
efficiency and reducing the levels of urban contamination. Furthermore, general 
improvements in fuel efficiency and the transfer from private vehicle use to public 
transport ought to be additionally considered. 

On the other hand, this paper shows that the commonly used indicators of energy 
intensity cannot consistently be used as a reasonable reference for energy efficiency in 
the transport sector. Using efficiencies that are obtained through the frontier approach, 
we find that although the mean efficiency is relatively high, there is a margin for energy 
consumption savings and, thus, for a reduction of greenhouse gas emissions. Some 
measures that can be adapted for this purpose are as follows: correctly assign energy 
prices, plan the infrastructure and land use jointly to minimize distances, balance the 
modal distribution, establish fiscal incentives for the use of lower consumption engines, 
develop fuels with reduced levels of carbon and implement awareness programs that 
focus on the transformation of transport use toward rational and environmentally 
sustainable habits. 

Finally, according to the “Jevons Paradox”, it is possible that increases in energy 
efficiency do not involve a reduction in energy consumption and hence the energy 
savings predicted in the current model are not possible to reach. That situation, also 
called “back-fire”, is a particular case of the phenomenon known as “rebound effect”. 
This concept states that part of the savings from increases in the efficiency level in the 
use of energy can be offset by increases in the demand for energy services derived from 
the marginal cost reduction of those energy services. In other words, the increased 
efficiency in the use of a resource does not necessarily indicate a directly proportional 
decrease of total consumption. The rebound effect concept should be considered in 
future research that uses frontier approaches for the estimation of energy demands. 
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Table 1. Descriptive statistics 

 

Variable Units Mean Std. Dev. Max. Min. 
Q Thousands of toe 6,141 12,434 69,384 18 
Y Millions of US Dollars (2005) 164,968 339,168 1,800,000 713 
POP Thousands of inhabitants 20,517 38,114 195,498 91 
P Index 174.56 108.64 850.66 3.76 
ST % 4.02 1.59 12.74 1.07 
DEN Thousands of inhabitants / km2 0.10 0.14 0.63 0.00 
 

 

 

Table 2. Standard frontier demand model 

 

 ALS model 
Variable Coeff.  t-ratio 
Intercept 7.098 ***  405.450 
ln (Y) 0.810 ***  39.720 
ln (POP) 0.182 ***  8.834 
ln (P) -0.229 ***  -15.138 
ST 0.047 ***  7.103 
ln (DEN) -0.096 ***  -12.031 
t 0.013 ***  6.960 
½ t2 -0.001  -1.537 

    
σ = (σv

2+σu
2)(1/2) 0.257 ***  590.578 

λ = σu/σv 0.886 ***  7.411 
σv 0.192   
σu 0.170   
    
Log LF 52.689 

Significance: * p<0.1, ** p<0.05, *** p<0.01 
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Table 3. Frontier demands with latent class including separating variables  

 

 LCSFM with two classes  LCSFM with three classes 
  Class 1 Class 2  Class 1 Class 2 Class 3 
Variable Coeff.  t-ratio Coeff.  t-ratio  Coeff.  t-ratio Coeff.  t-ratio Coeff.  t-ratio 
Intercept 7.180 ***  271.915 6.903 ***  371.389  7.367 ***  195.898 7.091 ***  192.733 6.894 ***  522.491 
ln (Y) 0.784 ***  24.069 0.637 ***  35.489  0.566 ***  22.754 0.179 ***  3.687 0.649 ***  35.921 
ln (POP) 0.188 ***  5.491 0.280 ***  17.498  0.431 ***  16.176 0.742 ***  16.154 0.247 ***  11.754 
ln (P) -0.188 ***  -17.045 -0.175 ***  -5.417  -0.161 ***  -13.869 -0.288 ***  -13.057 -0.407 ***  -10.379 
ST 0.094 ***  8.745 0.037 ***  7.048  0.044 ***  4.966 0.002  0.307 -0.008  -0.811 
ln (DEN) -0.067 ***  -5.137 -0.046 ***  -6.349  0.007  0.714 0.125 ***  6.868 -0.030 ***  -4.016 
t 0.006 ***  2.774 0.016 ***  8.642  0.009 ***  4.985 0.042 ***  16.986 0.030 ***  12.527 
½ t2 0.000  0.426 -0.003 ***  -5.835  0.000  -0.505 0.003 ***  5.718 -0.001 ***  -2.720 
 

   
             

σ = (σv
2+σu

2)(1/2) 0.246 ***  12.009 0.171 ***  11.022  0.166 ***  7.336 0.112 ***  5.391 0.135 ***  12.703 
λ = σu/σv 2.961 ***  2.974 2.320 ***  3.147  1.003 * 1.932 0.999   1.401 3.040 ***  3.937 
σv 0.079   0.068    0.117   0.079   0.042   
σu 0.233   0.157    0.118   0.079   0.128   
                 
Class membership probabilities              
                 
Intercept 0.236  0.507 - - -  1.036  1.237 0.736  0.870 - - - 
ln (Y/POP) 0.639  0.674 - - -  4.293 ** 2.250 3.082 * 1.770 - - - 
ln (DEN) -0.543  -1.397 - - -  -2.090 ** -2.485 -1.005  -1.387 - - - 
                 
Prior Prob. 0.559 0.441  0.477 0.354 0.169 
Log LF 281.782  398.356 

Significance: * p<0.1, ** p<0.05, *** p<0.01
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Table 4. Country ranking using energy intensity and energy efficiency 

 

Country 
Indicator 

(Energy/GDP) 
Frontier demand 

Correlation 
(EI Vs Eff.) EI Ranking Eff. Ranking 

Argentina 0.037 14 0.845 19 -0.897 
Barbados 0.019 1 0.885 11 -0.938 
Bolivia 0.042 19 0.869 15 -0.883 
Brazil 0.034 12 0.872 14 -0.241 
Chile 0.044 20 0.844 20 0.161 
Colombia 0.032 8 0.896 7 -0.061 
Costa Rica 0.032 9 0.875 13 -0.720 
Ecuador 0.055 22 0.828 22 -0.962 
El Salvador 0.026 5 0.902 5 -0.931 
Granada 0.029 7 0.877 12 -0.807 
Guatemala 0.024 2 0.910 4 -0.952 
Guyana 0.066 24 0.846 18 -0.956 
Honduras 0.033 10 0.890 9 -0.925 
Jamaica 0.038 16 0.813 24 -0.914 
Mexico 0.040 18 0.861 17 -0.814 
Nicaragua 0.040 17 0.888 10 -0.946 
Panama 0.037 15 0.914 3 -0.893 
Paraguay 0.054 21 0.815 23 -0.951 
Peru 0.025 3 0.933 1 -0.763 
Dominican Rep. 0.026 4 0.898 6 -0.982 
Suriname 0.035 13 0.891 8 -0.906 
Trinidad and Tobago 0.033 11 0.834 21 -0.986 
Uruguay 0.028 6 0.924 2 -0.706 
Venezuela 0.062 23 0.868 16 0.153 
      
Spearman’s rank correlation coefficient between both rankings 0.701 

Note: EI stands for Energy Intensity and Eff. is the abbreviation of Efficiency 



 

 

Figure 1. Final energy consumption
the Caribbean in the 1990-2010
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Figure 3. Price index for energy in the transport sector (average for Latin America and 
the Caribbean in the 1990-2010 period) 

 

 

 

 

 

Figure 4. Approaches in the estimation of energy demand functions 
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Figure 5. Decomposition of the random error term in a stochastic frontier demand 

 

 

 

 

 

Figure 6. Average annual growth rate of energy consumption in transport for Latin 
America and the Caribbean, 1990-2010 (percentage) 

 

 

Sources: ECLAC and EUROSTAT 
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Figure 7. Transitive multilateral
America and the Caribbean

 

 

 

 

Figure 8. Model selection tests
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Figure 9. Linear demands obtained on the basis of observed values 
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APPENDIX 

Construction of the price index 

 

The OLADE provides information on the prices and quantities consumed of the 
different types of energy that are used in the transport sector of Latin America and the 
Caribbean. The categories that appear in their database are as follows: natural gas, 
liquid gas, electricity, various types of gasoline, kerosene, diesel oil and fuel oil. 
However, this agency does not provide a general price of energy for these countries. 
Thus, to estimate aggregate energy demand in transport, it is necessary to obtain an 
indicator or index that accounts for the distinct components in the energy consumption 
of the sector. In general, a compound price index can be defined as follows: 

1
0

0 0
1

M

mt mt
m

t M

m m
m

p q
PI

p q

=

=

=
∑

∑
     (A1) 

where PI0t measures the change in value of the total of the M energy components 
between the base period 0 and final period t. In this type of index, it is difficult to 
distinguish between the changes that only occur in prices and the change in consumed 
quantities. The two indices that are most commonly used in practice and calculated by 
international agencies for total energy consumption, such as those calculated by the 
IEA, are Laspeyres and Paasche. In the former, the quantities that are consumed in the 
base year (qm0) are used as weights both in the numerator and in the denominator. Thus, 
this index isolates the change in prices without accounting for changes in consumption 
patterns. The second type of index uses energy quantities from the current period (qmt) 
as weights, thus simultaneously including variations in prices and quantities. These two 
indices, therefore, represent two extreme cases and only coincide when relative prices 
do not experience any variation (i.e., pmt/pm0 is constant). 

However, there are alternatives that combine both approaches to address this 
issue, such as the Fisher and Törnqvist indices. Nevertheless, all of these indices present 
the same problem. Specifically, they allow for comparisons of a country with itself 
throughout time and comparisons between countries measured in price changes (if the 
same base year is imposed for all countries in the sample), but they do not allow for 
comparisons of price levels between countries throughout time. 

Studies that use international data must employ an index that overcomes this 
difficulty. The solution to this problem involves obtaining transitive multilateral 
comparisons (as named in the literature on index numbers) between countries, as 
proposed by Elteto and Koves (1964) and Szulc (1964). This method, known as EKS, 
was used by Caves et al. (1982) to obtain transitive Törnqvist indices. The formula, in 
line with Coelli et al. (2005), is as follows: 

( ) ( ) ( )( )
1 1

1 1
ln ln ln ln ln

2 2

M M
CCD
ij mj m mj m mi m mi m

m m

PI p p p pω ω ω ω
= =

= + − − + −∑ ∑  (A2) 

where ωmi represents the importance held by component m in the energy expenditure of 
the transport sector of the country i and mω  is the arithmetic mean of these expenditure 
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amounts. Furthermore, ln mp  represents the average price of the energy component m 

for the set of countries. 

The intuitive interpretation of equation (A2) is that to compare the price indices 
of two countries, each of them is compared to the average country and then the 
differences from this mean are calculated. Logically, as opposed to other indices, when 
an observation is added or subtracted from the sample, all values should be recalculated 
due to changes in the mean of the sample. 

It should be mentioned that in the current empirical application, the use of an 
approach such as the proposed by Caves et al. (1982) in the construction of the price 
index significantly improves the quality of fitting that is obtained when estimating the 
models. If a Paasche- or Laspeyres-type index is used rather than a transitive 
multilateral index, the logarithm of the likelihood function falls sharply and achieves 
negative values. The use of these simpler indices in practice implies the assumption that 
each country has a specific individual effect. In this case, we artificially introduce 
heterogeneity into the model. Thus, the model must be estimated by including 
individual effects, as in the TFE and TRE models. 


