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Abstract 

Eco-efficiency has been defined by the OECD as “the efficiency with which ecological 

resources are used to meet human needs” and can be considered a measure of 

environmental performance that takes into account both the environmental and 

economic objectives of firms. Frontier models are an ideal tool for measuring eco-

efficiency. While the literature applying frontier models to the empirical measurement of 

eco-efficiency has been growing steadily in recent years, it has exclusively relied on non-

parametric Data Envelopment Analysis (DEA) methods to measure eco-efficiency and 

its determinants. We propose a parametric Stochastic Frontier (SF) model to measure 

eco-efficiency, arguing that this has several potential advantages. We provide an 

empirical application using cross-sectional data from Spanish dairy farms which includes 

information on environmental and economic indicators as well as a series of potential 

socio-economic determinants of eco-efficiency.  

 
 
 

                                                           
1 Correspondence to: Alan Wall, Oviedo Efficiency Group, Department of Economics, School of 
Economics and Business, University of Oviedo, 33006 Oviedo, Spain.  
email: awall@uniovi.es.  
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1. Introduction  

Concerns about the sustainability of economic activity has led to an increasing interest 

in the concept of eco-efficiency and the literature on this topic has been growing in recent 

years (Oude Lansink and Wall, 2014). The term eco-efficiency was originally coined by 

the World Business Council for Sustainable Development in their 1993 report 

(Schmidheiney, 1993) and is based on the concept of creating more goods and services 

using fewer resources. In turn, the OECD defines eco-efficiency as “the efficiency with 

which ecological resources are used to meet human needs” (OECD, 1998). Clearly, the 

concept of eco-efficiency takes into account both the environmental and economic 

objectives of firms.  

When evaluating firm performance in the presence of adverse environmental impacts, 

production frontier models are a popular tool (Tyteca, 1996; Lauwers, 2009; Picazo-

Tadeo et al., 2011; Pérez-Urdiales et al., 2015). The measurement of eco-efficiency in a 

frontier context, which Lauwers (2009) refers to as the “frontier operationalisation” of eco-

efficiency, involves comparing economic results derived from the production of goods 

and services with aggregate measures of the environmental impacts or ‘pressures’ 

generated by the production process. To date, only the non-parametric Data 

Envelopment Analysis (DEA) method has been used in the literature. While DEA has 

many advantages, it has the drawback that it can be extremely sensitive to outliers and 

measurement errors in the data.  

In the present work we propose a Stochastic Frontier Analysis (SFA) approach to 

measuring eco-efficiency, which has the advantage that it well-suited to dealing with 

measurement errors in the data. Using a stochastic frontier model to measure eco-

efficiency involves the estimation of only a few parameters, so the model can be 

implemented even when the number of observations is relatively small. Moreover, the 

SFA approach permits an analysis of the potential substitutability between environmental 

pressures, and can easily be extended to incorporate determinants of eco-efficiency in 

a one-stage procedure.  

We illustrate our simple proposal with an empirical application using a sample of 50 dairy 

farmers from the Spanish region of Asturias. This data set includes information from a 

questionnaire specifically carried out to permit the accurate measurement of eco-

efficiency and provides information on farmers’ socioeconomic characteristics and 

attitudes towards the environment, and has been used by Pérez-Urdiales et al. (2015) to 

measure eco-efficiency and identify its determinants using the DEA-based bootstrapped 
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truncated regression techniques of Simar and Wilson (2007). The results from that paper 

therefore provide a useful point of comparison for the results from our proposed 

stochastic frontier model.  

The paper proceeds as follows. In Section 2 we discuss the concept of eco-efficiency 

and the DEA approach often used to estimate eco-efficiency scores. Section 3 introduces 

our stochastic frontier model, which can be viewed as a counterpart of the DEA eco-

efficiency model. Section 4 describes the data we use. The results are presented and 

discussed in Section 5, and Section 6 concludes.   

 

2. Background 

To measure eco-efficiency using frontiers, Kuosmanen and Kortelainen (2005) defined 

eco-efficiency as a ratio between economic value added (‘profit’) and environmental 

damage and proposed a pressure-generating or pollution-generating technology set 𝑇𝑇 =

�(π, 𝑝𝑝)∈ 𝑅𝑅(1+𝐾𝐾)�π  can be generated by 𝑝𝑝}. This technology set describes all the feasible 

combinations of profit, π, and environmental pressures, 𝑝𝑝. Environmental damage, 𝐷𝐷(𝑝𝑝) 

, is measured by aggregating the K environmental pressures (𝑝𝑝1, … , 𝑝𝑝𝐾𝐾) associated with 

the production activity.  

Figure 1 provides an illustration for the simple case of two environmental pressures, 𝑝𝑝1 

and 𝑝𝑝2. The set of eco-efficient combinations is represented by the eco-efficient frontier, 

which represents the minimum combinations of the two environmental pressures which 

can be used to produce a profit of π0. Combinations of pressures below the frontier are 

unfeasible whereas combinations above it, such as point A, are eco-inefficient. The 

combination of pressures represented by point A is clearly eco-inefficient as the 

environmental pressures could be reduced equiproportionally to point E on the frontier 

without reducing profit.2  

Eco-inefficiency can be measured using the radial distance from a point A to the efficient 

frontier. The eco-efficiency score is given by the ratio OE/OA which takes the value 1 for 

                                                           
2 Instead of measuring the extent to which pressures can be reduced while maintaining profit, we 
could measure the extent to which the firm, given its present combination of pressures, could 
increase its profit. Thus, if the firm was using the combination of pressure represented by A 
efficiently, it would be operating on a new eco-efficient frontier passing through that point, and 
could achieve a higher profit corresponding to this new frontier. Answering either of these 
questions will uncover eco-inefficient behaviour but we will follow the existing literate by focusing 
on the capacity of firms to reduce environmental pressures while maintaining profit. 
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eco-efficient combinations of pressures and economic profit and values less than 1 for 

inefficient combinations such as A. 

 
 

 

 

 

 

 

 

 

Figure 1. Eco-efficiency 

Individual eco-efficiency scores for producer 𝑖𝑖  can be found using the following 

expression: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = Economic value added
Environmental pressure

= π𝑖𝑖
𝐷𝐷𝑖𝑖(𝑝𝑝)

     (1) 

where 𝐷𝐷𝑖𝑖(𝑝𝑝) is a function that aggregates the environmental pressures into a single 

environmental pressure indicator. This can be done by taking a linear weighted average 

of the individual environmental pressures: 

𝐷𝐷𝑖𝑖(𝑝𝑝) = 𝑤𝑤1𝑝𝑝1𝑖𝑖 + 𝑤𝑤2𝑝𝑝2𝑖𝑖 + ⋯+ 𝑤𝑤𝐾𝐾𝑝𝑝𝐾𝐾𝐾𝐾    (2) 

where 𝑤𝑤𝑘𝑘  is the weight assigned to environmental pressure 𝑝𝑝𝑘𝑘 . Kuosmanen and 

Kortelainen (2005) and Picazo-Tadeo et al. (2012), among others, use DEA as a non-

subjective weighting method.  

The DEA eco-efficiency score of firm i can be computed from the following programming 

problem:3 

max
𝑤𝑤𝑘𝑘𝑘𝑘

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = π𝑖𝑖
∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1

         (3) 

                                                           
3 This formulation involves a non-linear objective function and non-linear constraints, which is 
computationally difficult. This problem is often linearized by taking the inverse of the eco-efficiency 
ratio and solving the associated reciprocal problem (Kuosmanen and Kortelainen 2005; Picazo-
Tadeo et al. 2011). 

p1 

p2 

● A 

T 

O 
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● Eco-efficient frontier 
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subject to the constraints 

π𝑗𝑗
∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1

≤ 1  𝑗𝑗 = 1, … ,𝑁𝑁 

𝑤𝑤𝑘𝑘𝑘𝑘 ≥ 0   𝑘𝑘 = 1, … , 𝐾𝐾 

The above two constraints force weights be non-negative and eco-efficiency scores take 

values between zero and one, that is: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = π𝑖𝑖
∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1

≤ 1   ,∀𝑖𝑖 = 1, … , N    (4) 

The DEA eco-efficiency score which solves this problem for firm i indicates the maximum 

potential equiproportional reduction in all environmental pressures that could be 

achieved while maintaining economic profit constant, i.e., it corresponds to the ratio 

OE/OA for a firm operating at point A in Figure 1 and would take the vaue 1 for an eco-

efficient firm.  

 

3. The SFA eco-efficiency model 

In this section we introduce our SFA counterpart of the above DEA eco-efficiency model. 

We first introduce a basic (i.e. homoskedastic) specification of the model in order to focus 

our attention on the main characteristics of the model and the differences between the 

SFA and DEA approaches. We then present a heteroskedastic specification of the model 

that allows us to identify determinants of firms’ eco-efficiency in a simple one-stage 

procedure. Finally, we explain how we obtain the estimates of eco-efficiency for each 

farm. 

 

3.1. Basic specification 

In this section we introduce our SFA counterpart of the DEA eco-efficiency model. Our 

approach relies on the constraint in equation (4). If we assume that the environmental 

pressure weights, 𝑤𝑤𝑘𝑘, in (2) are parameters to be estimated, we can impose that these 

be positive by reparameterizing them as 𝑤𝑤𝑘𝑘 = 𝑒𝑒𝛽𝛽𝑘𝑘. The natural logarithm of equation (4) 

can be written as:  

ln 𝐸𝐸𝐸𝐸𝐹𝐹𝑖𝑖 = ln ( π𝑖𝑖
∑ 𝑒𝑒𝛽𝛽𝑘𝑘·𝑝𝑝𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1

) ≤ 0     (5) 
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The above equation can be rewritten as:  

ln(π𝑖𝑖) = ln�∑ 𝑒𝑒𝛽𝛽𝑘𝑘 · 𝑝𝑝𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1 � − 𝑢𝑢𝑖𝑖     (6) 

where 𝑢𝑢𝑖𝑖 = − ln𝐸𝐸𝐸𝐸𝐹𝐹𝑖𝑖 ≥ 0 can now be viewed as a non-negative random term capturing 

firm i’s eco-inefficiency.  

Equation (6) is a non-linear regression model with a nonpositive disturbance that can be 

estimated using several techniques (see Kumbhakar and Lovell, 2000, section 3.2.1.). 

Regardless of the technique, however, note that in (6) we are measuring farms’ eco-

efficiency relative to a deterministic environmental pressure frontier. This implies that all 

variation in profit not associated with variation in individual environmental pressures is 

entirely attributed to eco-inefficiency. In other words, this specification does not make 

allowance for the effect of random shocks, which might also contribute (positively or 

negatively) to variations in economic value.  

As is customary in the SFA literature in production economics, in order to deal with this 

issue we extend the model in (6) by adding a symmetric random noise term, 𝑣𝑣𝑖𝑖, and a 

non-zero intercept θ: 

ln(π𝑖𝑖) = 𝜃𝜃 + ln�∑ 𝑒𝑒𝛽𝛽𝑘𝑘 · 𝑝𝑝𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1 � + 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑖𝑖    (7) 

This model is more complex than a deterministic eco-efficiency frontier model but it is 

also more realistic as deviations from the frontier due not only to eco-inefficiency but also 

to uncontrollable or unobservable factors (i.e. random noise) are incorporated. We have 

also added a non-zero intercept in order to obtain unbiased parameter estimates in case 

the unobservable factors or measurement errors have a level effect on firms’ profit. 

The error term in (7) thereby comprises two independent parts. The first part, 𝑣𝑣𝑖𝑖, is a two-

sided random noise term, often assumed to be normally distributed with zero mean and 

constant standard deviation, i.e. 𝜎𝜎𝑣𝑣 = 𝑒𝑒𝛾𝛾. The second part, 𝑢𝑢𝑖𝑖, is a one-sided error term 

capturing underlying eco-inefficiency that can vary across firms and over time. Following 

Aigner et al. (1977) it is often assumed to follow a half-normal distribution, which is the 

truncation (at zero) of a normally-distributed random variable with mean zero. Moreover, 

these authors also assumed that the variance of the pre-truncated normal variable 

(hereafter 𝜎𝜎𝑢𝑢) is homoskedastic and common to all farms, i.e.  𝜎𝜎𝑢𝑢 = 𝑒𝑒𝛿𝛿. The identification 

of both random terms in this model (ALS henceforth) relies on the asymmetric and one-

sided distribution of 𝑢𝑢𝑖𝑖. If the inefficiency term could take both positive and negative 

values, it would not be distinguishable from the noise term, 𝑣𝑣𝑖𝑖. 
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It should be pointed out that under these distributional assumptions the density function 

of the composed error term 𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑖𝑖 in (7) is the same as the well-known density 

function of a standard normal-half normal frontier model. Following Kumbhakar and 

Lovell, (2000, p. 77), the log likelihood function for a sample of N producers can then be 

written as: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃, 𝛽𝛽, 𝛾𝛾, 𝛿𝛿) = −𝑁𝑁
2
𝑙𝑙𝑙𝑙[𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑢𝑢2] + ∑ 𝑙𝑙𝑙𝑙Φ �− 𝜀𝜀𝑖𝑖(𝜃𝜃,𝛽𝛽)·𝜎𝜎𝑢𝑢/𝜎𝜎𝑣𝑣

�𝜎𝜎𝑣𝑣2+𝜎𝜎𝑢𝑢2�
1 2⁄ �𝑁𝑁

𝑖𝑖=1 − 1
2�𝜎𝜎𝑣𝑣2+𝜎𝜎𝑢𝑢2�

∑ 𝜀𝜀𝑖𝑖2(𝜃𝜃, 𝛽𝛽)𝑁𝑁
𝑖𝑖=1   (8) 

where 𝛽𝛽 = (𝛽𝛽1, … , 𝛽𝛽𝐾𝐾), and 

𝜀𝜀𝑖𝑖(𝜃𝜃, 𝛽𝛽) = ln(π𝑖𝑖) − 𝜃𝜃 − ln�∑ 𝑒𝑒𝛽𝛽𝑘𝑘 · 𝑝𝑝𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1 �    (9) 

The likelihood function (8) can be maximized with respect to (𝜃𝜃, 𝛽𝛽, 𝛾𝛾, 𝛿𝛿)  to obtain 

consistent estimates of all parameters of our eco-efficiency model. The only difference 

between our SFA eco-efficiency model and a traditional SFA production model is the 

computation of the error term 𝜀𝜀𝑖𝑖(𝜃𝜃, 𝛽𝛽). In a traditional SFA production model, this is a 

simple linear function of the parameters to be estimated and hence the model can be 

estimated using standard econometric software, such as Limdep or Stata. In contrast, 

𝜀𝜀𝑖𝑖(𝜃𝜃, 𝛽𝛽) in equation (9) is a non-linear function of the β parameters. Although the non-

linear nature of equation (9) prevents using the standard commands in Limdep or Stata 

to estimate our SFA eco-efficiency model, it is relatively straightforward to write the codes 

to maximize (8) and obtain our parameter estimates.  

The model in (7) can be also estimated using a two-step procedure. In the first stage, 

the intercept 𝜃𝜃 and the environmental pressure parameters 𝛽𝛽 of equation (7) can be 

estimated using a non-linear least squares estimator. In the second step, the 

aforementioned distributional assumptions regarding the error terms are made to obtain 

consistent estimates of the parameters describing the variance of 𝑣𝑣𝑖𝑖 and 𝑢𝑢𝑖𝑖 (i.e., 𝛾𝛾 and 

𝛿𝛿) conditional on the estimated parameters from the first step. This two-step approach is 

advocated for various models in Kumbhakar and Lovell (2000). The main advantage of 

this two-step procedure is that no distributional assumptions are used in the first step. 

Standard distributional assumptions on 𝑣𝑣𝑖𝑖 and 𝑢𝑢𝑖𝑖 are used only in the second step. In 

addition, in the first step the error components are allowed to be freely correlated. 

An important issue that should be taken into account when using a two-step procedure 

is that the expectation of the original error term in (7) is not zero because 𝑢𝑢𝑖𝑖 is a non-
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negative random term. This implies that the estimated value of the error term 𝜀𝜀𝑖𝑖  in 

equation (7) should be decomposed as follows: 

𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑖𝑖 + 𝐸𝐸(𝑢𝑢𝑖𝑖)      (10) 

If 𝑢𝑢𝑖𝑖 follows a half-normal distribution, then 𝐸𝐸(𝑢𝑢𝑖𝑖)  = �2/𝜋𝜋 · 𝜎𝜎𝑢𝑢. Thus, the stochastic 

frontier model in the second stage is: 

𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑖𝑖 − �2/𝜋𝜋 · 𝑒𝑒𝛿𝛿     (11) 

Note that there are no new parameters to be estimated. The parameters 𝛾𝛾 and 𝛿𝛿 are 

estimated by maximizing the likelihood function associated to this (adjusted) error term.4 

As Kumbhakar et al. (2013) have recently pointed out, the stochastic frontier model 

based on (11) can accommodate heteroskedastic inefficiency and noise terms simply by 

making the variances of 𝜎𝜎𝑢𝑢  and 𝜎𝜎𝑣𝑣  functions of some exogenous variables (see, for 

instance, Wang, 2002; Álvarez et al., 2006). This issue is addressed later on. 

Compared to the DEA eco-efficiency model, our SFA approach will attenuate the effect 

of outliers and measurement errors in the data on the eco-efficiency scores. Moreover, 

it is often stressed that the main advantage of DEA over the SFA approach is that it does 

not require an explicit specification of a functional form for the underlying technology. 

However, the “technology” here is a simple index that aggregates all environmental 

pressures into a unique value. Thus, we would expect that the parametric nature of our 

SFA approach is not as potentially problematic in an eco-efficiency analysis as it may be 

in a more general production frontier setting where theses techniques are used to 

uncover the underlying (and possibly quite complex) relationship between multiple inputs 

and outputs. Another often-cited advantage of the DEA approach is that it can be used 

when the number of observations is relatively small. We reiterate, however, that the 

                                                           
4 An alternative second-stage approach based on the Method of Moments (MM) can also be used. 
This empirical strategy relies on the second and third moments of the error term 𝜀𝜀𝑖𝑖 in equation 
(7). This approach takes advantage of the fact that the second moment provides information about 
both 𝜎𝜎𝑣𝑣 and 𝜎𝜎𝑢𝑢 whereas the third moment only provides information about the asymmetric (one-
sided) random inefficiency term. Olson et al. (1980) showed using simulation exercises that the 
choice of estimator (ML versus MM) depends on the relative value of the variances of both random 
terms and the sample size. When the sample size is large and the variance of the one-sided error 
component is small compared to the variance of the noise term, ML outperforms MM. The MM 
approach has, in addition, some practical problems. It is well known in the stochastic frontier 
literature, for example, that neglecting heteroskedasticity in either or both of the two random terms 
causes estimates to be biased. Kumbhakar and Lovell (2000) pointed out that only the ML 
approach can be used to address this problem. Another practical problem arises in 
homoscedastic specifications of the model when the implied 𝜎𝜎𝑢𝑢  becomes sufficiently large to 
cause 𝜎𝜎𝑣𝑣<0, which violates the assumptions of the econometric theory. 
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“technology” of our SFA model is extremely simple, with few parameters to be estimated, 

so that the model can be implemented even when the number of observations is not 

large. 

Finally, note that the estimated 𝛽𝛽 parameters have an interesting interpretation in the 

parametric model. In the expression for eco-efficiency in (1), we note that eco-efficiency 

is constant and equal to 1 along the eco-efficiency frontier. Differentiating (1) with respect 

to an individual pressure 𝑝𝑝𝑘𝑘 for farm i we obtain: 

𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝)
𝜕𝜕𝑝𝑝𝑘𝑘

= 𝜕𝜕π𝑖𝑖
𝜕𝜕𝑝𝑝𝑘𝑘

𝐷𝐷𝑖𝑖(𝑝𝑝)
π𝑖𝑖

     (12) 

For any two pressures 𝑝𝑝𝑗𝑗 and 𝑝𝑝𝑘𝑘, therefore, we have: 

𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝)
𝜕𝜕𝑝𝑝𝑗𝑗

𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝)
𝜕𝜕𝑝𝑝𝑘𝑘

=
𝜕𝜕π𝑖𝑖
𝜕𝜕𝑝𝑝𝑗𝑗
𝜕𝜕π𝑖𝑖
𝜕𝜕𝑝𝑝𝑘𝑘

             (13) 

From the expression for eco-efficiency in the reparameterized model in (5) it is clear that 
𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝)
𝜕𝜕𝑝𝑝𝑘𝑘

= 𝑒𝑒𝛽𝛽𝑘𝑘, so that in this particular case (13) becomes: 

𝑒𝑒𝛽𝛽𝑗𝑗

𝑒𝑒𝛽𝛽𝑘𝑘
= 𝜕𝜕π𝑖𝑖 𝜕𝜕𝑝𝑝𝑗𝑗⁄

𝜕𝜕π𝑖𝑖 𝜕𝜕𝑝𝑝𝑘𝑘⁄             (14) 

Once the 𝛽𝛽  parameters have been estimated, 𝑒𝑒𝛽𝛽𝑘𝑘  therefore represents the marginal 

contribution of pressure 𝑝𝑝𝑘𝑘 to firm i’s profit, i.e., it is the monetary loss in profits if pressure 

𝑝𝑝𝑘𝑘 were reduced by one unit.  

As expression (14) represents the marginal rate of technical substitution of 

environmental pressures, it provides valuable information on the possibilities for 

substitution between pressures. If this marginal rate of substitution took a value of 2, say, 

we could reduce pressure 𝑝𝑝𝑗𝑗 by two units and increase 𝑝𝑝𝑘𝑘  by one unit without changing 

economic profit. This also sheds light on the consequences for firms of legislation 

requiring reductions in individual pressures. Continuing with the previous example, it 

would be relatively less onerous for the firm to reduce pressure 𝑝𝑝𝑘𝑘 rather than 𝑝𝑝𝑗𝑗 as the 

fall in profit associated with a reduction in 𝑝𝑝𝑘𝑘 would be only half that which would occur 

from a reduction in 𝑝𝑝𝑗𝑗.  

   



10 

3.2. Heteroskedastic specification  

Aside from measuring firms’ eco-efficiency, we also would like to analyse the 

determinants of eco-efficiency. The concern about the inclusion of contextual variables 

or z-variables has generated the development of several models either using parametric, 

non-parametric or semi-parametric techniques.5 The inclusion of contextual variables in 

DEA has been carried out in one, two or even more stages. Ruggiero (1996) and other 

authors have highlighted that the one-stage model introduced in the seminal paper of 

Banker and Morey (1986) might lead to bias. To solve this problem, other models using 

several stages have been developed in the literature. Ray (1988) was the first who 

proposed a second stage where standard DEA efficiency scores were regressed on a 

set of contextual variables. This practice was widespread until Simar and Wilson (2007) 

demonstrated that this procedure is not consistent because the first-stage DEA efficiency 

estimates are serially correlated. These authors proposed a bootstrap procedure to solve 

this problem in two stages which has perhaps become the most-widely used method in 

DEA to identify inefficiency determinants.  

As the inefficiency term in the ALS model has constant variance, our SFA model in (7) 

does not allow the study of the determinants of farms’ performance.6 To deal with this, 

we could also estimate a heteroskedastic frontier model that incorporates z-variables 

into the model as eco-efficiency determinants. The specification of 𝑢𝑢𝑖𝑖 that we consider 

in this paper is the so-called RSCFG model (see Alvarez et al., 2006), where the z-

variables are treated as determinants of the variance of the pre-truncated normal 

variable. In other words, in our frontier model we assume that 

𝜎𝜎𝑢𝑢𝑢𝑢 = ℎ(𝑧𝑧𝑖𝑖) · 𝜎𝜎𝑢𝑢      (15) 

where  

ℎ(𝑧𝑧𝑖𝑖) = 𝑒𝑒𝛼𝛼′𝑧𝑧𝑖𝑖       (16) 

is a deterministic function of eco-inefficiency covariates, 𝛼𝛼 = (𝛼𝛼1, … , 𝛼𝛼𝐽𝐽), is a vector of 

parameters to be estimated, and 𝑧𝑧𝑖𝑖 = (𝑧𝑧𝑖𝑖1, … , 𝑧𝑧𝑖𝑖𝑖𝑖) is a set of J potential determinants of 

                                                           
5 For a more detailed review of this topic in SFA and DEA, see Johnson and Kuosmanen (2011, 
2012). 
6  It might also yield biased estimates of both frontier coefficients and farm-specific eco-
inefficiency scores (see Caudill and Ford, 1993).   
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firms’ eco-inefficiency.7 This specification of 𝜎𝜎𝑢𝑢𝑢𝑢 nests the homoskedastic model as (15) 

colapses into 𝑒𝑒𝛿𝛿 if we assume that ℎ(𝑧𝑧𝑖𝑖) = 1 or α=0. 

The log likelihood function of this model is the same as equation (8), but now 𝜎𝜎𝑢𝑢𝑢𝑢 is 

heteroskedastic and varies across farms. The resulting likelihood function should then 

be maximized with respect to 𝜃𝜃, 𝛽𝛽, 𝛾𝛾, 𝛿𝛿  and 𝛼𝛼  to obtain consistent estimates of all 

parameters of the model. As both frontier parameters and the coefficients of the eco-

inefficiency determinants are simultaneously estimated in one stage, the inclusion of 

contextual variables in our SFA model is much simpler than in DEA.  

 

3.3. Eco-efficiency scores 

We next discuss how we can obtain the estimates of eco-efficiency for each firm once 

either the homoskedastic or heteroskedastic model has been estimated. In both 

specifications of the model, the composed error term is simply 𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑖𝑖. Hence, we 

can follow Jondrow et al. (1982) and use the conditional distribution of 𝑢𝑢𝑖𝑖  given the 

composed error term εi to estimate the asymmetric random term 𝑢𝑢𝑖𝑖. Both the mean and 

the mode of the conditional distribution can be used as a point estimate of 𝑢𝑢𝑖𝑖. However, 

the conditional expectation 𝐸𝐸(𝑢𝑢𝑖𝑖|𝜀𝜀𝑖𝑖)  is by far the most commonly employed in the 

stochastic frontier analysis literature (see Kumbhakar and Lovell, 2000). 

Given our distributional assumptions, the analytical form for 𝐸𝐸(𝑢𝑢𝑖𝑖|𝜀𝜀𝑖𝑖) can be written as 

follows: 

𝐸𝐸(𝑢𝑢𝑖𝑖|𝜀𝜀𝑖𝑖) = 𝜇̅𝜇𝑖𝑖 + 𝜎𝜎�𝑖𝑖 �
𝜙𝜙(−𝜇𝜇�𝑖𝑖 𝜎𝜎�𝑖𝑖⁄ )

1−Φ(−𝜇𝜇�𝑖𝑖 𝜎𝜎�𝑖𝑖⁄ )�    (17) 

where 

𝜎𝜎𝑖𝑖2 = 𝜎𝜎𝑣𝑣2 + ℎ(𝑧𝑧𝑖𝑖)2𝜎𝜎𝑢𝑢2       

𝜇̅𝜇𝑖𝑖 =
𝜀𝜀𝑖𝑖ℎ(𝑧𝑧𝑖𝑖)2𝜎𝜎𝑢𝑢2

𝜎𝜎𝑖𝑖2
 

                                                           
7 The so-called scaling property (Alvarez et al., 2006) is satisfied in this heteroskedastic version of our SFA 
model in the sense that the inefficiency term in (7) can be written as 𝑢𝑢𝑖𝑖 = ℎ(𝑧𝑧𝑖𝑖) · 𝑢𝑢𝑖𝑖∗, and 𝑢𝑢𝑖𝑖∗ → 𝑁𝑁+(0, 𝑒𝑒𝛿𝛿) 
is a one-sided random variable that does not depend on any eco-efficiency determinant. The defining feature 
of models with the scaling property is that firms differ in their mean efficiencies, but not in the shape of the 
distribution of inefficiency. In this model 𝑢𝑢𝑖𝑖∗ can be viewed as a measure of “basic” or “raw” inefficiency 
that does not depend on any observable determinant of firms’ inefficiency. 
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𝜎𝜎�𝑖𝑖 =
ℎ(𝑧𝑧𝑖𝑖)𝜎𝜎𝑢𝑢𝜎𝜎𝑣𝑣

𝜎𝜎𝑖𝑖
 

To compute the conditional expectation (17) using the heteroskedastic model, we should 

replace the deterministic function ℎ(𝑧𝑧𝑖𝑖)  with our estimate of (16), while for the 

homoskedastic model we should assume that ℎ(𝑧𝑧𝑖𝑖) = 1. 
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4. Data 

The data we use come from a survey which formed part of a research project whose 

objective was to analyse the environmental performance of dairy farmers in the Spanish 

region of Asturias. Agricultural activity has well-documented adverse effects on the 

environment and the increasing concerns among policymakers about environmental 

sustainability in the sector are reflected in the recent Common Agricultural Policy (CAP) 

reforms in Europe. Dairy farming, through the use of fertilizers and pesticides in the 

production of fodder as well as the emission of greenhouse gases has negative 

consequences for land, water, air, biodiversity and the landscape, so it is of interest to 

see whether there is scope for farmers to reduce environmental pressures without profits 

being reduced and identify any farmer characteristics that may influence their 

environmental performance.  

A questionnaire was specifically designed to obtain information on individual pollutants, 

including nutrients balances and greenhouse gas emissions. These individual pollutants 

were then aggregated using standard conversion factors into a series of environmental 

pressures. Questions were included regarding farmers’ attitudes towards aspects of 

environmental management as well as a series of socioeconomic characteristics. The 

data collected correspond to the year 2010.  

A total of 59 farmers responded to the questionnaire and the environmental and 

socioeconomic data were combined with economic data for these farmers which is 

gathered annually through a Dairy Cattle Management Program run by the regional 

government. Given that there were missing values for some of the variables we wished 

to consider, the final sample comprised 50 farms.  

These data were used by Pérez-Urdiales et al. (2015) to measure the farmers’ eco-

efficiency and relate it to attitudinal and socioeconomic factors. These authors used the 

two-stage DEA-based bootstrapped truncated regression technique proposed by Simar 

and Wilson (2007) to estimate eco-efficiency and its determinants, finding evidence of 

considerable eco-inefficiency. We will use the same variables as Pérez-Urdiales et al. 

(2015) to estimate eco-efficiency and its determinants using the SFA methods proposed 

in the previous section, which will permit us to see whether the SFA model yields similar 

results. We will use the results from Pérez-Urdiales et al. (2015) as a reference for 

comparison but it should be stressed that the dataset is far from ideal for using a SFA 

approach. In particular, the number of observations is relatively small and there are 

several determinants of eco-efficiency whose parameters have to be estimated. 
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The variables are described in detail in Pérez-Urdiales et al. (2015) but we will briefly 

discuss them here. For the numerator of the eco-efficiency index, economic value added 

(Econvalue) is the difference between revenues from milk production (including milk 

sales and the value of in-farm milk consumption) and direct costs. The environmental 

pressures comprise nutrients balances and greenhouse gas emissions. The nutrients 

balances measure the extent to which a farm is releasing nutrients into the environment, 

defined as the difference between the inflows and outflows of nutrients. The nutrients 

balances used are nitrogen (SurplusN), phosphorous (SurplusP) and potassium 

(SurplusK), all measured in total kilograms. The volume of greenhouse gas emissions 

captures the contribution of the farm to global warming and the dataset contains 

information on the emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide 

(N2O). Each of these greenhouse gases is converted into CO2 equivalents, so that the 

variable used is (thousands of) kilos of carbon dioxide released into the atmosphere 

(CO2).  

The second set of variables are the potential determinants of eco-efficiency, which 

comprises socioeconomic characteristics and attitudes of farmers. The socioeconomic 

variables are the age of the farmer (Age); the number of hours of specific agricultural 

training that the farmer received during the year of the sample (Training); and a variable 

capturing the expected future prospects of the farm and which is defined as a dummy 

variable taking the value 1 if the farmer considered that the farm would continue to be in 

operation five years later, and 0 otherwise (Prospects). As explained in Pérez-Urdiales 

et al. (2015), eco-efficiency would be expected to be negatively related to age (i.e., older 

farmers should be less eco-efficient) and positively related to professional training and 

the expectation that the farm continue. 

Three attitudinal variables were constructed from responses to a series of questions on 

farmers’ beliefs regarding their management of nutrients and greenhouse gas emissions 

as well as their attitudes towards environmental regulation. Thus, on a five-point Likert 

scale respondents had to state whether they strongly disagree (1), disagree (2), neither 

agree nor disagree (3), agree (4) or strongly agree (5), with a series of statements 

regarding their habits and attitudes towards environmental management. The variables 

HabitsCO2 and HabitsNutrients are constructed as dummy variables that take the value 

1 if respondents stated that they agreed or strongly agreed that management of 

grenhouse gases and nutrients was important, and 0 otherwise. The final variable 

measuring attitudes towards environmental regulation, defined as a dummy variable 
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taking the value 1 if respondants agreed or strongly agreed that environmenatl regulation 

should be made more restrictive and 0 otherwise (Regulation). 

Some descriptive statistics of the variables used for measuring eco-efficiency and the 

determinants of estimated eco-efficiency are presented in Table 1.  

Table 1.  Descriptive statistics of variables 

    
Variable Description Mean S.Dev. 
    
Econvalue Value added (€)  77137 40423 
    
Environmental pressures 
    
SurplusN Nitrogen surplus (kg) 5966 4705 
SurplusP Phosphorous surplus (kg) 2770 2168 
SurplusK Potassium surplus (kg) 2096 1681 
CO2 Greenhouse gases (‘000s kg) 427 142 
    
Eco-efficiency determinants 
    

HabitsCO2 
Attitude towards greenhouse gas 
management 0.09 0.29 

HabitsNutrients Attitude towards nutrient management 0.77 0.43 
Age Age of head of household 45.98 7.97 
Prospects Continuity of farm 0.98 0.14 
Regulation Attitude towards regulation 0.58 0.50 
Training Hours of specific training in last year 45.14 63.10 

 
 

5.  Results 

We focus initially on the results from the stochastic frontier models and then on the 

comparison of these with the DEA results.  

Table 2 presents estimates from different specifications of the homoskedastic (ALS) and 

heteroskedastic (RSCFG) stochastic eco-efficiency frontier, with their corresponding 

eco-efficiency scores presented in Table 3. Columns (A) and (B) of Table 2 report 

estimates from the ALS model with all environmental pressures included and it can be 

seen that all the estimated coefficients on the pressures were highly significant. The 

parameter 𝛿𝛿 corresponding to ln 𝜎𝜎𝑢𝑢 was also highly significant, implying that the frontier 

specification is appropriate. 
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Table 2. Parameter estimates 

    ALS-50A ALS-50B ALS-50C ALS-40C RSCFG-40C 
  (A) (B) (C) (D) (E) (F) (G) (H) (I) (J) 
Variable Parameter Estimates t-stat Estimates t-stat Estimates t-stat Estimates t-stat Estimates t-stat 
Intercept θ -0.15 -1.65 1.42 6.41 2.06 21.79 2.06 21.26 1.96 20.62 
SurplusN β1 1.59 10.78 0.03 0.02             
SurplusP β2 -5.25 -37.11                 
SurplusK β3 2.24 16.05 0.66 0.31 0.93 7.04 1.17 8.05 1.27 8.63 
CO2 β4 5.30 42.89 3.73 16.53 3.12 25.13 2.89 20.06 2.91 20.41 
ln σv γ -2.15 -15.19 -2.15 -4.63 -2.26 -3.68 -2.64 -4.67 -2.45 -15.52 
ln σu δ -0.47 -3.41 -0.47 -3.47 -0.45 -2.91 -0.53 -3.92 -0.32 -2.00 
HabitsCO2 α1                 -1.06 -6.71 
HabitsNutrients α2                 -0.21 -1.33 
Age α3                 0.01 1.64 
Prospects α4                 -0.64 -4.06 
Regulation α5                 0.27 1.71 
Training α6                 0.00 -1.35 
SurplusN exp(β1) 4.90 6.79 1.03 7.15             
SurplusP exp(β2) 0.01 7.07                 
SurplusK exp(β3) 9.37 7.17 1.93 7.10 2.55 7.67 3.22 6.81 3.55 6.80 
CO2 exp(β4) 200.91 8.09 41.85 8.31 22.74 8.56 17.94 6.99 18.43 7.00 
Mean log-likelihood   -0.3999 -0.3999 -0.4039 -0.2867 -0.1744 
Observations   50 50 50 40 40 
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As the pressure function parameters 𝛽𝛽𝑘𝑘  enter the eco-efficiency specification 

exponentially rather than linearly (5), in the bottom part of Table 2 the exponents of the 

coefficients are presented. The t-statistics here correspond to the null that 𝑒𝑒𝛽𝛽𝑘𝑘 is equal 

to zero for each of the k pressures, and this is rejected in all cases.  

However, focusing on the magnitudes rather than the statistical significance, it can be 

seen that the marginal contribution of the phosphorous balance to profit is almost 

negligible. Also, the value of 𝑒𝑒𝛽𝛽𝑘𝑘  for potassium is almost twice as large as that of 

nitrogen. Recalling our discussion of the interpretation of these parameters after equation 

(14) above, this implies that potassium contributes twice as much to economic value as 

nitrogen and would therefore be more costly for the farmer to reduce. Similarly, if farmers 

were required to reduce nitrogen, this could in principle be substituted by potassium: for 

a given reduction in kilos of nitrogen, farmers could increase their use of potassium by 

half this number of kilos and maintain the same profit. In this particular application, such 

substitution could be achieved through changes in the composition of feed, fertilizers, 

and a change in the composition of forage crops. Reducing phosphorous, on the other 

hand, would be virtually costless.  

In light of the negligible contribution of phosphorous to economic value, we reestimate 

the ALS model eliminating the phosphorous balance from the pressure function, and the 

results are presented in columns (C) and (D). The parameters on the nutrients are not 

significantly differently from 0, implying that the 𝑒𝑒𝛽𝛽𝑘𝑘 are not significantly different from 1. 

Note that the frontier specification is still appropriate and a comparison of the the 

efficiency scores from the two models in Table 3 shows that are practically identical.  

We now turn to the heteroskedastic (RSCFG) specification of the stochastic frontier 

where we incorporate the determinants of eco-efficiency described in the previous 

section. Some of the farms had missing values for one or more of these determinants, 

and after eliminating these observations we were left with 40 farms with complete 

information. When estimating the model for these 40 observations with all nutrients 

balances included, it did not converge. We then eliminated the phosphorous balance as 

we had done in columns (C) and (D) for the homoskedastic (ALS) specification, but the 

model still did not converge. Following our earlier strategy of eliminating the nutrient 

balance with the lowest marginal contribution, from column (A) we see that the nitrogen 

balance has a far lower marginal contribution than the potassium balance. We therefore 

specified the  model without the nitogen balance, keeping only the potassium balance 

and grenhouse gas emissions as pressures. With this specification the model converged 

successfully and the results are reported in columns (I) and (J).  
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Table 3. Eco-efficiency scores 

Farm DEA-50 DEA-
40 ALS-50A ALS-50B ALS-50C ALS-40C RSCFG-40C 

1 0.615 0.891 0.682 0.683 0.664 0.802 0.878 
2 0.562 n.a 0.627 0.627 0.608 n.a n.a 
3 0.233 0.290 0.257 0.257 0.259 0.293 0.305 
4 0.407 0.609 0.448 0.448 0.445 0.54 0.577 
5 0.906 1.000 0.892 0.892 0.911 0.964 0.961 
6 0.698 0.739 0.761 0.761 0.733 0.789 0.818 
7 0.690 1.000 0.751 0.751 0.716 0.872 0.905 
8 0.540 0.531 0.586 0.587 0.554 0.554 0.578 
9 0.790 0.854 0.824 0.824 0.843 0.893 0.906 
10 0.307 0.294 0.333 0.334 0.305 0.313 0.327 
11 0.809 0.830 0.855 0.855 0.839 0.861 0.879 
12 0.675 0.710 0.734 0.734 0.7 0.765 0.797 
13 0.617 0.596 0.648 0.648 0.594 0.531 0.539 
14 0.797 0.836 0.851 0.851 0.839 0.87 0.886 
15 0.465 0.515 0.519 0.519 0.509 0.557 0.581 
16 0.238 0.255 0.261 0.261 0.266 0.273 0.281 
17 0.702 0.701 0.761 0.762 0.734 0.721 0.74 
18 1.000 1.000 0.937 0.937 0.943 0.942 0.937 
19 0.566 0.580 0.61 0.61 0.622 0.591 0.606 
20 0.515 0.514 0.568 0.568 0.547 0.528 0.543 
21 0.559 0.575 0.621 0.621 0.61 0.59 0.603 
22 0.567 1.000 0.607 0.607 0.613 0.756 0.806 
23 0.844 0.898 0.879 0.879 0.868 0.926 0.932 
24 0.298 0.306 0.326 0.326 0.333 0.315 0.323 
25 0.608 0.633 0.661 0.661 0.665 0.652 0.669 
26 1.000 n.a 0.937 0.937 0.939 n.a n.a 
27 0.384 n.a 0.432 0.432 0.415 n.a n.a 
28 0.358 0.435 0.404 0.405 0.394 0.445 0.471 
29 0.618 0.718 0.681 0.681 0.671 0.751 0.813 
30 0.703 n.a 0.746 0.746 0.696 n.a n.a 
31 0.852 0.921 0.848 0.848 0.886 0.935 0.937 
32 0.727 0.746 0.784 0.784 0.752 0.787 0.814 
33 0.535 0.576 0.582 0.582 0.585 0.61 0.634 
34 0.765 n.a 0.823 0.823 0.802 n.a n.a 
35 0.993 n.a 0.935 0.935 0.937 n.a n.a 
36 0.514 0.647 0.54 0.54 0.56 0.643 0.685 
37 0.774 0.843 0.818 0.818 0.829 0.888 0.914 
38 0.518 0.538 0.547 0.547 0.569 0.554 0.571 
39 0.543 0.557 0.594 0.594 0.585 0.577 0.593 
40 0.287 0.303 0.321 0.321 0.32 0.318 0.335 
41 0.655 0.679 0.722 0.722 0.706 0.704 0.753 
42 0.811 n.a 0.837 0.837 0.846 n.a n.a 
43 0.427 0.433 0.467 0.467 0.437 0.466 0.487 
44 0.649 n.a 0.685 0.685 0.705 n.a n.a 
45 0.807 0.829 0.849 0.849 0.86 0.84 0.867 
46 0.904 0.888 0.906 0.906 0.905 0.871 0.875 
47 0.204 n.a 0.234 0.234 0.228 n.a n.a 
48 0.348 n.a 0.39 0.39 0.384 n.a n.a 
49 0.423 0.450 0.447 0.448 0.399 0.454 0.479 
50 0.757 0.755 0.816 0.817 0.8 0.765 0.783 
        

Mean 0.611 0.662 0.647 0.647 0.639 0.663 0.685 
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The homoskedastic specification with the potassium and greenhouse gases as the only 

pressures for both the complete sample of 50 observations (ALS-50C) and the reduced 

sample of 40 observations (ALS-40C) are reported in Columns (E)-(H), and a 

comparison of these estimates reveals that the coefficients on the pressures change very 

little across the three models. 

To compare the eco-efficiencies estimated by DEA and SFA, a scatterplot of the DEA 

efficiency scores and the efficiency estimates from the SFA model is presented in Figure 

2.8 As can be seen, the eco-efficiencies are almost identical. Also plotted on Figure 2 is 

the regression line from the regression of the SFA estimates on the DEA scores, where 

the R2 is 0.9805. The Spearman Rank Correlation Coefficient (Spearman’s rho) was 

0.996, showing that the models yielded virtually identical rankings of eco-efficiency 

levels. Even when the reduced sample of 40 observations is used, the eco-efficiencies 

are again very similar, with almost identical mean values and a Spearman Rank 

Correlation Coefficient of 0.959.  

 

 

Figure 2. Comparison of Eco-efficiency scores 
 

While the raw eco-efficiency scores between DEA and SFA are very similar, the 

questions remains as to whether the models yield similar results with regard to the 

determinants of eco-efficiency. The estimates of the efficiency determinants from the   

                                                           
8  These DEA scores are based on a simple DEA calculation as opposed to the bootstrapped 
DEA scores reported in Pérez-Urdiales et al. (2015). 
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Table 4. Estimated coefficients and significance of eco-efficiency determinants 

 SFA* DEA 
     
Variable Estimated 

parameter 

Significant 
at 

95% level? 

Estimated 
parameter 

Significant 
at 

95% level? 
     
HabitsCO2 -1.060 Yes -0.689 Yes 
HabitsNutrients -0.210 No -0.231 Yes 
Age 0.011 No 0.008 Yes 
Prospects -0.641 Yes -2.144 Yes 
Regulation 0.270 No 0.230 Yes 
Training -0.004 No -0.002 Yes 
Intercept -0.317 Yes 0.161 Yes 

* The SFA results are from Table 2. DEA results are obtained from Pérez-Urdiales et al. (2015, Table 3). 

 

SFA model from Table 2 are presented in Table 4 alongside the parameter estimates 

reproduced from Pérez-Urdiales et al. (2015). While all the determinants in Pérez-

Urdiales et al. (2015) were found to be significant at the 95% level, only two of the 

determinants – HabitsCO2 and Prospects – are significant at this level in the 

heteroskadastic SFA model (though two other variables – Age and Regulation - were 

significant at the 90% level). Notably, however, the  SFA model yields exactly the same 

signs on the eco-efficiency determinants as the bootstrapped DEA-based truncated 

regression used by Pérez-Urdiales et al. (2015).  

 

6. Conclusions 

Measurement of eco-efficiency has been carried out exclusively using non-parametric 

DEA techniques in the literature to date. In the present work we have proposed using a 

(parametric) stochastic frontier analysis (SFA) approach. While such models are highly 

non-linear when estimating eco-inefficiency, in an empirical application we find that such 

an approach is feasible even when the sample size is relatively small and determinants 

of eco-inefficiency - which increases the number of parameters to be estimated - are 

incorporated. Using data from a sample of 50 Spanish dairy farms previously used by 

Pérez-Urdiales et al. (2015), we begin by estimating a stochastic frontier model without 

eco-efficiency determinants, and find that our model yields virtually identical eco-

efficiency scores to those calculated by DEA. Estimating eco-efficiency without 

determinants involves relatively few parameters, so sample size should not be a major 

obstacle to using SFA. Our results corroborate this.  
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We then estimated a heteroskedastic SFA model which incorporated determinants of 

eco-inefficiency. We use the same determinants used by Pérez-Urdiales et al. (2015), 

who carried out their analysis applying bootstrapped truncated regression techniques. 

As extra parameters have to be estimated, the small sample size became more of an 

issue for the stochastic frontier model. Indeed, in order for the model to converge we had 

to use fewer environmental pressures in our application than Pérez-Urdiales et al. 

(2015). Encouragingly, however, we found the exact same signs on the determinants of 

eco-efficiency as those found by Pérez-Urdiales et al (2015). Thus, even with a small 

sample size and multiple determinants of eco-inefficiency, the stochastic frontier model 

yields similar conclusions to those obtained by truncated regression techniques based 

on DEA estimates of eco-efficiency.  

Using stochastic frontier models for eco-efficiency measurement has some advantages 

over the bootstrapped truncated regression techniques that have been employed in the 

litrature to date. In particular, the stochastic frontier model can be carried out in one stage 

and the coefficients on the environmental pressures (‘technology’ parameters) have 

interesting interpretetations which shed light on the contribution of these pressures to 

firm profits. The estimated coefficients also uncover potentially useful information on the 

substitutability between environmental pressures. As such, we advocate the use of SFA 

for measuring eco-efficiency as a complement to or substitute for DEA-based 

approaches. When sample size is small and we wish to incorporate determinants of eco-

efficiency, the DEA-based truncated regression techniques may permit more 

environmental pressures to be included in the analysis. However, with larger sample 

sizes, we would expect this advantage to disappear and the stochastic frontier models 

can provide extra valuable information for producers and policymakers, particularly with 

regard to substitutability between pressures.   
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