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Abstract 

In the early 1980’s Kopp and Diewert proposed the decomposition of cost efficiency into 

allocative and technical efficiency for parametric functional forms based on the radial 

approach initiated by Farrell. We show that such approach is only valid for homothetic 

technologies where the radial distance function can be correctly interpreted as a technical 

efficiency measure since allocative efficiency is independent of the output level and radial 

input reductions leave it unchanged. For the general case of non-homothetic technologies 

where optimal input demands depend on the output targeted by the firm, as does the 

inequality between marginal rates of substitution and market pricesallocative inefficiency, 

we show that the correct definition of technical efficiency corresponds to the directional 

distance function. Indeed, its flexibility ensures that allocative efficiency is kept unchanged 

through movements in the input production possibility set when solving technical 

inefficiency, and therefore the associated cost reductions can be solelyand 

rightlyascribed to technicalengineeringimprovements. The new methodology to 

consistently decompose cost inefficiency, which generalizes the approach introduced by 

Kopp and Diewert as well as subsequent refinements, is illustrated resorting to simple 

examples of both homothetic and non-homothetic production functions. 
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1. Introduction 

 
In 1982 Kopp and Diewert proposed the first methodology based solely on duality 

theory to decompose cost (in)efficiency into technical and allocative components for the case 

of parametric specifications. Their approach did not require resorting to the primal approach 

by direct or indirect estimation of a production function and its associated minimum cost 

share equations as previous proposals by Schmidt and Lovell (1979) or Kopp (1981), but 

simply knowledge of the cost function. A system of equations involving optimal demands 

for inputsapplying Shephard’s Lemmaand relative input quantities allowed 

determination of the unknown reference technical efficient benchmark for any firm as well 

as its associated inputshadowprice vector, Balk (1997). Based on this solution a 

straightforward decomposition of cost efficiency into allocative and technical efficiency was 

possible. Kumbhakar and Lovell (2000) discuss Kopp and Diewert’s (1982) original 

proposal, along with subsequent refinements by Zieschang (1983) and Mensah (1994), who 

improved the methodology by simplifying the system of equations to be solved, resulting in 

less computational requirements and numerical difficulties.  

A common feature of all these and subsequent contributions, including those 

extending the previous analytical frameworks based on numerical solutions to an 

econometric setting that allows estimation of the cost functionKumbhakar (1997)is that 

they relied on Farrell’s (1957) radial definition of technical efficiency, related both to the 

coefficient of resource utilization by Debreu (1951) and the inverse of Shephard’s (1953) 

input distance function. Using Farrell’s approach implies that technical efficiency is 

measured against the reference isoquant corresponding to the observed output level, 

regardless whether that output level was the one originally intended by the firm. Once the 

firm is projected to that isoquant, and thanks to duality, allocative efficiency, defined as the 

ratio between minimum cost and the cost at the technically efficient projection, is measured 

as a residual. As we show in this study, and despite the fact that the previous contributions 

allowed for both homothetic and non-homothetic technologies, Farrell’s approach is only 

consistent for the former case, where radial reductions of inputs can be rightly interpreted as 

technicalengineeringimprovements resulting in cost savings, because whatever the 

allocative efficiency magnitude resulting from the (in)equality of marginal rates of 
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substitution with input price ratios, it does not change along the radial contraction path 

represented by the input distance function. This result stems from one remarkable 

technological property normally taken for granted in the literature by customarily assuming 

homotheticity, that the marginal rates of substitution among inputs are independent of the 

output level, and therefore the radial contractions of input quantities leave allocative 

efficiency unchanged.  

This would not be relevant if one is willing to accept that the observed output level 

of the firm is the one targeted by its managers, and therefore optimal input demands are 

determined at that output level. However, adopting an input orientation to measure and 

decompose cost efficiency does not safeguard from the fact that the researcher does not know 

what is the output level originally intended by the firm. In the case of non-homothetic 

technologies, where the optimal input demands that minimize production cost depend on the 

output levels, allocative efficiency changes with the reference output level, and its residual 

nature is no longer consistent with a radial definition of technical efficiency. Consequently, 

the definition of allocative efficiency and its associated distance function 

counterpartmeasuring technical efficiencyhas gained recent attention. Bogetoft et al. 

(2006) were the first ones to propose a non-residual definition of allocative efficiency 

separate from technical efficiency. They showed that under input homotheticity, allocative 

efficiency is independent of output level and that the order in which cost efficiency is 

decomposed, first technical and then allocative, or vice versa (i.e., the reversed approach), is 

irrelevant as they yield the same results. However, they failed to fully acknowledge that for 

non-homothetic technologies the radial input distance function cannot be truly considered as 

a correct measure of technical efficiency as it does not leave allocative efficiency unchanged, 

since it depends on the output level that is considered when measured. This has been recently 

stressed by Aparicio et al. (2015), who in a non-parametric non-homothetic Data 

Envelopment Analysis framework, show that a consistent definition of technical efficiency 

can only be achieved by resorting to the directional distance functionChambers et al. 

(1996), whose flexibility allows to measure technical efficiency without altering allocative 

efficiency simultaneously. In short, they unveil that behind the apparently casual residual 

nature of allocative efficiency, a rationale for cost efficiency decomposition exists, and that 

indeed that rationale must be extended to non-homothetic technologies proposing a new 
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model. Given the advantages of assuming homotheticity as the most common functional 

restrictionChambers and Mitchell (2001), it comes as no surprise that it is routinely 

imposed by researchers without testing for non-homotheticity, even if the latter case is the 

most common situation.1 

In this study we revisit the decomposition of overall cost efficiency into technical and 

allocative components in the light of the standard and reversed approaches and extend the 

associated analytical framework to non-homothetic technologies. In this situation we show 

that the choice of reference output level is of paramount importance as both approaches are 

not equivalent, and introduce a new methodology that based on the definition of the 

directional distance function, allows us to reconcile both approaches and regain theoretical 

consistency under a general technological specification.2 In short, this is accomplished by 

ensuring that when measuring the technical efficiency of a firm producing in the interior of 

the production possibility set through movements to the frontier, allocative efficiency does 

not change along this process. This constitutes the desired condition that is unintentionally 

kept in the standard Farrell approach for homothetic technologies. Knowing that technologies 

will not generally exhibit the stylized homotheticity assumption, it is mandatory that when 

defining, interpreting and correctly decomposing cost efficiency, a correct measure of 

technical efficiency must keep constant its allocative efficiency counterpart.  

We introduce the necessary theoretical results to support our new methodology and 

illustrate how to solve the economic models and calculate and decompose cost efficiency for 

non-homothetic technologies, comparing the results of the new approach to their homothetic 

counterparts. We do so analytically for well-defined production functions within the 

determinist framework initiated by Aigner and Chu (1968), who relied in mathematical 

programming, and that was extended to cost efficiency decomposition by the above 

                                                 
1 From a parametric perspective, early confirmation of non-homothetic technologies is given by 

Christensen and Greene (1976) and Sato (1977), who show that for relevant electric utilities and manufacturing 
industries, non-homothetic specifications are statistically significant. In a non-parametric context, Aparicio, 
Pastor and Zofío (2015) show that the most common DEA technologies are non-homothetic, except for the 
single output and constant returns to scale model.   

2 As opposed to Kopp (1981:490) about “we can ignore homogeneity or homotheticity assumptions since 
our concern is on a single isoquant”.   
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mentioned authors. In this way we give continuity and revitalize a strand of literature that 

has not been revisited in the light of recent theoretical developments.3 

The paper is organized as follows. In Section 2, we recall the standard and reversed 

Farrell approaches and show how the radial distance function correctly characterizes 

technical efficiency as radial projections of inefficient firms leave allocative (in)efficiency 

unchanged, and therefore all cost savings can be attributed to technical efficiency gains. We 

illustrate our discussion with standard Cobb-Douglas homothetic technologies, including the 

well-known example by Kopp and Diewert (1982). Section 3 is devoted to introduce the 

correct decomposition of economic efficiency when the technology is non-homothetic by 

relying on the directional distance function as a measure of technical efficiency, and extends 

the previous rationale of ensuring that allocative (in)efficiency is kept constant as production 

cost is reduced through changes in the employed inputs quantities. We introduce the 

necessary programs to calculate the directional distance function that ensures a correct 

decomposition of cost inefficiency, and illustrate the model changing the previous Cobb-

Douglas specifications so as to render the technology non-homothetic. Section 4 concludes. 

 

2. Technical, allocative and costs efficiency with homothetic technologies: The standard 

approach 

 

2.1. The production technology and technical efficiency 

 

In this section we show that the standard decomposition of cost efficiency into technical and 

allocative efficiency, where the former is characterized by Shephard’s input distance 

function, holds for the specific case of homothetic technologies, since allocative efficiency 

remains unchanged along the radial input reductions towards the frontier isoquant, regardless 

of the output isoquant that is considered as benchmark for its measurement. Let us consider 

the production possibility set  ( , ) : , , can produceN MT x y x R y R x y    . We assume that T 

satisfies the customary axioms, including closedness, Färe (1988). In this case, and for the 

                                                 
3 There are recent contributions that use semi-parametric and non-parametric techniques to estimate 

stochastic frontier models allowing for flexible functional formse.g. Delis (2014), whose analytical 
framework could be used to implement the ideas introduced in this study. 
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single output case: M = 1, the technology can be represented by a production function f: 

NR R  , that is defined by: 

  

 ( ) max : ( , )
y

f x y x y T  ,      (1) 

 

This definition stresses the envelope nature of the production function by 

characterizing the maximum amount of output that can be obtained from any combination of 

inputs. The advantage of this interpretation is that it leaves room for technical inefficiency, 

since under the appropriate assumptions we can define the technology set departing from the 

production function as  ( , ) : ( ) , ,NT x y f x y x R y R     . We assume that: (i) the production 

function is well-behaved satisfying all desirable neoclassical properties and regularity 

conditions, particularly quasi-concavity, which ensures that the associated input production 

possibility sets are convex, Madden (1986); and (ii) it is continuous and twice differentiable.4 

A relevant property is that the technology is homothetic when the production function is 

homogenous of degree r > 0: ( ) ( )rf x f x  . For r > 1, r = 1, and r < 1, the technology 

exhibits increasing, constant or decreasing returns to scale, respectively.5 

Since we focus our analysis on the decomposition of economic efficiency into 

technical and allocative efficiency, it is better to represent the technology by means of the 

associated distance function, which provides a straightforward measure of the former. 

Assuming a cost minimizing behavior on the part of the firm, it is also convenient to define 

the input requirement set as    ( ) : ( , ) : ( )NL y x x y T x R f x y     and therefore 

 ( , ) : ( ),T x y x L y y R   . We say that the technology is homogeneous of degree r  if 

                                                 
4 The quasi-concavity assumption, ensuring that the input isoquants are convex, is satisfied by the most 

common functional forms―including those presented in subsequent sections; e.g. Cobb-Douglas. The 
regularity and differentiability conditions of the production function (1) passes on the distance functions defined 
belowsee Blackorby and Diewert (1979). 

5 Boussemart et al. (2009) introduced a more general definition in the literature for multi-output multi-input 
contexts: a production technology T  is said to be homogeneous of degree   if for all 0   

   , ,x y T x y T    . In particular, if ( ) ( )rf x f x   for all 0   and 

    , : , , ,NT x y f x y x R y R      then T  is homogeneous of degree r  following Boussemart et al.’s 

definition. 
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1( ) ( )rL y L y   (see Färe and Mitchell, 1993 and Boussemart et al., 2009). Additionally, the 

input requirement set allows us to recall Shephard’s input distance function as follows:  

 

 
0

( , ) sup : ( / ) ( )


 ID x y x L y


  .  (2) 

 

This function completely characterizes the technology under weak disposability of 

inputs (Färe and Primont, 1995), and allows us to determine the technical efficiency of any 

firm 1 1( , )x y  as follows: Considering the observed output level y1 as reference, we can define 

its associated isoquant as  1 1 1Isoq ( ) : ( ), ( ) 1    L y x x L y x L y  , y1 > 0, and it can be 

shown that 1 1Isoq ( )x L y  if and only if 1 1( , )ID x y  = 1. Therefore, for 1 1( , )ID x y  > 1 the firm 

is technically inefficient, and its projection on the isoquant is denoted by 

1 1 1 1 1ˆ / ( , ) Isoq ( ) Ix x D x y L y .  

One may also think of inefficiency from the output perspective, and rely on the output 

distance function to equivalently determine if 1 1( , )x y  is technically efficient or not. Define 

the output distance function as:   

 

 
0

( , ) inf : ( ) / )


 OD x y f x y


  ,      (3) 

 

then if 1 1( , )x y  is interior to Ttechnically inefficient, 1 1( , )OD x y < 1, while it is efficient as 

long as 1 1( , )OD x y  = 1 and the inequality in (3) is an equality. In the event of 1 1( , )x y  being 

inefficient, its projection in the output dimension corresponds to the following vector 

1 2 1 1( , ) ( , / ( , )) Ox y x y D x y , 2 1y y , showing that the observed input vector yields a higher 

amount of output. In this case it can be proved that the efficient projection belongs to the 

frontier of the technology: 2 1( )y f x , or alternatively, the isoquant defined as 2Isoq ( )L y  = 

 2 2: ( ), ( ) 1x x L y x L y     , with 1 2Isoq ( )x L y . In case that 1 1( , )x y  were efficient, 

1 1( , )OD x y  = 1 1( , )ID x y = 1, and therefore 1 1 1 1 1 2ˆ( , ) ( , ) ( , )x y x y x y  . However, when the firm 

is technically inefficient it is verified that: 1 1 1 1 1 2ˆ( , ) ( , ) ( , )x y x y x y  . 
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2.2 The cost function and allocative efficiency 

 

As previously discussed in the introduction, the implications of the previous result regarding 

the two alternative orientations that researchers use when measuring technical efficiency are 

quite relevant for the decomposition of cost efficiency so as to learn from its sources, 

particularly the correct definition of technical efficiency in terms of its allocative counterpart. 

As a cost minimizing firm demands input quantities taking as reference its ex-ante intended 

output level, but the researcher either observes ex-post actual production y1 or, based on the 

excess of inputs consumed by the firm to produce it, can determine the potential output level 

y2 that would be attainable, the choice of orientation is quite relevant when assessing 

allocative efficiency. Therefore, when optimal input quantities at y1 or y2 differ from those 

actually observed x1, or those at the technically efficient projection 1x̂ , the firms incur in 

allocative inefficiency, whose magnitude may vary at both output levels. In this section, we 

recall Bogetoft et al.’s (2006) results showing that for the case of homothetic technologies 

they are the same, and therefore it does not constitute a concern for the analyst, contrarily to 

the non-homothetic case that we address in the next section.  

We elaborate this issue formally by defining the cost functionfrontierdual to the 

technology as  ( , ) min ( ) 
x

C y w wx x L y 6, representing the minimum cost of producing y 

given the vector of inputs prices w = (w1, …, wN), and satisfying the usual properties, 

including continuity and second order differentiability. Among these, we recall here that 

when the single output technology represented by the production function is homogenous of 

degree r, the cost function is separable and can be expressed as follows: 1/( , ) (1, ) rC y w y C w

Silberberg and Suen (2000; 229).  

                                                 
6 Notice that ( )L y  is closed since we are supposing that T  is closed. However, it is not enough to assure 

that ‘inf’ can be substituted by ‘min’ in  inf ( )
x

wx x L y . So, hereafter, we assume that the optimization 

problem associated with the calculation of the cost function ( , )C y w  always attains its minimum in the set 

( )L y . There exist several sufficient conditions in the literature which assure such result. For example, Shephard 

(1970, p. 223) assumed that the subset of Pareto-efficient points of ( )L y  is bounded. Another case is when the 

technology is a polyhedral set (see Mangasarian, 1994, p. 130). 
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Given a particular vector of market prices, w, we can recover the amount of inputs 

minimizing the cost of production by way of Shephard’s Lemma, i.e.,    

 

*( , ) ( , )wx y w C y w ,                           (4) 

 

where  1( , ) ( , ) / ,..., ( , ) /     w NC y w C y w w C y w w . This vector of input demand equations 

solves the first order conditions that result from the cost minimizing problem subject to the 

production function constraint, which is contingent on a particular output level y, and 

implying that *( , ) Isoq ( )x y w L y . Again, if the production function is homogenous of degree 

r, the system of demand equations can be expressed as: 

 

* 1/( , ) (1, ) r wx y w y C w .                           (5) 

For any two inputs k and l with associated market prices kw  and lw , the first order 

conditions also imply that the marginal rate of technical substitution of factor k for factor l 

must be equal to the price ratios: 7 

 

/ ( ) / ( ) / ,   k
l k l k lMRS dl dk f x f x w w         (6) 

 

where ( ) ( ) /k kf x f x x    and ( ) ( ) /l lf x f x x    are marginal productivities. With this 

information we define the (input-oriented) allocative efficiency of 1 1( , )x y in the following 

way: 

 

11 1 * 1
1 1

1 1 1 1 1 1 1 1 1 1

( , )( , ) ( , ) ( , )
( , , )

ˆ / ( , ) / ( , ) / ( , )


   w

I I I

w C y wC y w C y w wx y w
AE x y w

wx wx D x y wx D x y wx D x y
, (7) 

which under homogeneity of degree r can be expressed as follows: 

 

                                                 
7 We assume that given our assumptions about the production technology, the second order conditions are 

verified and therefore the sign of the bordered Hessian determinant is negative.  
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1 1/1 1/ 1 1/ *
1 1

1 1 1 1 1 1 1 1 1

( ) (1, )( ) (1, ) ( ) (1, )
( , , )

/ ( , ) / ( , ) / ( , )


  

rr r
w

I I I

y w C wy C w y wx w
AE x y w

wx D x y wx D x y wx D x y
, (8) 

As for the values of 1 1( , , )AE x y w , if  1 1 1 1 * 1ˆ / ( , ) , Ix x D x y x y w  the firm is allocative 

efficient with 1 1( , , )AE y x w = 1, and the marginal rates of substitution are equal to the input 

price ratios, eq. (6). It follows immediately that if  1 1 1 * 1/ ( , ) ,Ix D x y x y w  the firm is 

allocative inefficient with 1 1( , , )AE x y w < 1, with the marginal rates of substitution differing 

from relative prices. 

Following now the reverse approach proposed by Bogetoft et al. (2006), we define 

the allocative efficiency associated to the optimal input demands if the firm were to take as 

reference output level 2y  with 1 2Isoq ( )x L y and therefore 1 2( , )ID x y = 1 so the firm is 

technically efficient and the second equality below holds. In that case: 

  

22 * 2
1 2

1 1 2 1 1

( , )( , ) ( , )
( , , )

/ ( , )
w

I

w C y wC y w wx y w
AE x y w

wx D x y wx wx


   , (9) 

which under degree r homogeneity can be expressed equivalently as: 

 

2 1/2 1/ 2 1/ *
1 2

1 1 2 1 1

( ) (1, )( ) (1, ) ( ) (1, )
( , , ) .

/ ( , )


  

rr r
w

I

y w C wy C w y wx w
AE x y w

wx D x y wx wx
  (10) 

This expression is numerically interpreted in the same way as above.  

We now recall that homogeneity allows the following definition of the input distance 

function. 

Lemma 1 [Färe and Mitchell, 1993]. Let f be a production function homogeneous of degree 

r > 0, then    1, ,1 r
I ID x y y D x . 

Proof. This result is a direct consequence of Proposition 1(iii) in Färe and Mitchell (1993) 

when 1M  . ■ 

Relying on Boussemart et al. (2009), we recall that, for homogenous technologies, 

the following relationship between the input and output distance functions holds: 
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Proposition 1 [Boussemart et al., 2009]. Let f be a production function homogeneous of 

degree r > 0, then  
 1/

1
,

,
I r

O

D x y
D x y

  and  
 
1

,
,

O r

I

D x y
D x y

.  

Proof. It follows directly from Proposition 3.3(a) in Boussemart et al. (2009). ■ 

 

We can now establish the following result relating the values of the allocative efficiency 

measures 1 1( , , )AE x y w  and 1 2( , , )AE x y w : 

 

Proposition 2. Let f be a production function homogeneous of degree r > 0, then (i) the 

allocative efficiency of a firm is the same regardless of the output level that is taken as 

benchmark for its input demands: 1 1( , , )AE x y w  = 1 2( , , )AE x y w , and (ii) the marginal rates 

of substitution are independent of the output level and remain constant along the ray vector 

associated to the input distance function: k
lMRS  = /dl dk  = 1 1( ) / ( )k lf x f x  = 

1 1( / ) / ( / )k lf x f x   for all 1 11 ( , )  ID x y . 

Proof: (i) If the technology is homogeneous of degree r then (i) 1 1 *( , , )AE x y w  = 

1 1/ 1 1 1( ) (1, ) / / ( , )r
Iy C w wx D x y  [see (8)] and 1 2( , , )AE x y w  =  1/1 1 1 1/ ( , ) (1, ) /

r

Oy D x y C w wx  by 

(10) with 2 1 1 1/ ( , ) Oy y D x y . Therefore 1 2( , , )AE x y w  / 1 1( , , )AE x y w  = 

  1 1/ 1 1 1/ 1( ) / ( , ) (1, ) /r r
Oy D x y C w wx    /    1 1/ 1 1 1( ) (1, ) / / ( , )r

Iy C w wx D x y    = ( 1 1 1/1/ ( , ) r
OD x y ) /

1 1( , )ID x y   =  1, since 1 / 1 1 1/( , ) r
OD x y  = 1 1( , )ID x y  by Proposition 1; (ii) Making use of the 

property that the first order partial derivatives of a homogenous production function of degree 

r in the input quantities are homogenous of degree r1 (e.g., Silberberg and Suen, 2000, p. 

225), i.e., 1 ( ) ( )r
k kf x f x   , 0  , we observe that 

1 1 1 1/ ( ) / ( ) ( / ) / ( / ).    k
l k l k lMRS dl dk f x f x f x f x  ■  

As a counterpart to the cost function separability under linear homogeneity of degree 

r: 1/( , ) (1, ) rC y w y C w , and for future reference, we recall its associated input homotheticity 

counterpart in terms of the input requirement set:    1/ 1 rL y y L  (see Färe and Mitchell, 

1993). Additionally, under the hypothesis of homogeneity it is possible to prove that two 
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firms located on the same output isoquant for 2y  share the same input-oriented technical 

efficiency when it is calculated with respect to a common level 1y . 

Lemma 2. Let f be a production function homogeneous of degree r > 0. Let  1 2 2, .x x Isoq y  

Then, 1 1 2 1( , ) ( , )I ID x y D x y . 

Proof. By definition, 
1

1
1 1

ˆ
( , )


I

x
x

D x y
. In this way, 1 1 1 1ˆ( , ) Ix D x y x , which implies that 

1 1 1 1 1 1 1ˆ ˆ( ) ( ( , ) ) ( , ) ( )  r
I If x f D x y x D x y f x  using that  f x  is homogeneous. Now, applying 

that 1 2( ) f x y  and 1 1ˆ( ) f x y , we have that 
11

1 1
2

( , )
 

  
 

r

I

y
D x y

y
. Finally, since 

 1 2 2, x x Isoq y , we obtain that 1 1 2 1( , ) ( , )I ID x y D x y . ■ 

As we recall later, it follows from this result that, under the homotheticity assumption, 

the values of Shephard’s input distance function for any two firms belonging to a given 

isoquant  2Isoq L y  are equal when they are projected onto the same reference isoquant 

 1Isoq L y Bogetoft et al. (2006). From a graphical perspective the homotheticity 

relationship    1/ 1 rL y y L , implies that the inputs sets are “parallel” along a given ray 

vector.  

 

2.3. Decomposing cost efficiency into allocative and technical terms 

 

With this background, we define the cost efficiency of firm 1 1( , )x y  and decompose it into its 

allocative and technical components. The overall cost efficiency when firms demand inputs 

taking as reference 1Isoq ( )L y is given by: 

 

1 1
1 1 1 1 1 1

1 1 1 1 1 1

( , ) ( , ) 1
( , , ) ( , , ) ( , )

( / ( , )) ( , )
  

i I I

C y w C y w
CE x y w AE x y w TE x y

wx w x D x y D x y
, (11) 

 

corresponding to the standard approach proposed by Farrell. Following Bogetoft et al. (2006) 

we can also define the reversed overall cost efficiency taking 2Isoq ( )L y  as the reference for 
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the allocative efficiency evaluationagain assuming 1 2Isoq ( )x L y  so the firm is technically 

efficient: 

 

     

     

    

1 1 2 1 2 1 2

2

1 2 1 2
1

1 2 * 2 1

, , , , , , , ,

,
, , , , ,

, , 1 , , .

 

 



R R R

R

R
I

CE x y y w AE x y w TE y y w

C y w
AE x y w AE x y w

wx

TE y y w D x y w y

 (12) 

 

In their method, they first correct for allocative efficiency by changing the observed 

input bundle from x1 to x*(y2,w) = arg min  2: ( )wx x L y  on Isoq L(y2), and then remove 

technical inefficiency by reducing the input quantities radially from x*(y2,w) to x*(y2,w) on 

Isoq L(y1), where  = D(x*(y2,w), y1). As a result of their Proposition 1, Bogetoft et al. (2006) 

show that under input homotheticity both decompositions are equivalent; i.e., 

   1 1 2 1 1, , , , ,RCE x y y w CE x y w ,    1 2 1 1, , , ,RAE x y w AE x y w  and    1 2 1 1, , ,RTE y y w TE x y

. Here we summarize this result in terms of the input and output distance functions through 

the following result, since the equivalence of the allocative components was stated in 

Proposition 2. 

 

Proposition 3. Let f be a production function homogeneous of degree r  > 0, then 

1 2 1 1( , , ) ( , )RTE y y w TE x y  = 1 11/ ( , )ID x y  = 1 1 1/( , ) r
OD x y .  

Proof. It follows directly from Proposition 1 in Bogetoft et al. (2006) and Proposition 1 above 

by Boussemart et al. (2009). ■ 

 

As a result of Propositions 2 and 3 we obtain the following:  

 

Corollary 1. Let f be a production function homogeneous of degree r > 0, the input distance 

function can be considered as a measure of technical efficiency because the radial 

contraction that it brings along the ray vector (factor beams along which factors are held in 

fixed proportions) leaves the marginal rates of substitution unchanged, as they do not depend 

on the output levels, and therefore the difference between the marginal rates of substitution 
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and the price ratios remains constant: 1 1( , )k
l k lMRS x x  = 1 1 1 1 1 1( / ( , ), / ( , ))k

l k I l IMRS x D x y x D x y 


/k lw w .  

This implies that regardless of whether the firm is allocative efficient ( (·)k
lMRS  = 

/k lw w ) or not ( (·)k
lMRS  ≠ /k lw w ), the allocative efficiency level given by (7), which is 

independent of the output level or input isoquant that is chosen as reference, is constant along 

the ray vector, and therefore any cost inefficiency reduction through radial projections can 

be attributed solely to technical inefficiency reductions. That is, the input distance function 

can be consistently used to determine the technical efficiency level regardless of the intended 

output level that the managers of a firm might have targeted, and therefore taken as 

benchmark when planning their input demands.     

 

2.4 Examples with homothetic Cobb-Douglas production functions: H-CD  

 

Example 1. Let us consider the homothetic Cobb-Douglas production function exhibiting 

constant returns to scale 0.5 0.5
1 2 1 2( , ) f x x x x , r = 1, depicted in Figure 1 along with the isocost 

function  
1 1 2 2C w x w x  , with input prices 1w  = 2w  = 1. The dual cost frontier is analytically 

given by 0.5 0.5
1 2( , ) (1, ) 2C y w yC w y w w  , from which we determine the vector of input 

demand equations applying Shephard’s lemma: * *
1 2( ( , ), ( , ))x y w x y w  = 1( ( , ) /C y w w  , 

2( , ) / )C y w w   =  1( (1, ) /y C w w  , 2(1, ) / )y C w w   = 0.5 0.5
1 2(y w w , 0.5 0.5

1 2 ).y w w  Moreover, 

given the marginal productivity functions 0.5 0.5
1 1 2( ) 0.5f x x x  and 0.5 0.5

2 1 2( ) 0.5f x x x , 

1
2 2 1/MRS x x . Then, the expansion path for the H-CD given the first order condition: 

1 * *
2 2 1 1 2/ /MRS x x w w  , is * *

2 1 2 1( / )x w w x . 

Considering as the firm under evaluation 1 1( , )x y  = 1 1 1
1 2( , , )x x y  = (4,1,1)  and the 

optimal cost minimizing inputs quantities for the observed output level y1 = 1, * 1( , )x y  = 

* * 1
1 2( , , )x x y  = (1, 1, 1), we firstly determine its overall cost, allocative and technical 

efficiencies with respect to the isoquant 1Isoq ( 1)L y  . Following eq. (11), 1 1( , , )CE x y w  = 2/5 

= 0.4, 1 1( , , )AE x y w  = 2/2.5 = 0.8, and 1 1( , )TE x y  = 1/ 1 1( , )ID x y  = 1/2 = 0.5, where ( , )ID x y  
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= 0.5 0.5
1 2 /x x y . From an allocative efficiency perspective we confirm that the technically 

efficient projection of the evaluated firm: 1 1 1 1 1 1 1
1 2( / ( , ), / ( , ), )I Ix D x y x D x y y  = (2, 0.5, 1) does 

not satisfy the first order conditions since 1 1 1 1 1 1 1
2 1 2( / ( , ), / ( , ))I IMRS x D x y x D x y  = 

1 1 1 1 1 1
2 1/ ( , ) / / ( , )I Ix D x y x D x y  = 0.5/2 = 0.25 < 1 2/w w  = 1. Indeed, neither the evaluated firm 

nor its technically efficient projection belong to the expansion path * *
2 1 2 1( / )x w w x . Let us 

now consider the cost efficiency decomposition with respect to the isoquant 

2 1 1 1Isoq ( / ( , ) 2)H
OL y y D x y   with 1 1( , )OD x y  = 0.5, and therefore taking eq. (12) as 

reference. In this case * 2( , )x y  = * * 2
1 2( , , )x x y  = (2, 2, 2) and 1 2( , , )RAE x y w  = 4/5 = 0.8, 

 1 2, ,RTE y y w  = 1/2 = 0.5 and, consequently,  1 1 2, , , 2 5 0.4 RCE x y y w . As presented in 

Corollary 1, the marginal rate of substitution is not equal to the input price ratio: 1 1 1
2 1 2( , )MRS x x  

= 1 1
2 1/x x  = 0.25 < 1 = 1 2/w w . From the perspective of the reverse Farrell approach presented 

in eq. (12) and recalling proposition 3, the same decomposition is obtained for 1 1 1
1 2( , , )x x y  = 

(4,1,1) :  1 1 2, , ,RCE x y y w  = 2/5 = 0.4, with 1 2( , , )RAE x y w  = 4/5 = 0.8, and 

 1 2 * 2 1, , ( ( , ), )RTE y y w TE x y w y  = 1 1( , )TE x y  = 1/ 1 1( , )ID x y  = 1/2 = 0.5. 

Table 1 presents the same analysis for two more firms, 2 2 1
1 2( , , )x x y  = (2, 2,1)  and  

3 3 1
1 2( , , )x x y  = (1, 4,1) , either targeting output level y1 = 1 but consuming more inputs than 

necessary, or targeting y2 = 2 but falling short to y1 = 1. Both firms exhibit equal technical 

efficiency  1 1( , )TE x y  = 0.5 that the previous one, by belonging to the same isoquant 

2( 2)HL y   and taking as reference the same isoquant to measure technical efficiency 

1( 1)HL y , as proved in Lemma 2. However, while  2 2 1
1 2( , , )x x y  = (2, 2,1)  is allocative 

efficient, this is not the case for  3 3 1
1 2( , , )x x y  = (1, 4,1) . Taking advantage of Figure 1, Table 1 

presents results for two more sets of firms targeting output levels 3( 3)HL y  and 4( 4).HL y   

For all these firms, the standard and reverse approaches to decompose cost efficiency yield 

the same results as in the previous cases. 
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Figure 1. Cost efficiency decomposition with homothetic technologies: The standard 

approach: 0.5 0.5
1 2 1 2( , );y f x x y x x  (H-CD) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1. Cost efficiency decomposition with a H-CD technology: 0.5 0.5
1 2y x x  . 

Selected firms targeting different output levels larger than 1(  1)L y , 1( , ) 2C y w . Figure 1 
 

 
Input x1 Input x2 

Cost 
Efficiency 

(CE) 

Allocative 
Efficiency 

(AE) 

Technical  
Efficiency 

(TE) 
1x̂  2x̂  

2( 2)HL y  
2( , ) 4C y w   

4.0000 1.0000 0.4000 0.8000 0.5000 2.0000 0.5000 

2.0000 2.0000 0.5000 0.0000 0.5000 1.0000 1.0000 

1.0000 4.0000 0.4000 0.8000 0.5000 0.5000 2.0000 

 

3( 3)HL y  
3( , ) 6C y w   

4.0000 2.2500 0.0833 0.2500 0.3333 1.3333 0.7500 

3.0000 3.0000 0.3333 0.0000 0.3333 1.0000 1.0000 

2.2500 4.0000 0.0833 0.2500 0.3333 0.7500 1.3333 

 

4( 4)HL y  
4( , ) 8C y w   

4.5000 3.5556 0.1241 0.4965 0.2500 1.1250 0.8889 

4.0000 4.0000 0.2500 0.0000 0.2500 1.0000 1.0000 

3.5556 4.0000 0.1241 0.4965 0.2500 0.8889 1.0000 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0 

0.5

1 

1.5

2

2.5

3 

3.5

4 

4.5

• 

  

 

•

 c(y1,w)  

 c(y2,w)  

 
• 

•
 

2 1 1 2 2c w x w x    

2( 2)HL y 
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Example 2. The second example revisits the classic three-input CD production 

function presented in Kopp and Diewert (1982): 0.25 0.1 0.7
1 2 30.049y x x x , which is homogeneous 

of degree r=1.05 and whose dual cost frontier is ( , )C y w = 1/ (1, )ry C w  = 

1/1.05 0.238 0.095 0.667
1 2 340.4y w w w . Given the firm under evaluation 1 1( , )x y  = 1 1 1 1

1 2 3( , , , )x x x y  = 

(500, 50,162754,1300) , input prices: w1 = $12,000, w2 = $20,000, w3 = $65, and optimal input 

demands: * * *
1 2 3( ( , ), ( , ), ( , ))x y w x y w x y w  = (290.6, 69.7, 150163.9), minimum cost is: 1( , )C y w  = 

$14,641,987.2 (see Table 2). Therefore cost efficiency is 1 1( , , )CE x y w  = 0.8325, 1 1( , , )AE x y w  

= 0.9689,  and 1 1( , )TE x y  =  1 / 1 1( , )ID x y  = 0.8596. Note that thanks to Proposition 1, since 

1 1
O( , )D x y = 1,300 / 1,523.73  = 0.8532, we can recover 1 1( , )ID x y = 1 / 0.85321/1.05 = 1.1633, 

and therefore project the evaluated firm to the isoquant y1=1,300 without solving the system 

of equations proposed by Kopp and Diewert (1982), Zieschang (1983) or Mensah (1994), 

thereby rendering their methodology unnecessary for the case of homothetic technologies; 

i.e., the technically efficient input vector corresponds to 1 1ˆ( , )x y  = 1 1 1 1( / ( , ), )Ix D x y y  = 

(429.8,43.0,139910.8,1300) , with an associated cost of $15,111,724.7. 8 Again, the reverse 

Farrell approach yields the same results for the three firms falling short from producing y2 = 

1,523.72. The results for two additional sets of firms producing y3 = 1,750 and y4 = 2,000 are 

also presented in Table 2. 

                                                 
8 There are numerical discrepancies for the technically efficient input vector as a result of the iterative 

computational algorithm used by Kopp and Diewert (1982), who report the following values: 
(423,42, 131839). It is however easy to check that the output value corresponding to this vector given the 

production function is y = 1,278.4, falling short from the reference value y1 = 1,300. 
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Table 2. Cost efficiency decomposition with a H-CD technology: 0.25 0.1 0.7
1 2 30.049y x x x  . 

Selected firms targeting different output levels larger than 1(  1, 300)L y . 1( , ) 14, 641, 987.26C y w , KD(1982). 
 

 
Input x1 Input x2 Input x3 

Cost  
Efficiency 

(CE) 

Allocative 
Efficiency 

(AE) 

Technical  
Efficiency 

(TE) 
1̂x  2x̂  3x̂  

2( 1,523.72)HL y  
2( , ) 17,032,589C y w  

500.00 50.00 162,754.00 0.8329 0.9689 0.8596 429.82 42.98 139,910.73 

338.00 81.12 174,681.36 0.8596 1.0000 0.8596 290.56 69.73 150,164.03 

716.14 20.04 163,130.12 0.7471 0.8691 0.8596 615.63 17.23 140,234.14 

 

3( 1, 750.00)HL y  
3( , ) 19, 433,343C y w  

570.48 57.05 185,694.32 0.7300 0.9689 0.7534 429.82 42.98 139,910.76 

385.64 92.55 199,302.80 0.7534 1.0000 0.7534 290.56 69.73 150,164.03 

817.08 22.86 186123.51 0.6548 0.8691 0.7534 615.63 17.23 140,234.14 

 

4( 2,000.00)HL y  
4( , ) 22, 068, 761C y w  

647.84 64.78 210,876.94 0.6428 0.9689 0.6635 429.82 42.98 139,910.77 

437.94 105.10 226330.90 0.6635 1.0000 0.6635 290.56 69.73 150,164.03 

927.89 25.96 211,364.24 0.5766 0.8691 0.6635 615.63 17.23 140,234.14 
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These two examples illustrate that the theoretical analysis underlying the standard 

Farrell decomposition of overall efficiency from a cost minimizing perspective assuming that 

managers take as reference benchmark y1 when demanding inputsand identifying the input 

distance function as the exact measure of technical efficiencyis equivalent to a managerial 

behavior that takes as the targeted benchmark an alternative output level such as y2 (but falls 

short from attaining it). Therefore, when decomposing overall cost efficiency, it is irrelevant 

what orientation is chosen (output or input) since the relative contributions of the allocative 

and technical terms do not change. This means that if the production technology were indeed 

homothetica quite restrictive assumption, it would not really matter the uncertainty that 

the researcher faces with respect to the output level initially planned by the inefficient firm, 

since this divergence between the managerial behavior when demanding inputs and the a 

priori choice of the researcher for a given orientation, does not result in a wrong 

decomposition of cost efficiency.    

 

3. Technical, allocative and cost efficiency with non-homothetic technologies: The 

generalized approach 

 

In this section we show that when the technology is non-homothetic, using the 

observed output level as reference benchmark to assess allocative efficiency as implied by 

the standard Farrell approach results in a wrong decomposition of cost  efficiency if the firm 

had targeted an alternative output level. We show that the previous results summarized in 

Propositions 2 and 4 do not hold and therefore the standard and reverse Farrell approaches to 

evaluate the sources of cost inefficiency do not coincide, so a new general approach to 

decompose cost efficiency is introduced. First, we show the inconsistency of the standard 

decomposition empirically by relaying on a non-homothetic definition of the two previous 

examples and, secondly, we introduce the theoretical results on which the new generalized 

approach is based.  

As with the choice made for a constant returns to scale technology represented by the 

homothetic Cobb-Douglas function that was intended to simplify the exposition, H-CD, and 

in order to ease the comparison between the standard and the generalized approach under 

non-homotheticity, we continue with the Cobb-Douglas specification, but modify it so as to 
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represent a non-homothetic technology, NH-CD. Particularly, since we have to decide on a 

specific functional form, we rely on Sato (1977) and adopt the following specification: 

 

( )

1
( , ) k

N c y
kk

f x y x


 ,  (13) 

which can be expressed more conveniently by taking logarithms and normalizing by ( )kc y  

as 1

1
( , ) ln ( ) ln ( ) 0

N
k l ll

f x y x c y x h y



    , or, equivalently–see Sato (1975):  

 

1

1
( ) ln ( ) ln

N
k l ll

h y x c y x



  .   (14) 

  Relevant for our analysis is the expression of the marginal rate of substitution 

associated to (14), which for any two inputs k and l is: 

 

1 1 1 1/ ( ) / ( ) ( / ) ( )k
l k l l kMRS dl dk f x f x x x g y    ,  (15) 

 As opposed to the H-CD, the marginal rates of substitution for the NH-CD 

specification are variable at a constant factor ratio by depending on the output level, whose 

functional specification g(y) is to be defined. Particularly, we assume the simplest 

specification for the output level function: ( )lc y y , where  represents the non-

homotheticity parameter. Assuming this specification we relate it to h(y) in eq. (14) so as to 

explicitly express y as a function of the inputs.9 To make the argument concrete, illustrate it 

and compare it to the previous H-CD specification, we adopt the following formulations: 

1( ) 2yh y  , ( ) 0.5c y y , and consider first the two-inputs case. With these specifications the 

non-homothetic Cobb-Douglas function NH-CD becomes 1 0.5 0.5
1 22  y yx x , while eq. (14) is 

( 1) ln 2y   = 1 20.5ln 0.5 lnx y x .10 We can recover analytically the explicit expression for y: 

 

                                                 
9 As ( )lc y and ( )h y are arbitrary functions on a priori basis, the non-homothetic expression of the 

production function is implicit generally.  
10 Note that with these functional forms, the isoquants of the H-CD and NH-CD for y = 1 are the same, i.e., 

1Isoq ( 1)L y  see the graphical representation of these level curves in Figures 1 and 2. 
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1

2

ln 2 0.5ln

ln 2 0.5ln





x

y
x

,   (16) 

and the marginal rate of substitution corresponds to 1 1 1
2 2 1/MRS x x y . Therefore g(y)=1/y, and 

as production varies along a given ray vector 1 1
2 1/x x , so does the marginal rate of substitution 

at the rate specified by 1 2
2 / ( ) / 1 /MRS y g y y y       . Thenon-separabledual cost 

frontier is 

1/0.5 0.5 1/0.5 0.51 0.5 1 0.5 0.5
2 1

1 20.5 0.5 0.5
1 2

2 2
( , )

y yy y y

y y

w w y
C y w w w

w y w

     
    

   
, where 

* *
1 2( ( , ), ( , ))x y w x y w  =  

1/0.5 0.5 1/0.5 0.51 0.5 1 0.5 0.5
2 1

0.5 0.5 0.5
1 2

2 2
,

y yy y y

y y

w w y

w y w

      
         

 are the input demand 

equations that can be obtained from the first order conditions of the cost minimization 

problemor applying Shephard’s lemma. From the former conditions the expansion path for 

the NH-CD is * *
2 1 2 1( / )x w w x y .  

In Figure 2 we represent the map of isoquants for NH-CD along with the isocost 

function  
1 1 2 2C w x w x  , and input prices 1w  = 2w  = 1. Considering initially the same firm 

under evaluation 1 1( , )x y  = 1 1 1
1 2( , , )x x y  = (4,1,1)  and the optimal cost minimizing inputs’ 

quantities for the observed output level y1 = 1, * 1( , )x y  = * * 1
1 2( , , )x x y  = (1, 1, 1), we see that 

the evaluation does not differ from the previous H-CD since the isoquants for the unitary 

output are equal. Once again, from (11) 1 1 *( , , )CE x y w  = 2/5 = 0.4, 1 1 *( , , )AE x y w  = 2/2.5 = 

0.8, and 1 1( , )TE x y  = 1/ 1 1( , )ID x y  = 1/2 = 0.5, where 1 1( , )ID x y  = 0.5 0.5 1
1 2 / 2y yx x  . Again, the 

technically efficient projection of the evaluated firm is: 1 1 1
1 2ˆ ˆ( , , )x x y  =

1 1 1 1 1 1 1
1 2( / ( , ), / ( , ), )I Ix D x y x D x y y  = (2, 0.5, 1), whose 1 1 1 1 1 1 1

2 1 2( / ( , ), / ( , ))I IMRS x D x y x D x y  = 

1 1 1 1 1 1
2 1/ ( , ) / / ( , )I Ix D x y x D x y  = 0.5/2  = 0.25 differs from the price ratio 1 2/w w  = 1. As before 

the technically efficient projection does not belong to the expansion path * *
2 1 2 1( / )x w w x y .  
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Figure 2. Cost efficiency decomposition with non-homothetic technologies: 

 0.5 ( ) 1 0.5 0.5
1 2 1 2( ) ( ); 2c y y yh y x x x x  (NH-CD) 

 
 

However, let us now consider the cost efficiency decomposition with respect to the 

isoquant 2 1 1 1Isoq ( / ( , ) 2)NH
OL y y D x y   with 1 1( , )OD x y  = 0.5, taking eq. (12) as a reference. 

Assuming that the firm falls short of the intended output, 1 2( , )x y  = 1 1 2
1 2( , , )x x y  = (2, 2, 2), its 

costs efficiency if we were to consider 1Isoq ( 1)L y   as reference would still be 1 1( , , )CE x y w  

= 2/5 = 0.4, but its allocative efficiency is now 1 2( , , )AE x y w  = 3/5 = 0.6, while its technical 

efficiency based on Shephard’s input distance function is  1 2 1 1, , ( , )RTE y y w TE x y  = 1/

1 1( , )ID x y  = 1/2 = 0.5. Consequently, opposed to the case of homothetic technologies, 

unknowing whether the firm’s targets output or inputs so as to minimize production costs 

when the technology is non-homothetic results in an inconsistent decomposition of cost 

efficiency into the allocative and technical terms. Clearly, as 1 2( , , )AE x y w = 0.6 < 

1 1( , , )AE x y w  = 0.8, 1 1( , , )CE x y w  ≠    1 2 1 2, , , ,R RAE x y w TE y y w , i.e., Proposition 2 does not 

hold, and bridging the gap would require the introduction of an additional term that Bogetoft 

et al. (2006) name “second order” allocative efficiency, 1 2( , , )AAE x y w , if one would still 
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want to rely on a technical efficiency definition associated to Shephard’s radial distance 

function. As a result, for non-homothetic technologies, these authors propose the following 

decomposition of the reverse Farrell’s approach that takes Isoq ( 2)NHL y   as reference for 

the allocative efficiency evaluation.  

 

 

* 11 2
1 1

1 1 * 2 1 * 2 * 2 1

1 2 1 2 1 2

( , )( , ) ( , ) 1
( , , )

( ( , ), ) ( , ) / ( ( , ), )

( , , ) , , ( , , ).

I I

R R

wx y wC y w C y w
CE x y w

wx wx D x y w y wx y w D x y w y

AE x y w TE y y w AAE x y w

  


         (17) 

 

The existence of 1 2 *( , , )AAE x y w  as a residual closing the decomposition led Bogetoft 

et al. (2006) to conclude that homotheticity is required so as to get consistent measures of the 

allocative and technical efficiency terms; i.e., the criterion by which the standard and reverse 

Farrell’s approaches coincide as presented in Propositions 2 and 3. However, this conclusion 

is based on the assumption that Shephard’s input distance function (2) must be still 

considered as the correct measure representingthe inverse oftechnical efficiency as stated 

in Proposition 3. However, from Corollary 1 we argue that since for non-homothetic 

technologies radial contractions of the input vectors (inefficiency reductions) do not keep 

allocative efficiency constant, Shephard’s input distance function cannot be the right 

definition for technical efficiency. The need for that second term residual, inconsistent with 

duality theory, exemplifies why a general approach based on the directional distance function 

is required.   

 

3.1 The directional distance function as efficiency measure for non-homothetic technologies 

 

As remarked in the introduction, this situation prompted Aparicio et al (2015) to drop 

Shephard’s input distance function as a (radial) measure of technical efficiency in a non- 

parametric DEA setting with non-homothetic technologies, and rely on the flexible input 

directional distance function introduced by Chambers et al. (1996) as a measure that ensures 

that no “second order” residual allocative measures are necessary to match cost efficiency 

decompositions regardless of the input level or output isoquant that is taken as reference for 
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the allocative efficiency evaluation.11 We now rely on Chambers et al. (1996) to show that a 

complete and consistent decomposition of the standard and reverse approaches based on the 

directional distance function can be obtained without resorting to ad-hoc closing terms such 

as 1 2( , , )AAE x y w  in (17). 

As it is well-known, the directional input distance function generalizes Shephard’s 

input radial distance function while preserving the desirable duality with the support cost 

function that enables a consistent decomposition into the usual technical and allocative 

components. Let  1,..., Ng g g  be a vector such that 0mg  , then the directional input 

distance function defines as     , ; sup :ID x y g x g L y   


. It can be proved that if 1g x  

then    1 1 1 1 1, ; 1 1 , 


I ID x y x D x y –e.g., Boussemart et al (2010). We define cost inefficiency 

as    1 1

1 1
,

, , ;



wx C y w

CI x y w g
wg

, and representing  1 1, ;


ID x y g  the associated technical 

inefficiency, the following duality relationship holds: 

 

   
1 1

1 1

Technical
Cost Inefficiency (TI)

Inefficiency (CI)

,
, ;I

wx C y w
D x y g

wg






.
  (18)

 

From the standard (Farrell) approach perspective, allocative inefficiency may be 

computed from (18) as a residual:  1 1, , ;AI x y w g  =  1 1, , ;CI x y w g  –  1 1, ;TI x y g .12 Note that 

(i) the decomposition is additive instead of multiplicative given the nature of each directional 

                                                 
11 There is yet a more drastic approach to this issue that considers the decomposition of technical and 

allocative efficiency essentially subjective. Zofío et al. (2013) discuss the flexibility of the directional distance 
function as a measure of technical efficiency in an exogenously pre-specified direction, and the arbitrary 
decomposition of cost efficiency into technical and allocative terms in which it results, as the former would 
change in value at the researcher’s will, depending on the choice of direction. Consequently, being the allocative 
efficiency a residual, its value will also change accordingly. Their conclusion is that the use of flexible 
directional distance functions renders the cost efficiency decomposition exercise meaningless, as technical 
efficiency depends on the choice of the directional vector, unless a criterion is imposed; i.e., in the case of 
homothetic technologies radial contractions do keep allocative efficiency unchanged, so Shephard’s distance 
function can be rightly considered as a measure of technical efficiency. For non-homothetic technologies, we 
use the same criterion of keeping allocative efficiency constant in the standard and reversed approaches, 
resulting in the same technical inefficiency values between isoquants.  

12 See Aparicio et al. (2017). 
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and radial distance functions, and (ii) the change in denomination from efficiency to 

inefficiency as a result of the change in the efficiency values: one for the radial distance 

function and zero for the directional distance functionthe higher the value the better in the 

former, and the worse in the latter.  

It can be remarked that although (18) offers flexibility in measuring cost and technical 

inefficiency through a wide array of reference vectors g, most researchers resort to 1g x  as 

their only choice. The reason is that when 1g x  the overall additive cost inefficiency 

decomposition (18) is equivalent to the multiplicative setting based on the Shephard’s input 

distance function and, therefore, the technical inefficiency values can be readily interpreted 

in terms of equiproportional reduction in inputs. However, we have exemplified that this 

latter measure is inadequate to characterize technical efficiency in a non-homothetic setting 

as the allocative (in)efficiency of an evaluated firm is not preserved through radial 

contractions. This limitation can be overcome thanks to the flexibility of the directional 

distance function as long as we can consistently extend the notion of cost efficiency 

decomposition to non-homothetic technologies and, in doing so, provide a first theoretical 

extension of the parametric models used empirically. In what follows we make use of the 

flexibility of the input directional distance function to depart from the usual assumption that 

sets 1g x , so as to propose a sound decomposition under non-homotheticity.  

Once the definition of the standard overall economic efficiency decomposition in 

terms of the directional distance function has been presented, we now extend Bogetoft et al.’s 

(2006) reversed approach to the case of the directional input distance function. As already 

presented, these authors introduced a way to estimate the “starting” allocative efficiency of 

1 1( , )x y , which does not need the initial projection of this vector to the input requirement set 

defined by the observed output vector y1, 1Isoq ( )L y . As discussed in the motivation we 

contend that if one is interested in measuring the technical efficiency corresponding to 1x  in 

the input space by means of movements to the frontier associated with the production of 1y , 

then one would ideally make sure that the allocative efficiency does not change along this 

process, as we have illustrated with the NH-CD case when taking y2 as reference for 

allocative efficiency, yielding different results when non-homotheticity holds. Otherwise, 

one may not be sure that the cost savings derived from these input adjustments are 
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consequence of exclusively technicalengineeringissues not related to allocative 

efficiency; i.e., changes in the input mix in the homothetic case.  

The first step to obtain an input directional distance function requires the explicit 

definition of allocative efficiency with respect to 2Isoq ( )L y  as the normalized difference 

between the minimum cost of producing y2 given input prices w, and the observed cost for 

1x : 

  

        1 1 2 2 1 2

1 2
, ; , ,

, , ;
  

 


Iw x D x y g g C y w wx C y w

AI x y w g
wg wg

, (19) 

where once again (as in eq. (9)) the second equality in (19) holds as long as  1 2, ; 0ID x y g 


 

given that 1 2Isoq ( )x L y . 

We can now retake the idea of correctly interpreting and measuring technical 

efficiency with non-homothetic technologies, so as to keep constant allocative efficiency 

along projections of the observed input vector x1. In this case the following question arises: 

Is there a reference vector g so the input directional distance function actually measures 

technical inefficiency by leaving allocative efficiency unchanged? The answer is yes. Under 

the assumption of input homotheticity, the directional input distance function with reference 

vector 1g x , always satisfies that the “starting” allocative inefficiency, measured with 

respect to Isoq  2L y ; i.e., before projecting the original input vector 1x  to the isoquant of 

1y , and the “final” allocative inefficiency, after projecting the original input vector, are the 

same (see Aparicio et al., 2015; 886). Being allocative efficiency constant regardless the 

choice of decomposition, several remarks are in order: 1) The significance of Propositions 2 

and 3 is that the true technical efficiency can be computed from the observed quantity data 

using the directional input distance with 1g x , even without knowing actual input prices; 2) 

it turns out that the unrealizedbut actually plannedoutput level y2 that the inefficient firm 

might had targeted from an engineering perspective, does not need to be known by the 

researcher when determining allocative efficiency, as its value is the same regardless that 

output level; 3) Moreover, as presented in Lemma 2 these distance functions have the same 



27 

 

value for all firms belonging to the same output isoquant These results simplify the evaluation 

process of the firms in terms of the information required to correctly decompose cost 

inefficiency, as knowledge of the input prices, and the actually planned output level are 

unnecessary to correctly estimate technical efficiency (market prices are nevertheless needed 

to calculate cost efficiency). 

 

3.2 Solving for the directional vector in the case of parametric non-homothetic technologies 

 

Once the criterion of constant allocative efficiency for a correct measurement of 

technical efficiency with non-homothetic technologies has been established, which results in 

the determination of a directional vector g for which this condition holds, and thanks to the 

flexibility of the directional distance function, we can make use of the normalization 

constraint to comply with the desirable property of uniqueness of the technical efficiency 

value for all firms belonging to an output isoquant when  projected to the same benchmark 

isoquant, Lemma 2. It is possible to achieve these conditions imposing as normalizing 

constraint wg  = 1, which results in yet another desirable by-product: The interpretation of 

the inefficiency value in terms of a monetary metric, as presented in Zofío et al. (2013). 

Indeed, it is easy to see that if the unitary normalization constraint holds in (18), then cost, 

allocative and technical inefficiency are measured in monetary values.  

Let    1 1 2 x L y IsoqL y . Determining the value of the reversed directional distance 

function along with the directional vector g with the normalization constraint wg  = 1 for 1x  

implies solving the following non-linear optimization program: 

 

     

1 1 2

,

1 1

1 1 1 2

( , , , ) Max

s.t.
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w x g C y w wx C y w

wg wg

wg







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  (20) 
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where the first constraint ensures that the projected vector belongs to the observed output 

level 1Isoq ( )L y , the second one keeps constant the allocative inefficiency value measured 

at 2Isoq ( )L y  on the firm’s projection on 1Isoq ( )L y , and the final constraint imposes the 

desired normalizing constraint that makes technical efficiency equal for all firms belonging 

to 2Isoq ( )L y  and projected to 1Isoq ( )L y , while measuring cost inefficiency in monetary 

values.  

The next proposition states that technical inefficiency is the same for firms located 

on the same output isoquant. 

 

Proposition 4. Let f be a production function. Let  1 2 2, x x IsoqL y . Then, 

1 1 2 2 1 2( , , , ) ( , , , )
 

R RD x y y w D x y y w . 

 

Proof. By the second constraint in (20),      1 1 1 2, ,   w x g C y w wx C y w , which is 

equivalent to    2 1, , C y w C y w  since   
1 1 1

1

    
wg

w x g wx wg wx   . In this way, 

1 1 2 2 1 2( , , , ) ( , , , )
 

R RD x y y w D x y y w  for any  1 2 2, x x IsoqL y . ■ 

 

Proposition 4 establishes that we are, in some sense, extending this property verified 

in the homothetic case to the non-homothetic general framework, since this result is the 

counterpart of Lemma 2 in the non-homothetic context. 

 

 Moreover, we are able to prove that cost inefficiency can be decomposed in a reverse 

way without resorting to ‘artificial’ second-order residual terms as AAE in eq. (17). 

 

Proposition 5. Let f be a production function. Let    1 1 2 x L y IsoqL y  and let  * *, g  an 

optimal solution of (20). Then, 

 

       
1 1

1 1 * 1 2 * 1 1 2
*

,
, , ; , , ; , , , .


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
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wx C y w
CI x y w g AI x y w g D x y y w
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Proof.  1 1 2 *, , , 


RD x y y w  , which is equal to    2 1, ,C y w C y w  by the first part of the 

proof of Proposition 4. On the other hand,    1 2

1 2 *
,

, , ;



wx C y w

AI x y w g
wg

 by (19), which 

coincides with  1 2 ,wx C y w  since * 1wg . Finally, summing  1 2 *, , ;AI x y w g  and 

 1 1 2, , ,


RD x y y w  we get        1 2 2 1 1 1, , , ,    wx C y w C y w C y w wx C y w , which is 

equivalent to 
   

1 1

1 1 *
*

,
, , ;




wx C y w
CI x y w g

wg
. ■ 

 

3.3 Examples with non-homothetic Cobb-Douglas production functions: H-CD  

 

Example 1. We now retake our non-homothetic Cobb-Douglas technology 1 0.5 0.5
1 22  y yx x  

illustrated in Figure 2 and solve problem (20) for a set of firms producing different output 

levels. Results are reported in Table 3. Considering once again 1 1( , )x y  = 1 1 1
1 2( , , )x x y  = (4,1,1)  

as the evaluated firm, and the optimal cost minimizing input quantities for the observed 

output level y1 = 1, * 1( , )x y  = * * 1
1 2( , , )x x y  = (1, 1, 1), we firstly solve model (20), determining 

in this way technical inefficiency 1 1 2( , , , ) 


RD x y y w  1$ and *g  = (
1

*
xg ,

2

*
xg ) = (0.2679, 0.7321). 

Additionally, for obtaining a value for the allocative inefficiency of this firm, we resort to 

the final expression in (19), obtaining 1 2 *( , , ; )AI x y w g  = $2. Finally, by Proposition 6, 

 1 1 *, , ;CI x y w g  = $2 + $1 = $3. Using model (20) to decompose cost inefficiency ensures 

that solving technical inefficiency keeps allocative inefficiency constant when measured at 

1( 1)NHL y  and 2( 2)NHL y  . Moreover 1 1 2( , , , )


RD x y y w  = $1 represents technical inefficiency 

and is measured in the reference direction *g  = (
1

*
xg ,

2

*
xg ) = (0.2679, 0.7321), with the 
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projected technical efficient input quantities on Isoq  1L y  corresponding to 1x̂  = (

1

1 1 1 2
1 ( , , , )


R

xx D x y y w g ,
2

1 1 1 2
2 ( , , , )


R

xx D x y y w g ) = (3.7321, 0.2679).13  

Table 3 presents the same analysis for two more firms, 2 2 1
1 2( , , )x x y  = (1, 2,1)  and  

3 3 1
1 2( , , )x x y  = (0.25, 4,1) , once again targeting output level y1 = 1 but employing more inputs 

than those required to be technically efficient, or targeting y2 = 2 but yielding y1 = 1 only. As 

with the homothetic case, while both firms exhibit equal technical inefficiency 

2 1 2( , , , )RD x y y w


 = 3 1 2( , , , )RD x y y w


 = $1, as a result of belonging to the same isoquant 

2( 2)NHL y   and taking as reference to measure technical efficiency 1( 1)NHL y  , 2 2 1
1 2( , , )x x y  = 

(1, 2,1)  is  allocative efficient at 2( 2)NHL y  , which is not the case for 3 3 1
1 2( , , )x x y  = (1, 4,1). 

Taking advantage of Figure 2, we confirm that the second firm belongs to the expansion path, 

thereby satisfying * *
2 1 2 1( / )x w w x y .  This is not the case for the third firm with 3 3( , , ; )AI x y w g  

= 1.125 > 0. Table 3 also presents results for two more sets of firms targeting larger outputs 

3( 3)NHL y   and 4( 4)NHL y  . All firms present the same technical inefficiency scores, either 

0.7534 or 0.6635, with their associated individual directional values g, and different 

allocative efficiency values so as to totalize the observed cost inefficiency. As intended, the 

generalized approach yields a unique technical inefficiency result for all these firms while 

ensuring that their allocative efficiency is kept constant.

                                                 
13 Note that for some firms it is necessary to increase the quantity of some inputs to realize their technically 

efficient amount; a result that stems from the flexibility of the directional distance function, and that could not 
be achieved with radial measures. 
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Table 3. Reversed cost efficiency decomposition with a NH-CD technology: 1 0.5 0.5
1 22y yx x  .  

Selected firms targeting different output levels larger than 1(  1)L y , 1( , ) 2C y w . Figure 2 
 

 
Input x1 Input x2 

Cost 
Inefficiency 

(CI) 

Allocative 
Inefficiency 

(AI) 

Technical  
Inefficiency 

(TI) 
gx1 gx2 1̂x  2x̂  

2( 2)NHL y   
2( , ) 3C y w   

4.0000 1.0000 3.0000 2.0000 1.0000 0.2679 0.7321 3.7321 0.2679 

1.0000 2.0000 1.0000 0.0000 1.0000 0.0000 1.000 1.0000 1.0000 

0.2500 4.0000 2.2500 1.2500 1.0000 -0.0941 1.0941 0.3441 2.9059 

 

3( 3)NHL y  
3( , ) 3.5095C y w   

4.0000 1.5874 3.5874 2.0779 1.5095 0.1220 0.8780 3.8158 0.2621 

0.8774 2.6321 1.5095 0.0000 1.5095 -0.0812 1.0812 1.0000 1.0000 

0.2500 4.0000 2.25 0.7404 1.5095 -0.1215 1.1215 0.4334 2.3070 

 

4( 4)NHL y  
4( , ) 3.7893C y w   

4.0000 2.0000 4.0000 2.2107 1.7890 0.0234 0.9766 3.9581 0.2526 

0.7579 3.0314 1.7893 0.0000 1.7890 -0.1353 1.1353 1.0000 1.0000 

0.2500 4.0000 2.2500 0.4607 1.7890 -0.1473 1.1473 0.2129 3.9629 
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Example 2. Building upon the three input homothetic H-CD example by Kopp and Diewert 

(1982), we modify it so as to observe the non-homothetic specification presented in eq. (14) 

with 1( ) 4,468.507  yh y  and ( ) 0.7c y y , resulting in the following function:  

1 0.25 0.1 0.7
1 2 34,468.507 0.049 y yx x x . This formulation ensures that the original input vector under 

evaluation 1 1( , )x y  = 1 1 1 1
1 2 3( , , , )x x x y  = (500, 50,162754,1300)  yields the intended but unrealized 

output target y2 = 1,523.72, as in the H-CD case. Table 4 presents the results for three sets of 

firms targeting successive output levels 2( 1,523.72)NHL y , 3( 1,750)NHL y  and 

4( 2, 000)NHL y , while the reference isoquant for the standard decomposition corresponds to 

Isoq L(y1 = 1,300). Solving eq. (20) for the firms targeting 2( 1,523.72)NHL y  results in the 

same value of technical inefficiency 1 1 2( , , , )RD x y y w


 = $7,423.93 with different directional 

vectors g = (
1x

g ,
2xg ,

3xg )in the case of the first firm g1 = (
1

1
xg ,

1

2
xg ,

1

3 )xg  = (0.0003, 0.0002, 

0.0260). This firm presents a rather large individual allocative inefficiency 1 2( , , ; )AI x y w g  

= $6,968,669.17, with respect to the minimum cost of producing y2 = 1,523.72, which is in 

sharp contrast to the second firm 2 2 2 1
1 2 3( , , , )x x x y  = (0.05, 0.05,163211.40,1300)  that is the one 

allocative efficient at IsoqL(y2 = 1,523.72)note how the non-homothetic specification 

results in a drastic reduction of the optimal input demands for the first two inputs, along with 

a huge drop in the difference between minimum production costs for alternative isoquants, 

as they that get much closer together in the input space when compared to the homothetic 

specification. A similar scheme is obtained for the two additional sets of three firms 

producing 3( 1,750)NHL y  and 4( 2,000)NHL y . 
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Table 4. Reversed cost inefficiency decomposition with a NH-CD technology: 1 0.25 0.1 0.7
1 2 34,468.507 0.049 y yx x x .  

Selected firms targeting different output levels larger than 1(  1, 300)L y . 1( , ) 10, 602, 913.90C y w , KD (1982). 
 

 
Input x1 Input x2 Input x3 

Cost 
Inefficiency 

(CI) 

Allocative 
Inefficiency 

(AI) 

Technical  
Inefficiency 

(TI) 
gx1 gx2 gx3 1x̂  2x̂  3x̂  

2( 1,523.72)NHL y  
2( , ) 10, 610, 341C y w

 

500.00 50.00 162,754.00 6,976,096.10 6,968,669.17 7,426.93 0.0003 -0.0002 0.0260 497.75 51.61 162,561.16 

0.05 0.05 163,211.40 7,426.93 0.00 7,426.93 0.0000 0.0000 0.0154 0.05 0.05 163,097.14 

338.00 81.12 162,761.55 5,654,888.36 5,647,461.43 7,426.93 0.0089 -0.0053 0.0254 272.23 120.82 162,572.92 

 

3( 1, 750.00)NHL y  
3( , ) 10,615,924C y w  

385.64 92.55 162,899.20 6,464,195.35 6,451,185.07 13,010.28 0.0108 -0.0065 0.0252 245.44 177.09 162,570.71 

0.05 0.05 163,297.30 13,010.28 0.00 13,010.28 0.0000 0.0000 0.0154 0.05 0.05 163,097.14 

817.08 22.86 162,892.83 10,247,353.65 10,234,343.36 1,3010.28 0.0110 -0.0067 0.0276 673.56 109.49 162,534.22 

 

4( 2, 000.00)NHL y  
4( , ) 10, 620, 626C y w  

647.84 64.78 163,010.15 9,062,498.73 9,044,786.37 17,712.36 0.0113 -0.0068 0.0264 447.24 185.77 162,543.06 

0.05 0.05 163,369.63 17,712.36 0.00 17,712.36 0.0000 0.0000 0.0154 0.05 0.05 163,097.14 

927.89 25.96 163,010.34 11,646,681.31 11,628,968.96 17,712.36 0.0113 -0.0068 0.0274 727.33 146.99 162,525.53 
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4. Conclusions  
 

The decomposition of cost efficiency a la Farrell in a parametric context, following 

the seminal work by Kopp and Diewert (1982) and subsequent refinements, for the case of 

non-homothetic technologies, calls for its reexamination in the light of recent developments 

in economic theoryBogetoft et al (2006), Aparicio et al. (2015). Contrarily to the case of 

homothetic technologies, defining technical efficiency by way of the radial input distance 

function is not correct if the actual output level targeted by the firm, constituting the reference 

for allocative efficiency measurement, does not correspond to that observedas in the 

standard approach. This is because the radial contraction of inputs resulting in cost savings 

cannot be surely ascribed to technical improvements, as demand for inputs, which under non-

homotheticity depends on the intended output levels, varies along the projection path, and 

therefore allocative efficiencydefined as the deviation of marginal rates of substitution from 

relative inputs priceschanges over the input production possibility set. 

From the perspective of the cost efficiency decomposition, this result invalids the 

residual nature of allocative efficiency, which is brought to the forefront of the analysis 

requiring further attention. Taking as departing point the standard decomposition proposed 

by Farrell (1957), we show that the radial distance function consistently characterizes 

technical efficiency by leaving the allocative inefficiency counterpart unchanged in the case 

of homothetic technologies, and based on the same criterion, we show that for non-

homothetic technologies an equivalent definition of technical efficiency can be proposed in 

terms of the directional distance function. 

The consistency of the new approach is based on the so called reversed cost efficiency 

decomposition, which is equivalent to the Farrell approach in the homothetic case, but yields 

alternative technical and allocative values when non-homothetic technologies are involved. 

We prove several results that are needed to implement the new methodology, ensuring that 

once a given output level is considered for the reverse approach, allocative efficiency is first 

determined, and its technical efficiency counterpart rather than being still associated to the 

radial input measure, can be rightly determined by calculating the directional vector 

associated to the directional distance function. The new decomposition for non-homothetic 

technologies mirrors the properties of the standard approach, including that the technical 

efficiency for firms situating in a given isoquant is the same when projected to the same 
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reference isoquant, thanks to a suitable normalization condition. An additional property of 

our choice of normalization constraint is that inefficiencies are measured in monetary values.  

We introduce the necessary optimization programs that are needed to implement the 

model empirically, allowing us to calculate the directional distance function and its 

associated directional vectors, and illustrate the new methodology with Cobb-Douglas 

specifications. These results should be kept in mind by practitioners concerned with the 

homotheticity properties or their production and distance function specifications, so as to 

correctly decompose overall efficiency into its technical and allocative components. 
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