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1. Introduction 

This paper develops a new stochastic frontier (SF) model that allows for cross-

sectional (spatial) correlation in both noise and inefficiency terms. A model specification 

with cross-sectional correlation in the noise term may be useful in efficiency analyses as 

it accounts for unobserved but spatially-correlated variables. Failure to account for spatial 

correlation effects in SF models might result in biased estimates of efficiency scores (e.g. 

Schmidt et al., 2009, and Orea et al (2017). On the other hand, a SF model with cross-

sectional correlation in the inefficiency term could also be useful for examining whether 

firms benefit from best practices implemented in their adjacent firms. Spatial dependence 

in technical efficiency can also be found, for instance, in agricultural production (e.g. 

Areal et al., 2012, Vidoli et al., 2016, and Mate-Sánchez-Val et al., 2017), or when we 

are examining the efficiency of production units of a single firm they follow similar 

procedures of action designed by the holding they belong to.   

In contrast to the previous literature (e.g. Areal et al., 2012, Tsionas and 

Michaelides, 2016; Schmidt et al., 2009, and Herwartz and Strumann, 2014), we develop 

a novel SF model with cross-sectional (spatial) correlated noise and inefficiency terms 

that can be estimated by ML using standard software. Our model can thus be viewed as a 

new application of the scaling property in SF analyses (for other uses of the scaling 

property, see Parmeter and Kumbhakar, 2014). Unlike the previous literature, our model 

permits separate examinations of the characteristics of the cross-sectional correlations of 

the noise and inefficiency terms, which are likely to be of a different nature. Furthermore, 

our model can easily be extended to incorporate global and local spatial spillovers. Our 

specification differs from Glass et al. (2013,2014) because rather than calculating 

efficiency from the cross-sectional specific effects, we compute efficiency by making an 

assumption about the distribution of the inefficiency term. In this sense, a spatial 

autoregressive (SAR) version of our spatial SF model can also be viewed as an extension 

of the Glass et al. (2016a) model.  

The model is illustrated with an application to the Norwegian electricity 

distribution sector for the years 2004 to 2011. We have chosen this application for three 

reasons. First, this is a regulated sector where revenue caps are set by the Norwegian 

regulator (NVE) on the basis of total cost benchmarking. Thus, we expect the existence 

of some cross-sectional correlation in firms’ inefficiency. Second, the NVE regulator 

aims to control for unobserved differences in environmental conditions among electricity 
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distribution networks. As shown by Orea et al (2017), many weather conditions, 

geographical conditions and other unobserved cost drivers are likely to be spatially 

correlated. Third, we do not need a model with spatial or cross-sectional correlations in 

the frontier because the NVE staff in charge of network regulation do not see major 

systemic technical reasons for the cost of an electricity distribution firm to be affected by 

those of an adjacent firm to any significant degree.   

The next section develops a SF model that allows for cross-sectional (spatial) 

correlation in both noise and inefficiency terms. Section 3 discusses the data used in the 

empirical analysis, and depicts the main results of our model with cross-sectional 

spillovers in either the noise term, the inefficiency term or both terms. Finally, Section 4 

presents the conclusions and a future research agenda. 

2. A cross-sectional stochastic frontier model  

In this section we poresent our stochastic frontier model that allows for cross-

sectional (spatial) correlation in both noise and inefficiency terms. We hereafter label this 

model as CSSF. Let us first assume that the firms’ cost can be modelled using the 

following cost equation: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑣𝑣�𝑖𝑖𝑖𝑖 + 𝑢𝑢�𝑖𝑖𝑖𝑖    (1) 

where i stands for firms, t stands for periods, 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 is a measure of firms’ cost in logs, 𝑋𝑋𝑖𝑖𝑖𝑖 

is a vector of K observable cost drivers, and 𝑣𝑣�𝑖𝑖𝑖𝑖 and 𝑢𝑢�𝑖𝑖𝑖𝑖 are two random terms where the 

former is an error term measuring random shocks and the latter a random term measuring 

firms’ inefficiency. We allow both error terms to be cross-sectionally correlated. To this 

end, we adapt the popular SAR spatial stochastic process to a more general cross-sectional 

setting. 

A cross-sectional or spatial autoregressive (SAR) specification for the two error 

terms in period t can be expressed as:  

𝑣𝑣�𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑊𝑊𝑖𝑖𝑣𝑣�𝑡𝑡     (2) 

𝑢𝑢�𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑊𝑊𝑖𝑖𝑢𝑢�𝑡𝑡     (3) 

where 𝑣𝑣𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑖𝑖𝑖𝑖 are two idiosyncratic noise and inefficiency terms, assumed to be 

distributed independently across the cross-sectional dimension, 𝑣𝑣�𝑡𝑡 = (𝑣𝑣�1𝑡𝑡 , … , 𝑣𝑣�𝑁𝑁𝑁𝑁) and 

𝑢𝑢�𝑡𝑡 = (𝑢𝑢�1𝑡𝑡 , … ,𝑢𝑢�𝑁𝑁𝑁𝑁)  are Nx1 vectors of the firms’ random terms, 𝜌𝜌 and 𝜏𝜏 are two cross-

sectional autoregressive parameters, and 𝑊𝑊𝑖𝑖 = (𝑊𝑊𝑖𝑖1, … ,𝑊𝑊𝑖𝑖𝑖𝑖) is a known 1xN cross-
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sectional weight vector with elements that are equal to zero if the noise/inefficiency term 

of a particular firm j is not assumed to be correlated with the noise/inefficiency of firm i, 

and equal to one otherwise.  Quite often the weight vector is row-standardized with the 

number of adjacent units. In this case, 𝑊𝑊𝑖𝑖𝑣𝑣𝑡𝑡 and 𝑊𝑊𝑖𝑖𝑢𝑢𝑡𝑡 should be interpreted as the average 

values of the noise and inefficiency terms of adjacent firms. The coefficients 𝜌𝜌 and 𝜏𝜏 

measure the degrees of cross-sectional correlation between firms’ noise and inefficiency 

terms respectively. The above transformations can be interpreted as a sort of generalized 

transformation of the original idiosyncratic noise and inefficiency terms. In what follows 

we will use the notation “~” to denote this transformation of the variables.  

The noise and inefficiency terms can be rewritten using matrix notation as 𝑣𝑣�𝑡𝑡 =

𝑀𝑀𝜌𝜌 · 𝑣𝑣𝑡𝑡 and 𝑢𝑢�𝑡𝑡 = 𝑀𝑀𝜏𝜏 · 𝑢𝑢𝑡𝑡, where 𝑀𝑀𝜌𝜌 = (𝐼𝐼𝑁𝑁 − 𝜌𝜌𝜌𝜌)−1, 𝑀𝑀𝜏𝜏 = (𝐼𝐼𝑁𝑁 − 𝜏𝜏𝜏𝜏)−1 and 𝑊𝑊 =

(𝑊𝑊1,𝑊𝑊2, … ,𝑊𝑊𝑁𝑁) is an NxN spatial weight matrix. The constraints imposed by both the 

weighting structure together with the specific form of the cross-sectional process 

determine the covariance matrix for 𝑣𝑣𝑡𝑡 and 𝑢𝑢𝑡𝑡. For the SAR structure in (2) and (3), the 

cross-sectional covariance matrices of both error terms will be full or not spare, which 

implies that shocks disturbing a particular firm might affect all other firms. In other 

words, the variance-covariance structure induced by the SAR model is global.  

Note that the specification of firms’ cost in equation (1) has the structure of a 

traditional SF model. However, the above model cannot be estimated using full maximum 

likelihood if we assume as customary that 𝑢𝑢𝑖𝑖𝑖𝑖 is independently distributed across firms 

(see, for instance, Wang, 2003). Wang and Ho (2010) faced a similar problem using 

temporal transformations of their SF model. To get a closed form for the likelihood 

function once first-differences and within transformations of the model were carried out, 

they assumed that the inefficiency term 𝑢𝑢𝑖𝑖𝑖𝑖 possesses the scaling property so that it can 

be multiplicatively decomposed into two components as follows: 

𝑢𝑢𝑖𝑖𝑖𝑖 = ℎ(𝑚𝑚𝑖𝑖𝑖𝑖, 𝛿𝛿) · 𝑢𝑢𝑖𝑖∗ = ℎ𝑖𝑖𝑖𝑖 · 𝑢𝑢𝑖𝑖∗    (4) 

where ℎ𝑖𝑖𝑖𝑖 ≥ 0 is a function of firm exogenous variables, and 𝑢𝑢𝑖𝑖∗ ≥ 0 is a firm-specific 

inefficiency term. Note that this implies that their within-transformed inefficiency term 

can be written as �ℎ𝑖𝑖𝑖𝑖 −
1
𝑇𝑇
∑ ℎ𝑖𝑖𝑖𝑖𝑇𝑇
𝑡𝑡=1 � · 𝑢𝑢𝑖𝑖∗, where the distribution of 𝑢𝑢𝑖𝑖∗ is not affected by 

the within-transformation. This key aspect of their model enabled them to get a tractable 

likelihood function for their transformed model. 
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Following Wang and Ho (2010), we next assume that the idiosyncratic 

inefficiency term (𝑢𝑢𝑖𝑖𝑖𝑖) can be multiplicatively decomposed into two components, that is: 

𝑢𝑢𝑖𝑖𝑖𝑖 = ℎ(𝑚𝑚𝑖𝑖𝑖𝑖, 𝛿𝛿) · 𝑢𝑢𝑡𝑡∗ = ℎ𝑖𝑖𝑖𝑖 · 𝑢𝑢𝑡𝑡∗    (5) 

where ℎ𝑖𝑖𝑖𝑖 ≥ 0 is again function of firm and industry exogenous variables, and 𝑢𝑢𝑡𝑡∗ ≥ 0 is 

an industry-specific inefficiency term. For simplicity, we will assume that 𝑢𝑢𝑡𝑡∗~𝑁𝑁+(0,𝜎𝜎𝑢𝑢). 

The above specification implies that firms’ inefficiency in our model is obtained by 

stretching or shrinking the industry inefficiency level using a deterministic (scaling) 

function that scales up or down a random inefficiency value that is common to all firms 

in period t. As with WH, the random part of firms’ inefficiency is used here as an anchor 

value to build the overall inefficiency level of each firm.  

The above specification of 𝑢𝑢𝑖𝑖𝑖𝑖 implies that the SAR-transformed inefficiency term 

in (3) can be written in matrix notation as: 

𝑢𝑢�𝑡𝑡 = (𝐼𝐼𝑁𝑁 − 𝜏𝜏𝜏𝜏)−1𝑢𝑢𝑡𝑡 = 𝑀𝑀𝜏𝜏𝑢𝑢𝑡𝑡 = 𝑀𝑀𝜏𝜏ℎ𝑡𝑡𝑢𝑢𝑡𝑡∗ = ℎ�𝑡𝑡 · 𝑢𝑢𝑡𝑡∗   (6) 

where ℎ𝑡𝑡 = (ℎ1𝑡𝑡 , … ,ℎ𝑁𝑁𝑁𝑁), and ℎ�𝑡𝑡 = (ℎ�1𝑡𝑡 , … ,ℎ�1𝑡𝑡) are Nx1 vectors. The half-normal 

distribution of 𝑢𝑢𝑡𝑡∗ is not affected by the cross-sectional transformation. As WH pointed 

out, this is the crucial aspect of the model that enables us to get a tractable likelihood 

function. In this sense, the industry nature of the anchor value used in (5) makes our 

specification of firms’ inefficiency attractive in any SF model with cross-sectional 

spillovers in the one-sided error term. It should be noted as well that, neglecting the 

existence of individual effects, our model does not collapse to WH if the cross-sectional 

correlation tends to vanish. This model can be viewed as a transposed version of WH’s 

model because we have changed the dimension of the basic random variable. We 

hereafter label this model as TWH.  

 We now adapt the WH likelihood function to a cross-section setting. In principle, 

the likelihood function of our CSSF model should be derived based on the joint 

distribution of 𝑣𝑣�𝑡𝑡 and 𝑢𝑢�𝑡𝑡 after some tedious derivations. However, as our CSSF model 

can be viewed as a transposed version of the WH model, the general specification of the 

likelihood function in WH is still valid in our setting. We only need to adapt the likelihood 

function in Wang and Ho (2010, p. 288) to a cross-sectional framework. 

The cross-sectional adaptation requires carrying out three adjustments to their 

likelihood function. We first need to reverse the summation of partial log-likelihood 
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functions used to get the overall likelihood function for the whole sample of observations. 

Second, we need to replace the temporal weight matrix implicitly used in WH with a 

cross-sectional weight matrix.  Finally, we need to adjust the formula used by Wang and 

Ho (2010) to get firm-specific efficiency scores to our cross-sectional setting and our 

definition of firms’ inefficiency.  

As in WH, we should take into account that the Nx1 noise vector 𝑣𝑣�𝑡𝑡 =

(𝑣𝑣�1𝑡𝑡 , … , 𝑣𝑣�𝑁𝑁𝑁𝑁) follows a multivariate normal distribution if we assume that the 

idiosyncratic noise term follows a normal distribution, i.e. 𝑣𝑣𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑣𝑣). Thus, the 

density function of the vector 𝑣𝑣�𝑡𝑡 is: 

𝑔𝑔(𝑣𝑣�𝑡𝑡) = (2𝜋𝜋)−
𝑁𝑁
2 |Π|−1/2𝑒𝑒𝑒𝑒𝑒𝑒 �− 1

2
𝑣𝑣�𝑡𝑡′Π−1𝑣𝑣�𝑡𝑡�      (7) 

where Π is the variance-covariance matrix of 𝑣𝑣�𝑡𝑡, that can be written in general terms as 

Π = 𝜎𝜎𝑣𝑣2𝑀𝑀𝜌𝜌
′𝑀𝑀𝜌𝜌.  

We now discuss the part of the likelihood function that has to do with the 

inefficiency term. Let us recall here that the truncated normal distribution of 𝑢𝑢𝑡𝑡∗ is not 

affected by the cross-sectional transformation of the idiosyncratic inefficiency term, and 

thus 𝑢𝑢�𝑡𝑡 = 𝑀𝑀𝜏𝜏ℎ𝑡𝑡 · 𝑢𝑢𝑡𝑡∗ is distributed as a heteroscedastic half-normal. The cross-sectional 

adaptation of equations (13)-(16) in Wang and Ho (2010) yields the following log-

likelihood function for period t:  

𝑙𝑙𝑙𝑙𝐿𝐿𝑡𝑡 = −
𝑁𝑁
2
𝑙𝑙𝑙𝑙(2𝜋𝜋) −

1
2
𝑙𝑙𝑙𝑙|Π| −

1
2
𝜀𝜀𝑡̃𝑡′Π−1𝜀𝜀𝑡̃𝑡 

+ 1
2
�𝜇𝜇∗

2

𝜎𝜎∗2
− 𝜇𝜇2

𝜎𝜎𝑢𝑢2
� + 𝑙𝑙𝑙𝑙 �𝜎𝜎∗Φ �𝜇𝜇∗

𝜎𝜎∗
�� − 𝑙𝑙𝑙𝑙 �𝜎𝜎𝑢𝑢Φ� 𝜇𝜇

𝜎𝜎𝑢𝑢
��           (8) 

where Φ is the standard normal cumulative distribution function, 𝜀𝜀𝑡̃𝑡 = (𝜀𝜀1̃𝑡𝑡 , … , 𝜀𝜀𝑁̃𝑁𝑁𝑁), 𝜀𝜀𝑖̃𝑖𝑖𝑖 =

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 − 𝛽𝛽𝑋𝑋𝑖𝑖𝑖𝑖, and 

𝜇𝜇∗ = 𝜇𝜇 𝜎𝜎𝑢𝑢2⁄ −𝜀𝜀�𝑡𝑡′Π−1ℎ�𝑡𝑡
ℎ𝑡𝑡′Π−1ℎ�𝑡𝑡+1/𝜎𝜎𝑢𝑢2

     (9) 

𝜎𝜎∗2 = 1
ℎ�𝑡𝑡′Π−1ℎ�𝑡𝑡+1/𝜎𝜎𝑢𝑢2

     (10) 

 The final log-likelihood function of the model is obtained by summing the above 

function from t=1 to t=T. Consistent parameters estimates can be obtained by numerically 

maximizing 𝑙𝑙𝑙𝑙𝑙𝑙 = ∑ 𝑙𝑙𝑙𝑙𝐿𝐿𝑡𝑡𝑇𝑇
𝑡𝑡=1 . Note that we first derive the partial log-likelihood function 
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of all cross-sectional observations in period t, and then the overall likelihood function is 

obtained using the temporal dimension of our data. We have thus transposed the WH 

procedure, who first obtain the partial log-likelihood function using the temporal 

dimension of the panel (i.e. using all temporal observations of unit i) and then obtain the 

overall likelihood function as 𝑙𝑙𝑙𝑙𝑙𝑙 = ∑ 𝑙𝑙𝑙𝑙𝐿𝐿𝑖𝑖𝑁𝑁
𝑖𝑖=1  using the cross-sectional dimension. 

 We finally discuss how we can obtain an efficiency score for each firm once the 

CSSF model has been estimated. Wang and Ho (2010) modified the Jondrow et al. (1982) 

formula and use the conditional distribution of 𝑢𝑢𝑖𝑖𝑖𝑖 given the composed error term in 

differences (i.e. 𝜀𝜀𝑖̃𝑖𝑖𝑖) to estimate 𝑢𝑢𝑖𝑖𝑖𝑖. Their estimator can be written using our notation as 

follows: 

𝐸𝐸(𝑢𝑢𝑖𝑖𝑖𝑖|𝜀𝜀𝑖̃𝑖𝑖𝑖) = ℎ𝑖𝑖𝑖𝑖 · �𝜇𝜇∗ +
𝜎𝜎∗ϕ�

𝜇𝜇∗
𝜎𝜎∗
�

ϕ�𝜇𝜇∗𝜎𝜎∗
�
� = ℎ𝑖𝑖𝑖𝑖 · 𝐸𝐸(𝑢𝑢𝑖𝑖∗|𝜀𝜀𝑖̃𝑖𝑖𝑖)   (11) 

We adapt here the temporal framework in WH to our cross-sectional setting. 

Given our model in (1) and our distributional assumptions, the analytical form for 

𝐸𝐸(𝑢𝑢�𝑖𝑖𝑖𝑖|𝜀𝜀𝑖̃𝑖𝑖𝑖) can be written as follows: 

𝐸𝐸(𝑢𝑢�𝑖𝑖𝑖𝑖|𝜀𝜀𝑖̃𝑖𝑖𝑖) = ℎ�𝑖𝑖𝑖𝑖 · �𝜇𝜇∗ +
𝜎𝜎∗ϕ�

𝜇𝜇∗
𝜎𝜎∗
�

ϕ�𝜇𝜇∗𝜎𝜎∗
�
� = ℎ�𝑖𝑖𝑖𝑖 · 𝐸𝐸(𝑢𝑢𝑡𝑡∗|𝜀𝜀𝑖̃𝑖𝑖𝑖)   (12) 

where ℎ�𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖ℎ𝑡𝑡 and 𝑀𝑀iτ is the ith row of  𝑀𝑀𝜏𝜏. Two comments are in order regarding 

equation (21). In our model, firm’s inefficiency is defined as 𝑢𝑢�𝑖𝑖𝑖𝑖 = ℎ�𝑖𝑖𝑖𝑖𝑢𝑢𝑡𝑡∗ and not as 𝑢𝑢𝑖𝑖𝑖𝑖 =

ℎ𝑖𝑖𝑖𝑖𝑢𝑢𝑡𝑡∗. That is, the relevant and final scaling function is ℎ�𝑖𝑖𝑖𝑖 and not ℎ𝑖𝑖𝑖𝑖 as in WH. For this 

reason we are interested in 𝐸𝐸(𝑢𝑢�𝑖𝑖𝑖𝑖|𝜀𝜀𝑖̃𝑖𝑖𝑖) and not in 𝐸𝐸(𝑢𝑢𝑖𝑖𝑖𝑖|𝜀𝜀𝑖̃𝑖𝑖𝑖). Second, the term in brackets 

in our model is an estimate of  𝑢𝑢𝑡𝑡∗, while in the WH model is an estimate of 𝑢𝑢𝑖𝑖∗. 

3. Empirical illustration  

We apply our empirical strategy to a balanced set of panel data for the Norwegian 

distribution utilities over the years 2004 to 2011. The data used in this study was obtained 

from the sector regulator, the Norwegian Water Resources and Power Directorate (NVE). 

We try to mimic the DEA analysis conducted by NVE and estimate (the negative of) a 

Translog input-oriented distance function with a single input - total firms’ costs - that can 

be viewed as a cost function without input prices.  

Our variable measuring firms’ total cost (COST) includes operating expenses, 

capital depreciation and its opportunity cost, the cost of network energy losses, and the 



8 
 

cost of energy not supplied to different user groups due to service interruptions. The cost 

variable has been deflated using the consumer price index and is expressed in 2004 real 

terms. Following the previous literature, we include the two main outputs: the number of 

customers (CUS), and the length of the network (NL). Finally, we include the percentage 

of overhead lines (OH) because firms’ decisions on, for example, investment and 

maintenance of overhead and underground lines are different, and there could be a trade-

off between both types of costs. Regarding firms’ inefficiency, we use three inefficiency 

determinants: the percentage of overhead lines (OH), the number of transformer stations 

(ST), and a density variable (DEN) measured as the number of customers per kilometre 

of network. These three variables are measuring the urbanization (ruralisation) of the 

supplied areas and the complexity of networks as a whole.  

Regarding the weight matrix W, we compute a spatial-based weight matrix aiming 

to capture cross-sectional spillovers in both firms’ noise and inefficiency terms. To 

achieve this objective, we consider the distribution areas available on a map provided by 

NVE in October, 2015. In our study we follow the common approach in the literature for 

capturing and measuring the spatial interdependence using a physical contiguity matrix, 

whose elements are one for bordering areas, and zero otherwise. As is customary in the 

spatial econometric literature, we normalize this matrix with the number of adjacent 

spatial units, so that each of the non-zero elements of the matrix WN equals the inverse of 

the number of adjacent service areas. 

Table 1 provides a descriptive summary of the variables used in this study. 

[Insert Table 1 here] 

In Table 2 we show the parameter estimates of two simple SF models with no 

cross-sectional correlations. All of them use the same efficiency covariates and they differ 

only in the specification of 𝑢𝑢𝑖𝑖𝑖𝑖. The so-called WH model uses Wang and Ho (2010) and 

Orea and Kumbhakar (2004) specification of 𝑢𝑢𝑖𝑖𝑖𝑖 = ℎ𝑖𝑖𝑖𝑖 · 𝑢𝑢𝑖𝑖∗, where the 𝑢𝑢𝑖𝑖∗ term follows a 

half-normal distribution. The TWH model replaces the time-invariant and firm-specific 

𝑢𝑢𝑖𝑖∗ term above with a 𝑢𝑢𝑡𝑡∗ term that varies over time but which is common to all firms. All 

cross-sectional variation in firms’ inefficiency is thus forced to be captured by the 

deterministic scaling function in the TWH model. The two models impose different 

assumptions on the random variation of 𝑢𝑢𝑖𝑖𝑖𝑖. The TWH model assumes that the cross-

sectional and temporal variations of the basic inefficiency term are different (zero across 
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firms, and positive over time). The WH model reverses the above two assumptions as it 

assumes a zero temporal variation of the random inefficiency component, but a positive 

cross-sectional variation. As the estimated coefficients of more comprehensive models 

are similar to those estimated using the aforementioned SF models with no cross-sectional 

spillovers, we also take advantage of Table 2 to briefly discuss the economic implications 

of the estimated frontier and inefficiency coefficients. 

[Insert Table 2 here] 

Regarding the frontier parameter estimates, the first conclusion that can be 

inferred from Table 2 is that both the WH and TWH models yield very similar results. 

Although the parameter estimates do not coincide, the first-order coefficients still have 

the expected sign and their magnitudes are also reasonable from a theoretical standpoint. 

The first-order coefficients of CUS and NL variables allows us to measure scale 

economies evaluated at the sample mean when the increase in the number of customers 

is complemented with an equivalent expansion of firms’ network. The elasticity of scale 

in the TWH model is close to, but less than, unity. In line with Kumbhakar et al. (2015), 

this result suggests that a large number of firms have unexploited scale economies. On 

the other hand, the coefficient of OH is negative, indicating that a higher share of 

overhead lines reduces the total costs of utilities.  

In addition to the frontier parameters, Table 2 displays the coefficients of the 

variables that are related to the inefficiency term. Notice that most of the estimated 

coefficients are statistically significant and have the same sign in both TWH and WH 

models. The same happens in the CSSF models examined in the next subsection. The 

coefficient of OH is negative and statistically significant, indicating that is costlier to 

manage firms with higher shares of overhead lines. We also obtain a negative coefficient 

for DEN and ST. It is difficult to conclude here whether larger utilities with larger number 

of stations tend to be more efficient than smaller utilities because the rural areas are 

generally larger than the urban areas but also have a smaller (larger) number of customers 

(overhead lines) per kilometre of network than more urbanized areas.  

Table 2 also provides the descriptive statistics of the efficiency scores using the 

WH and TWH models. The standard deviation of the WH efficiency scores is slightly 

larger (11.4%), as expected given the large estimate of 𝜎𝜎𝑢𝑢 in this model, than the standard 

deviation of the TWH efficiency scores (10%).   The average efficiency scores using these 
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two models are quite high, on average about 80%. The high level of efficiency of this 

industry is attributable to the maturity of economic regulation, with the regulator having 

consistently been supervising and incentivizing the utilities to perform efficiently. Similar 

figures are obtained in Miguéis et al. (2012) using a DEA method for the period 2004 to 

2007 (about 84-87%), and in Kumbhakar et al. (2015) with estimated efficiency in the 

range 82-87%. Growitsch et al. (2012) for the 2001-2004 period, and Orea et al. (2017) 

and Orea and Jamasb (2017) for the period 2004 to 2011 find larger efficiency scores of 

about 89-94% once they control for unobservable environmental conditions using 

different empirical strategies.  

Figure 1 depicts Kernel densities of firms’ efficiency. This figure shows that the 

efficiency distribution becomes less disperse when we use the WH model, as the 

minimum score in this model is 51.5% compared to 39.3% using the TWH model. 

However, the kernel density of the TWH model is more skewed to the left, meaning that 

relatively more of the observations are concentrated on the efficient part of the unit 

interval. In spite of these differences, overall we find that both distributions are close to 

each other. Thus, neglecting cross-sectional variations in firms’ random inefficiency does 

not seem to be a crucial issue in our application. 

[Insert Figure 1 here] 

We next provide the main results of our CSSF model using full maximum 

likelihood estimation. For robustness analysis, the model has been estimated using SAR 

specifications for the spatial processes in either the noise term, the inefficiency term, or 

both terms. We also estimate a model where the overall error term follows a spatial 

process, as is customary in the spatial econometric literature that does not distinguish 

between different error terms. This is equivalent to imposing in our model that the 𝜌𝜌 and 

𝜏𝜏 coefficients are the same (i.e. 𝜏𝜏 = 𝜌𝜌). As the estimated coefficients of all these models 

are similar to those estimated using the WH and TWH models, we will focus our 

discussion here on the estimated cross-sectional correlations, i.e. the coefficients 𝜌𝜌 and 𝜏𝜏.  

In Table 3 we provide the parameter estimates, and other statistics, corresponding 

to four CSSF models that use SAR specifications for the spatial processes. Several 

comments are in order regarding the coefficients 𝜌𝜌 and 𝜏𝜏. First, the estimated 𝜌𝜌 coefficient 

is always positive and statistically significant. This indicates that weather and 

geographical conditions as well as other unobserved cost drivers are spatially correlated. 
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The positive sign suggests that the unobserved conditions in neighbouring areas tend to 

be similar. This seems to be a robust result as the spatial noise correlation is still 

significant if we allow the inefficiency term to be correlated as well. Second, the so-called 

u-SAR model yields a positive and statistically significant 𝜏𝜏 coefficient. This coefficient 

even increases a little when we estimate a more comprehensive (uv-SAR) model that also 

controls for spatial spillovers in the noise term. However, the estimated spatial correlation 

in the inefficiency term is less than the spatial noise correlation. The positive, and 

significant, correlation in firms’ inefficiency found in this paper seems to suggest that the 

Norwegian electricity distribution utilities emulate, at least partially, the performance of 

neighbouring utilities. This finding indicates that spatial proximity matters, and that the 

regulatory framework in Norway somehow encourages utilities to interact with each 

other. This is an expected result because the NVE regulator uses DEA techniques to 

benchmark the regulated firms, and in this setting the performance of each firm depends 

on the performance of its peers. It is worth mentioning that all data, benchmarking results 

and revenue cap calculations are published on the NVE web page every year.1 However, 

a still unresolved empirical issue is whether the regulated utilities in Norway are using 

these data and models to identify (and mimic) their own peers. The peers are not 

necessarily neighbouring utilities, but the peers provided by the DEA exercise and the 

evaluated firms often have similar characteristics. Thus, if managers do not have precise 

information on the benchmarking results, each firm might find it profitable to keep an eye 

on neighbouring utilities because they have similar characteristics and at least some of 

them are likely to be used as peers by the regulator. Third, the uv-SARr model that 

imposes 𝜏𝜏 = 𝜌𝜌 yields a similar coefficient of spatial correlation to that of the v-SAR 

model. Thus, it seems that the correlation of the inefficiency term is weaker than the 

correlation of the noise term. Finally, the model selection statistics provided in Table 3 

corroborate the use of more comprehensive models as the preferred models are those that 

allow for both noise and inefficiency spillovers. In this sense, and as a last practical 

remark regarding the estimation of the uv-SAR model, it is worth mentioning that we 

have not found problems to simultaneously estimate 𝜌𝜌 and 𝜏𝜏 coefficients in our 

application.  

[Insert Table 3 here] 

                                                            
1 See, e.g. http://www.nve.no/elmarkedstilsynet-marked-og-monopol/okonomisk-regulering-av-
nettselskap/inntektsrammer/. 
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Figure 2 presents kernel densities of the efficiency score estimates from the SAR 

models above. We show this figure in order to examine the implications for efficiency 

analysis of neglecting the existence of spatial (cross-sectional) spillovers in either the 

noise or inefficiency terms. This discussion extends on previous papers (see e.g. Schmidt 

et al., 2009) that have examined the effects of overlooking spatial correlations in SF 

models without any allusion to noise or inefficiency terms. We observe that the kernel 

densities of the three models with spatial noise spillovers are very similar, regardless of 

whether or not we control for the existence of inefficiency spillovers. That is, ignoring 

the existence of spatial spillovers in the inefficiency term is not very important. However, 

Figure 2 shows that failure to account for spatial noise spillovers in a model that only 

aims to examine spatial correlations in firms’ inefficiency (i.e. the u-SAR model) results 

in biased estimates of efficiency scores.  

 [Insert Figure 2 here] 

We finally depict the annual evolution of the efficiency scores in Figure 3. All 

models yield similar temporal evolutions of the efficiency scores. Notice that similar 

trends are also found using a simple SF model that ignores any spatial correlation (i.e. the 

TWH model). The main difference among the models is the level of the estimated 

efficiency scores. Figure 3 also provides a very interesting, and somewhat unexpected, 

result regarding the dynamic performance of the regulated firms. To provide some context 

for this, our data set covers two regulatory periods, where the first three years (from 2004 

to 2006) belong to the 2002-2006 price control review while the remaining years of our 

data set (from 2007 to 2011) cover the duration of the posterior price control review. The 

cost base for the revenue cap computations carried out by the NVE regulator is based on 

reported costs at t-2. Regarding the second regulatory period of our data set, the 

Norwegian regulator used the reported cost for 2005. Our results show that all SF and 

CSSF models yield much larger efficiency scores in 2005 than in other years. This 

outcome can be interpreted as an anecdotal evidence of the existence of gaming 

performance among regulated firms.  

[Insert Figure 3 here] 

4. Conclusions and future research agenda 

This paper develops a new stochastic frontier model that allows for cross-sectional 

(spatial) correlation in both the noise and inefficiency terms. This model is useful in 
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efficiency analyses when there are spatially correlated cost/production drivers that are not 

observed, and/or we expect the existence of cross-sectional (spatial) dependence in firms’ 

efficiency. An attractive feature of the proposed model is that it can be estimated by full 

maximum likelihood using standard software. Unlike the previous literature, the model 

proposed permits separate examinations of the characteristics of the cross-sectional 

correlations of the noise and inefficiency terms, which are likely to be of a different 

nature. The model has been illustrated with an application to the Norwegian electricity 

distribution sector. Our CSSF models show that noise and firms’ inefficiency are spatially 

correlated. We also find anecdotal evidence of the existence of gaming performance 

among regulated firms. 

The paper can be extended in several ways. First, the regulated firms in Norway 

are incentivized to behave efficiently using DEA benchmarking techniques. 

Consequently, we should expect strong cross-sectional correlations in firms’ 

inefficiencies when we compare each firm with their peers. Evidence on this correlation 

can be used as an empirical measure of the incentive power of the Norwegian regulation 

framework. We leave an examination of this issue for future research because it is unclear 

as yet how to construct the weight matrix capturing cross-sectional spillovers in the 

inefficiency term using DEA results. Second, it would also be interesting in future 

empirical research to use alternative spatial error processes such as the spatial moving 

average (SMA) process. The SMA structure yields more limited spillover effects across 

firms than the SAR structure. We expect a better performance of the SMA model 

compared to the SAR model if we were carrying out an application based on a DEA 

definition of the weight matrix because no other firms’ inefficiency, except for the peers, 

should be correlated with the inefficiency of a particular firm. Finally, as noted by Simar 

et al. (1994), Wang and Schmidt (2002), and Álvarez et al (2006), some portions of a 

model possessing the scaling property can be estimated by non-linear least squares. This 

will allow us to know to what extend our results depend on the distributional assumptions 

on the random inefficiency variable. 
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Table 1. Descriptive statistics of the data 

    Mean St.Dev. Min Max 
COST 1000 NOK 94830.2 194260.2 1348 1797173 
CUS Number 21618.3 56893.1 348 552342 
DEN Number/Km 21.6 11.6 7.0 65.8 
OH % 67.4 18.1 14.2 97.1 
ST Number 969 1844.8 23 13525 
NL Km 769.7 1301.1 18 8648 
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Table 2. SF models. Parameter estimates and efficiency scores. 

 
         Note: *(**)(***) stands for statistically significance at 10%(5%)(1%). 

 

 

 

 

 

 

  

Coef. s.e. Coef. s.e.
Frontier coefficients
Intercept 3.568 *** 0.075 3.527 *** 0.017
lnCUS 0.763 *** 0.094 0.530 *** 0.041
lnNL 0.215 ** 0.086 0.478 *** 0.040
0.5·lnCUS2 -0.221 *** 0.086 -0.208 *** 0.070
0.5·lnNL2 -0.267 *** 0.082 -0.266 *** 0.088
lnCUS·lnNL 0.234 *** 0.083 0.235 *** 0.076
OH -0.087 0.088 -0.319 *** 0.072
Disturbance
lnσv -1.948 *** 0.023 -2.404 *** 0.024
σv 0.143 0.090
Inefficiency
lnσu -1.699 *** 0.471 -1.263 *** 0.083
σu 0.183 0.283
OH -1.039 *** 0.253 -3.213 *** 0.418
lnST -0.175 *** 0.058 -0.302 *** 0.080
lnDEN -1.255 *** 0.167 -0.577 *** 0.186
Mean log-likelihood 1.2116 -1.7240
#obs 1008 1008
Log likelihood function 1221.3 -1737.8
#parameters 12 12
AIC -2418.6 3499.6
BIC -2359.6 3558.6
CAIC -2418.3 3500.0
HQIC -2438.7 3479.5
Efficiency scores
Average 0.819 0.797
St.Dev 0.100 0.114
Min 0.393 0.515
Max 0.981 0.989

TWH WH
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Table 3. CSSF models. SAR specifications of u and v. 

 

Note: *(**)(***) stands for statistically significance at 10%(5%)(1%). 

 

 

  

u-SAR v-SAR uv-SAR uv-SARr
Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e.

Frontier coefficients
Intercept 3.589 *** 0.054 3.705 *** 0.030 3.653 *** 0.039 3.661 *** 0.029
lnCUS 0.701 *** 0.076 0.587 *** 0.046 0.603 *** 0.046 0.569 *** 0.030
lnNL 0.272 *** 0.068 0.391 *** 0.041 0.374 *** 0.041 0.401 *** 0.029
0.5·lnCUS2 -0.174 ** 0.072 -0.163 *** 0.051 -0.170 *** 0.052 -0.136 *** 0.042
0.5·lnNL2 -0.238 *** 0.069 -0.204 *** 0.052 -0.214 *** 0.053 -0.191 *** 0.048
lnCUS·lnNL 0.194 *** 0.069 0.174 *** 0.050 0.181 *** 0.051 0.153 *** 0.044
OH -0.129 * 0.076 -0.350 *** 0.066 -0.342 *** 0.063 -0.356 *** 0.057
Disturbance
lnσv -1.959 *** 0.023 -1.992 *** 0.022 -1.999 *** 0.023 -1.997 *** 0.022
σv 0.141 0.136 0.135 0.136
Inefficiency
lnσu -2.368 *** 0.606 -3.214 *** 0.732 -3.048 *** 0.606 -3.572 *** 0.515
σu 0.094 0.040 0.047 0.028
OH -1.256 *** 0.323 -1.457 *** 0.437 -1.314 *** 0.379 -1.572 *** 0.418
lnST -0.321 *** 0.094 -0.454 *** 0.154 -0.446 *** 0.112 -0.531 *** 0.115
lnDEN -1.428 *** 0.215 -1.915 *** 0.437 -1.857 *** 0.338 -2.064 *** 0.344
Spatial spillovers
ρ 0.676 *** 0.059 0.629 *** 0.060 0.593 *** 0.057
τ 0.392 *** 0.144 0.423 *** 0.121 0.593 *** 0.057
Mean log-likelihood 1.2237 1.2655 1.2710 1.2698
obs 1008 1008 1008 1008
lnLF 1233.5 1275.7 1281.1 1279.9
#parameters 13 13 14 13
AIC -2441.0 -2525.3 -2534.3 -2533.9
BIC -2377.1 -2461.4 -2465.5 -2470.0
CAIC -2440.6 -2524.9 -2533.9 -2533.5
HQIC -2416.7 -2501.0 -2508.1 -2509.6
Efficiency scores
Average 0.837 0.944 0.895 0.905
St.Dev 0.088 0.060 0.076 0.071
Min 0.445 0.572 0.509 0.544
Max 0.982 0.999 0.993 0.994
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Figure 1. Kernel densities of efficiency scores. SF models. 

 

 

Figure 2. Kernel densities of efficiency scores.   
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Figure 3. Annual average efficiency. 
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