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Abstract 

In this paper we propose a bottom-up approach to trace the channels through which 

infrastructure investments promote economy-wide productivity improvements using industry 

level data. A distinctive feature of our empirical strategy is that it allows an examination of the 

role played by infrastructure provision in stimulating aggregate productivity through both a 

better allocation of resources in the economy and as a proper productivity driver. To achieve 

this objective, we propose a simple approach that relies on estimating standard production 

frontier models. Our empirical illustration shows that the inter-industry effects of some key 

infrastructures are non-trivial (at least in some countries) and have partially offset the 

improvements in intra-industry productivity. 
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analysis, structural changes. 
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1. Introduction 

Understanding the drivers of economy-wide productivity growth has long been of 

interest to academics and policy makers given that differences in aggregate productivity are a 

key source of large cross-country income differentials. Two main sources of productivity 

growth exist at aggregate level:  the shift in the relative size of production units (plants, firms, 

industries, etc.) and the change in the individual productivities. De Avillez (2012) called the 

first source the reallocation effect, and the second source the within effect. In an application 

using sectoral data, such as the one proposed in this paper, the reallocation and within effects 

can be relabelled respectively as inter and intra-industry productivity change. Despite the great 

attention received by intra-industry productivity analyses in the literature, resource 

misallocation has proved one of the underlying factors for the low levels of aggregate 

productivity in many (poor) countries (Bartelsman et al., 2013). Thus, an understanding of the 

reasons for both misallocation and genuine productivity growth is essential.  

Public investment in infrastructure has long been considered as one of the public policy 

decisions exerting the greatest impact on both economic development and aggregate 

productivity. The latter’s relevance is reflected by the large number of studies quantifying its 

effects on private production (Pereira and Andraz, 2013). In particular, one of the components 

that has generated the greatest interest has been the investment in highways due to its uncertain 

effects on regional economic growth and territorial disparities (see, e.g. Crescenzi and 

Rodríguez-Pose 2012). Chandra and Thompson (2000) also find that public investment in 

transportation networks has different impacts across those industries through which new roads 

run. Public and private investments in telecommunication infrastructure including broadband 

access and cellular phones are increasingly recognized as fundamental for economic and social 

development (see Qiang and Rossotto, 2009). Similar comments can be made about some 

private investments such as the investment in electricity distribution (see, e.g. Yang, 2000). 

Given the unequal effect that these sorts of investments might have on the structure of an 

economy, it is of great interest for both academics and policy makers to examine whether these 

infrastructure investments have promoted gains in economy-wide productivity through a better 

allocation of resources across an economy´s industries. 

The present paper proposes a model that somewhat extends and combines several 

strands of the literature as summarized in Section 2. The present paper firstly extends the 

literature on aggregate productivity in the sense that it examines whether specific variables 

(e.g. infrastructure) have significant impacts on both reallocation and within productivity 

effects. Our model also supplements the separately evolved literatures regarding productivity 

growth decomposition and structural transformation. Indeed, at the very most, the latter work 

only examines the role of some key variables on either productivity change or resource 

misallocation. As mentioned above, this study is also related to the literature measuring the 

effect of infrastructure provision on private production. A common feature of this literature is 

that it tends to ignore any allocation effect of public infrastructure on aggregate productivity.1 

To the best of our knowledge, this is the first study that empirically examines the role that the 

infrastructure provision has played in stimulating both structural transformations and aggregate 

                                                           
1 A remarkable exception is Asturias et al. (2014) that investigate the role of transportation infrastructure in 

explaining resource misallocation in India. This paper however uses a rich micro-level dataset of manufacturing 

firms to calibrate a general equilibrium model that is later on used to simulate an improvement in road quality. 

Thus, both the data and the approach is different to those used in the present study. 



 

4 
 
 

productivity through a better resource allocation in the economy. Unlike the main stream 

literature on resource misallocation that relies on rich micro-level datasets of firms operating 

in particular industries (e.g. manufacturing), we use data at the sectoral level. Thus, using the 

terminology coined by Restuccia and Rogerson (2013), our paper uses an indirect approach to 

measure the net effect of a set of aggregate measures of private and public investment, 

encompassing an array of different infrastructures. 

With respect to the structural transformation of the economy, the papers pertaining to 

this literature do not connect their results with changes in intra-industry productivity and do 

not include any variable measuring changes over time in infrastructure provision. Moreover, 

as McMillan et al. (2014) pointed out, most of the empirical models used in this literature are 

ad-hoc as they have not been obtained using an explicit theoretical framework. This precludes 

inferring robust conclusions about the channels through which infrastructure provision tends 

to distort the structure of the economy. Furthermore, in Section 3 we show that the structural 

distortions attributable to infrastructure provision using these ad-hoc models are not 

theoretically consistent with the computed inter-industry productivity effects. In this sense, we 

propose a theoretical framework that yields mutually consistent decompositions of both intra 

and inter-industry effects.  

Finally, while resource misallocation could be explained before by calibrating one of 

the recent multi-sector multi-region general equilibrium models proposed in the literature (see, 

e.g. Caliendo et al., 2017),2 we instead propose a simpler approach that relies on estimating 

standard production functions where the dependent variable is the industry output or an 

industry-specific productivity measure. In order to distinguish between frontier and non-

frontier effects, we propose estimating a stochastic production frontier model for each industry. 

This allows differentiating the production effect of infrastructure as an input (private) as well 

as a determinant of firms’ total productivity.  

The next section provides a brief summary of the related literature. Section 3 develops 

a theoretical model that yields mutually consistent decompositions of both intra and inter-

industry effects. The empirical illustration is shown in Section 4. In this section we discuss the 

data used in the empirical analysis and its sources, and present both the parameter estimates 

and computed intra and inter-industry effects. Finally, Section 5 presents the conclusions. 

 

2. Related literature 

Our paper is related to several strands of literature. First, it contributes to the literature 

on aggregate productivity. A survey of this literature can be found in Balk (2016a,b). This 

literature examines the relation between productivity (growth) measures for low-level 

production units (industries or firms) and some aggregate productivity measure of such units. 

There are basically two approaches to link low and high-level productivity: the bottom-up 

                                                           
2 These authors developed a bottom-up productivity model for the U.S. economy to study how a productivity 

change located within a particular sector and region spreads to all sectors and regions in the economy. They 

calibrate the model and explore the regional, sectoral, and aggregate effects of disaggregated productivity changes 

using pair-wise trade flows across US states by industry, as well as other regional and industry data. They find 

that eliminating U.S. regional trading costs associated with distance would result in significant aggregate total 

factor productivity gains. 
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approach that uses a weighted ‘mean’ of the individual productivities in order to get an 

aggregate productivity measure (see e.g. Baily, Hulten and Campbell, 1992, and Foster, 

Haltiwanger and Krizan, 2001), and the top-down approach that first aggregates all individual 

outputs and inputs and then computes the productivity of the aggregate (see e.g. Diewert, 

2015). In both approaches, the production units are somehow combined and, in the ensemble, 

the production units are not granted equal importance as some weights reflecting their relative 

importance are explicitly or implicitly used.3 Microdata studies are usually not interested in 

aggregate productivity and concentrate on the distributional characteristics of a large set of 

individual productivities. In contrast, when the production units are industries, the authors are 

more interested in sector-specific productivity change and its components. If these sectoral 

analyses show the productivity change of the aggregate (e.g.,the economy), they do not 

explicitly connect the sectoral and overall results. Despite the different fundamental frames of 

reference used in the bottom-up and top-down approaches, the decomposition provided by both 

approaches is somewhat similar. In both frameworks, the reallocation and within productivity 

effects are considered as the main productivity components. However, while the top-down 

decompositions are conceptually more appealing than the bottom-up decompositions (see, e.g. 

the criticism made by Petrin and Levinsohn, 2012), the top-down approach provides less 

manageable decompositions from a practical point of view (see, e.g. Diewert, 2015).4 For this 

reason, we follow a bottom-up approach in this paper and leave for future research the 

development of a mutually consistent decomposition of both inter- and intra-industry 

productivity effects. 

Understanding the drivers of productivity growth has for a long time entertained the 

curiosity of academics. The reason for decomposing productivity change into components is to 

use its inherent information for policy guidance. In this context, it is important that the 

components are economically meaningful and that they can be estimated accurately. Both 

parametric and non-parametric frontier techniques have been used to decompose primal or dual 

measures of productivity into economically meaningful terms. For a summary see Färe et al 

(2008), Fried et al. (2008), and Orea and Zofío (2017). Much of the literature on decomposing 

productivity growth focuses on two main sources of productivity growth or productivity 

differentials. One possibility is that some production units are relatively slow to adopt more 

productive technologies (i.e. they exhibit low degrees of innovation). The other is that these 

units do not operate technologies efficiently due to diffusion and learning limitations. In the 

literature using frontier techniques, these two productivity growth drivers are labeled as 

technical change (shifts in the technology frontier) and catching-up (efficiency change). Using 

a parametric approach, the first decomposition that separately identifies the efficiency change 

and technical change components of productivity change is due to Nishimizu and Page (1982). 

Later on Färe, Grosskopf, Lindgren, and Roos (1994) proposed a non-parametric frontier 

technique (Data Envelopment approach, DEA) to achieve a similar decomposition. These 

publications started a small industry of alternative productivity decompositions using both 

frontier techniques. For instance, there is an extensive econometric literature that links 

productivity and dual representations of technology in the frontier framework (see, for an early 

                                                           
3 As the aggregate productivity (change) is not necessarily equal to the productivity (change) of the aggregate, 

Balk (2016b) investigates the connection between the bottom-up approach and the top-down approach. 
4 The top-down approach introduced by Diewert (2015) is also more challenging from an economic viewpoint 

since it includes an output price effect and its decomposition into fundamental sources requires making (maybe 

strong) assumptions about how output prices are set in the marketplace and how market power varies over time.     
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example using a cost function, Bauer, 1990). On the other hand, Orea (2002) and Färe, 

Grosskopf, Norris, and Zhang (1994) included a scale efficiency component into the 

decomposition using econometric and non-parametric frontier techniques respectively. 

Diewert and Fox (2016) include other explanatory factors such as changes in output prices, 

changes in primary inputs and changes in input prices when value-added based productivity 

measures are considered and a top-down approach is used. 

Another relevant source of productivity (economic) growth is the public investment in 

infrastructure, specifically in transport infrastructures. In this sense, our paper is also related to 

the literature analyzing the effects of public investment in infrastructure on private production 

or economic growth in developed and developing countries. A summary of the main results 

and methodologies used in this literature can be found in Pereira and Andraz (2013). According 

to Romp and De Haan (2007), this research can be split into three groups from a methodological 

point of view.5 The most popular group relies on estimating production functions where public 

infrastructure is treated as an input supported by governmental backing. This is the approach 

employed in this paper. The second group estimates dual cost (profit) functions in order to 

overcome some of the econometric problems of the production function approach, but in doing 

so relies heavily on having sound input prices. The third approach incorporates the production 

function into an endogenous growth model and is more focused on long-run effects. The 

resulting empirical model not only involves a different set of production drivers, but is also 

estimated using a rate-of-growth specification. Generally speaking, and despite the 

considerable efforts of public administration to promote economic growth in recent years by 

increasing transport infrastructure investment, specifically in roads and highways, the 

economic results are often of a smaller than expected magnitude.6  

Our paper also contributes to the recent literature emphasizing misallocation of 

resources as a key source of productivity (income) differences across countries. Restuccia and 

Rogerson (2013) provide a nice review of this literature that mostly includes microdata 

applications where the production units are plants or firms. For instance, Baily et al. (1992) 

and Foster et al. (2001), and Foster et al. (2008) showed that 50% of productivity growth in US 

manufacturing is explained by reallocation across plants. Restuccia and Rogerson (2008) were 

two of the first authors to demonstrate that policies distorting the allocation of resources across 

heterogeneous firms can in fact generate higher productivity and income losses. In their review, 

Restuccia and Rogerson (2013) state that the literature has followed two main approaches to 

explore the extent to which specific policies, institutional factors and market imperfections can 

generate effects on aggregate productivity via misallocation: the direct approach and the 

indirect approach. The essence of the direct approach is to pick one (or more) factors, try to 

obtain direct measures of these factors, and then use a model of heterogeneous production units 

to quantitatively assess the extent to which these factors generate misallocation and impact 

aggregate productivity. While many studies indicate that large productivity losses can arise 

from individual factors, the effects from any one particular factor are very small relative to the 

                                                           
5 Romp and De Haan (2007) mention a fourth approach that includes a set of data-oriented models which do not 

rely heavily on economic theory (e.g. the vector autoregressive models). In addition, Pereira and Andraz (2013) 

categorize each approach into three different subgroups depending on the aggregation level of the data: national 

and cross-country; regional; and industry studies. 
6 Using data from the European regions, Rodriguez-Pose and Fratesi, (2004), and Crescenzi and Rodriguez-Pose 

(2012) find that its return is even less than those obtained from investment in human capital and innovation in 

European regions. 
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scale of differences found across rich and poor economies. The indirect approach tries to focus 

on the whole set of underlying factors and examine their net effect on misallocation. This 

approach interprets misallocation as a wedge in the first order conditions for establishing 

optimization problems. That is, it focuses on the wedges rather than on the underlying source 

of the wedges. An important limitation of the indirect approach is the requirement for detailed 

and comparable microdata on establishments which often suffers severely from restricted 

access. As Restuccia and Rogerson (2013) point out, this approach often uses data on specific 

manufacturing sectors and the estimates can be a lower bound of the total amount of 

misallocation. 

Our own methodology is capable of explaining changes in the relative importance of 

each industry, and as such the present paper contributes towards the scant literature on 

structural transformation. Said literature aims to identify the drivers of structural 

transformation, especially those associated with different reform programs designed to 

restructure the economies of several developing countries. The sectoral-level empirical 

literature on structure transformation provides useful insights as to the allocation (or inter-

industry) productivity effects and their determinants. Dabla-Norris et al. (2013) document 

stylized facts on the process of structural transformation around the world and empirically 

analyse its determinants using data on real value added by sector of economic activity. Their 

analyses using simple linear and quantile regression methods suggest that a large proportion of 

the cross-country variation in sector shares can be accounted for by country-specific 

characteristics, such as demographic structure, population size, human and physical capital, 

and policy and institutional variables. Later on, using a standard shift-share decomposition of 

labor productivity, McMillan et al. (2014) show that structural change since 1990 has been 

growth reducing in both Africa and Latin America. These authors also regress the allocation or 

structural change component with respect to a set of determinants. Mensah et al. (2016) 

examine the determinants of structural transformation in the sub-Saharan African region. They 

set up an empirical model within the framework of the neoclassical growth model where the 

output of each sector is expressed as a function of inputs and a set of policy reform variables.  

 

3. Mutually consistent decomposition of intra and inter-industry productivity effects 

 

3.1. Baseline model 

 Following Balk (2016a, p. 33), the aggregate productivity level of a particular country 

(P) can be defined as a weighted geometric average of the industry-specific productivity levels. 

In logs, this is equivalent to 𝑙𝑛𝑃 = ∑ 𝑆𝑗𝑙𝑛𝑃𝑗
𝐽
𝑗=1 , where 𝑃𝑗 is a measure of firms’ productivity at 

industry level, subscript j stands for industry or sector, the weight of each industry 𝑆𝑗 is the 

relative size of sector j in the whole economy. We hereafter consider simple labor productivity, 

that is, value added per unit of labor; i.e. 𝑃𝑗 = 𝑌𝑗 𝐿𝑗⁄ .7 The relative size of a particular industry 

                                                           
7 Diewert (2015) finds substantial reallocation effects in his empirical application to Australian market sector data 

if labor productivity is used. However, the reallocation effects are close to zero when a multifactor productivity 

growth is used to take into account the growth of all inputs. Thus, on average, what counts in this setting are the 

intra-industry productivity gains. This result has encouraged us to develop our productivity decompositions using 

labor productivity instead of a total factor productivity index. It is worth mentioning that the lack of significant 

inter-industry productivity effects likely has to do with the constant returns to scale used to compute the total 
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can be given by either its value-added share (𝑆𝑗 = 𝑦𝑗 ∑ 𝑦ℎ
𝐻
ℎ=1⁄ ) or its labor share (𝑆𝑗 =

𝐿𝑗 ∑ 𝐿ℎ
𝐻
ℎ=1⁄ ).8 Thus, the aggregate (or mean) rate of productivity growth can be decomposed 

as follows: 

𝑑𝑙𝑛𝑃 = ∑ 𝑆𝑗𝑑𝑙𝑛𝑃𝑗
𝐽
𝑗=1 + ∑ 𝑙𝑛𝑃𝑗𝑑𝑆𝑗

𝐽
𝑗=1 = 𝑑𝑙𝑛𝑃̅̅ ̅̅̅ + 𝑑𝑆̅   (1) 

While the first term in (1) is a weighted average of intra-industry rates of productivity 

growth, the second term relates to industry relative size changes and is weighted by normalized 

industry-specific productivity levels. Accordingly, the industries can contribute positively to 

aggregate productivity change in two ways: if their own productivity level increases (intra-

industry effect), or if the industries with above (below) average productivity levels increase 

(decrease) in relative size (inter-industry effect).  

 Using a Bennet-type symmetric method, the discrete-time counterpart of our 

continuous-time decomposition in equation (1) can be written as:  

𝑙𝑛𝑃𝑡 − 𝑙𝑛𝑃𝑡−1 = ∑
𝑆𝑗𝑡−1+𝑆𝑗𝑡

2
(𝑙𝑛𝑃𝑗𝑡 − 𝑙𝑛𝑃𝑗𝑡−1)

𝐽
𝑗=1 + ∑

𝑙𝑛𝑃𝑗𝑡+𝑙𝑛𝑃𝑗𝑡−1

2
(𝑆𝑗𝑡 − 𝑆𝑗𝑡−1)

𝐽
𝑗=1   (2) 

 Notice that this geometric productivity decomposition looks like a Törnqvist 

productivity index and it basically corresponds to the arithmetic one used in Griliches and 

Regev (1995), and Diewert and Fox (2010). It is worth mentioning that we do not need to 

introduce the conventional covariance-type term that appears, for instance, in Baily et al. 

(1992) and Foster et al. (2001, method 1) in the above decomposition. This term appears in a 

discrete-time setting if the weights of a particular period (e.g. Laspeyres-type or Paasche-type 

measures) are used to compute both intra and inter productivity changes. However, Balk 

(2016a) points out that we can avoid the Laspeyres-Paasche dichotomy by using a symmetric 

Bennet-type method that relies on the arithmetic average of the Laspeyres-type and Paasche-

type measures. In this case, the covariance-type term disappears from the productivity 

decomposition, as in our equation (1). Moreover, Foster et al.  (2001) argue that these Bennet-

type decompositions, (there called method 2), are presumably less sensitive to random 

measurement errors than the asymmetric methods.  

 Regarding the intra-industry productivity effect, it can in turn be decomposed into a 

component attributable to changes in the provision of H different infrastructures labeled 

hereafter as 𝑧 = (𝑧1, … , 𝑧𝐻) such as transport, electricity, telecommunication, etc.; and a 

component associated to the traditional factors of production, capital (𝐾) and labor (𝐿), that is:  

𝑑𝑙𝑛𝑃𝑗 = ∑
𝜕𝑙𝑛𝑃𝑗

𝜕𝑍ℎ
𝑑𝑧ℎ

𝐻
ℎ=1 +

𝜕𝑙𝑛𝑃𝑗

𝜕𝑙𝑛𝐾
𝑑𝑙𝑛𝐾 +

𝜕𝑙𝑛𝑃𝑗

𝜕𝑙𝑛𝐿𝑗
𝑑𝑙𝑛𝐿𝑗  (3) 

Notice that, while the labor variable is an industry-specific variable, the capital variable 

does not have an industry subscript as it is not possible to get industry-specific values of this 

variable without reducing substantially the sample mean.9 Also worth noting is that, on 

purpose, we have not included a traditional technical change effect in (3) because some of our 

infrastructure variables (e.g. the percentage of population with internet connection, or the 

percentage of cellular subscriptions) has to do with improvements in technology. Finally, it 

                                                           
factor productivity measure (i.e. Diewert has assumed that for all industries the return of the whole set of inputs 

is unity). We leave this interesting finding for future research. 
8 Interestingly enough, in the top-down decomposition of labor productivity introduced by Diewert (2015, see eq. 

14), the intra-industry productivity component is an output-based average of individual productivities, while the 

inter-industry component is computed using changes in labor-based industry shares.  
9 This subtle difference yields that the derivatives of each industry share with respect to capital and labor will not 

formally coincide. This difference should thus be taken into account when measuring the reallocation effects of 

both inputs.   
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should be mentioned that our z variables also include a variable measuring human capital which 

can be viewed as a proxy of the returns of public and private investments in education.     

Infrastructure provision might also cause changes in the structure of the economy. The 

change in the relative size of existing industries can be decomposed into a component 

attributable to changes in infrastructure provision, and a component associated with other 

determinants. If we generally label the latter determinants as 𝑞 = (𝑞1, … , 𝑞𝑀),10 the change in 

the relative size of industry j can be decomposed as:  

𝑑𝑆𝑗 = ∑
𝜕𝑆𝑗

𝜕𝑍ℎ
𝑑𝑧ℎ

𝐻
ℎ=1 + ∑

𝜕𝑆𝑗

𝜕𝑞𝑚
𝑑𝑞𝑚

𝑀
𝑚=1     (4) 

Thus, if we define the average rate of growth in labor as 𝑑𝑙𝑛𝐿 = ∑ 𝑆𝑗𝑑𝑙𝑛𝐿𝑗
𝐽
𝑗=1 , the 

aggregate rate of productivity growth can be decomposed as: 

𝑑𝑙𝑛𝑃 = ∑ {
𝜕𝑙𝑛𝑃̅̅ ̅̅ ̅

𝜕𝑍ℎ
+

𝜕𝑆̅

𝜕𝑍ℎ
} 𝑑𝑧ℎ

𝐻
ℎ=1 +

𝜕𝑙𝑛𝑃̅̅ ̅̅ ̅

𝜕𝑙𝑛𝐾
𝑑𝑙𝑛𝐾 +

𝜕𝑙𝑛𝑃̅̅ ̅̅ ̅

𝜕𝑙𝑛𝐿
𝑑𝑙𝑛𝐿 + ∑

𝜕𝑆̅

𝜕𝑞𝑚
𝑑𝑞𝑚

𝑀
𝑚=1   (5) 

where the partial derivatives in (5) can be interpreted as (intra and inter-industry) marginal 

effects of individual (production or structural) drivers on aggregate productivity: 

𝜕𝑙𝑛𝑃̅̅ ̅̅ ̅

𝜕𝑍ℎ
= ∑ 𝑆𝑗

𝜕𝑙𝑛𝑃𝑗

𝜕𝑍ℎ

𝐽
𝑗=1       (6) 

𝜕𝑙𝑛𝑃̅̅ ̅̅ ̅

𝜕𝑙𝑛𝐾
= ∑ 𝑆𝑗

𝜕𝑙𝑛𝑃𝑗

𝜕𝑙𝑛𝐾

𝐽
𝑗=1       (7) 

𝜕𝑙𝑛𝑃̅̅ ̅̅ ̅

𝜕𝑙𝑛𝐿
= ∑ 𝑆𝑗

𝜕𝑙𝑛𝑃𝑗

𝜕𝑙𝑛𝐿𝑗

𝑑𝑙𝑛𝐿𝑗

𝑑𝑙𝑛𝐿

𝐽
𝑗=1      (8) 

𝜕𝑆̅

𝜕𝑍ℎ
= ∑ 𝑙𝑛𝑃𝑗

𝜕𝑆𝑗

𝜕𝑧ℎ

𝐽
𝑗=1       (9) 

𝜕𝑆̅

𝜕𝑞𝑚
= ∑ 𝑙𝑛𝑃𝑗

𝜕𝑆𝑗

𝜕𝑞𝑚

𝐽
𝑗=1       (10) 

 While the first term on the right in (5) measures the average intra and inter-industry 

productivity change attributable to changes in infrastructures provision (our target variables), 

the second and third terms measure respectively the average intra-industry productivity effect 

attributable to capital and labor. Notice that (7) and (8) differ slightly due to the fact that capital 

does not vary across sectors, while labor does. The last term in (5) captures several shift-share 

or inter-industry reallocation effects attributable to changes in 𝑞𝑚 that cause changes in the 

relative size of existing industries. 

 The rest of this section is devoted to computing equation (5) using the parametric 

estimates of a standard production model. 

 

3.2. Decomposing intra-industry productivity changes  

The intra-industry productivity change and its decomposition can be computed 

applying a traditional production model where the dependent variable is the industry’s output 

estimated using industry level data. In order to distinguish between frontier and non-frontier 

effects, we propose estimating a stochastic production frontier model for each industry, which 

may be written as follows: 

                                                           
10 We do not explicitly label them here as they will appear instinctively later on. Solely mention here that some 

production drivers might also appear in the “q” vector.  
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𝑙𝑛𝑦𝑗𝑡 = β0𝑗 + 𝛽𝐾𝑗𝑙𝑛𝐾𝑡 + 𝛽𝐿𝑗𝑙𝑛𝐿𝑗𝑡 + ∑ γ𝑗ℎ𝑧ℎ𝑡
𝐻
ℎ=1 + 𝑣𝑗𝑡 − 𝑢𝑗𝑡(𝑧𝑡)   (11) 

where 𝑦𝑗𝑐𝑡 represents the value-added for every industry (𝑗 = 1, … , 𝐽), t identifies the time 

period (𝑡 = 1, … , 𝑇); 𝐾𝑡 denotes the capital stock of the whole country, 𝐿𝑗𝑡 stands for the labor 

force used in each industry; 𝑧ℎ𝑡 is the provision of infrastructure h in period t; and 𝑧𝑡 =
(𝑧1𝑡, … , 𝑧𝐻𝑡) is the vector of infrastructure variables. For notational ease we have dropped a 

country-specific subscript from all the variables and from the intercept as a fixed-effect type 

estimator is used later on to control for unobserved heterogeneity. Equation (11) also includes 

two error terms, 𝑣𝑖𝑡 and 𝑢𝑖𝑡. While the former term is a symmetric error term measuring pure 

random shocks, the latter term is a non-negative error term measuring country-sector 

inefficiency.  

Please note that the provision of infrastructures first enters the production function as a 

standard factor of production. The infrastructure variables contribute to production via the 

production of specific services (or intermediate inputs) such as transport, energy and 

communication services. As the production of these intermediate inputs is unobserved, our 

specification can be viewed as a reduced-form of that advocated by Straub (2011). This author 

states that the inclusion of the infrastructure variables as simple inputs is questionable because, 

despite the increasing market mediation of infrastructure, this type of capital is not completely 

remunerated according to its marginal productivity in the real world. This has prompted several 

authors to instead consider infrastructure as part of a total factor productivity term, i.e. as an 

efficiency-enhancing externality specifically linked to the accumulation of infrastructure 

capital. However, a non-frontier Cobb-Douglas specification of the production function à la 

Barro (1991), does not allow researchers to distinguish the direct effect of infrastructure (i.e. 

through the production of specific services) from the indirect effect (i.e. the efficiency-

enhancing infrastructure externalities). This problem can be addressed if we use a frontier 

specification of the production model and additionally treat the set of infrastructure variables 

as efficiency determinants, as can be observed in (11).   

On the other hand, notice that the above production equation can be rewritten as follows 

if we consider simple labor productivity:  

𝑙𝑛𝑃𝑗𝑡 = β0𝑗 + 𝛽𝐾𝑗𝑙𝑛𝐾𝑡 + (𝛽𝐿𝑗 − 1)𝑙𝑛𝐿𝑗𝑡 + ∑ γ𝑗ℎ𝑧ℎ𝑡
𝐻
ℎ=1 + 𝑣𝑗𝑡 − 𝑢𝑗𝑡(𝑧𝑡)  (12) 

If we compare (11) and (12) we immediately conclude that all production drivers in 

(11) are simultaneously drivers of labor productivity. Thus, this equation suggests that the 

estimated coefficients in (11) can be easily used to decompose labor productivity changes.11  

It is also worth mentioning that the effect of infrastructure provision on industry labor 

productivity in (12) is a combination of a direct effect through the frontier, and an indirect 

effect through the inefficiency term: 

𝜕𝑙𝑛𝑃𝑗𝑡

𝜕𝑧ℎ
= θ𝑗ℎ𝑡 = γ𝑗ℎ −

𝜕𝑢𝑗𝑡

𝜕𝑧ℎ
       (13) 

 Although a Cobb-Douglas production model is estimated, this effect varies across 

countries and industries over time because generally 𝜕𝑢𝑗𝑡/𝜕𝑧ℎ is a (complex) function of 

country-specific and time-varying variables. Taking into account (13), the intra-industry 
                                                           
11 The same conclusion can be inferred for total factor productivity (TFP) if we alternatively rearrange equation 

(11) as follows:  

𝑙𝑛𝑇𝐹𝑃𝑗𝑡 = 𝑙𝑛𝑦𝑗𝑡 − 𝑙𝑛𝑋𝑗𝑡 = β0𝑗 + 𝜏𝑗 · 𝑙𝑛𝑋𝑗𝑡 + ∑ γ𝑗ℎ𝑧ℎ𝑡
𝐻
ℎ=1 + 𝑣𝑗𝑡 − 𝑢𝑗𝑡(𝑧𝑡)  

where 𝜏𝑗 = (𝛽𝑘𝑗 + 𝛽𝐿𝑗 − 1) is a measure of the returns to scale at industry level and 𝑙𝑛𝑋𝑗𝑡 is an aggregate input 

index defined as 𝑙𝑛𝑋𝑗𝑡 = {𝛽𝑘𝑗/(𝛽𝑘𝑗 + 𝛽𝐿𝑗)𝑙𝑛𝐾𝑡 + 𝛽𝐿𝑗/(𝛽𝑘𝑗 + 𝛽𝐿𝑗)𝑙𝑛𝐿𝑗𝑡}.  
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marginal effect of infrastructure h on overall productivity in (6) can be computed using a 

Bennet-type symmetric specification as:  

𝜕𝑙𝑛𝑃𝑡̅̅ ̅̅ ̅̅

𝜕𝑍ℎ
= ∑

𝑆𝑗𝑡−1+𝑆𝑗𝑡

2
·𝐽

𝑗=1 (γ𝑗ℎ −

𝜕𝑢𝑗𝑡−1

𝜕𝑧ℎ
+

𝜕𝑢𝑗𝑡

𝜕𝑧ℎ

2
)     (14) 

Equation (14) shows the intra-industry marginal effect as a weighted average of 

industry-specific productivity effects, γ𝑗ℎ
𝑢 . As the distribution of sectoral production across 

countries is far from uniform, this effect is country specific even when the industry productivity 

effects are the same.  

Finally, it should be noticed that similar equations can be obtained for the intra-industry 

marginal effects of capital and labor in (7) and (8), but without an indirect effect through the 

inefficiency term. 

 

3.3. Decomposing inter-industry productivity changes  

Equation (9) measures how infrastructure provision distorts the relative importance of 

high- and low-level productive sectors. In practice, one empirical strategy that can be used to 

compute this component is to regress the overall structural-change term 𝑑𝑆̅ = ∑ 𝑙𝑛𝑃𝑗𝑑𝑆𝑗
𝐽
𝑗=1  on 

a number of plausible independent variables á la McMillan et al (2014). In this case, the 

structural distorts attributable to infrastructure provision are represented simply by the 

parameter estimated for this variable in the auxiliary regression, and hence the effect of 

infrastructure provision on overall structural changes is common to all countries.12 As 

McMillan et al. (2014) correctly pointed out, we should view these auxiliary regressions as a 

first pass through the data, rather than a complete causal analysis based on an explicit 

theoretical model. Given the somewhat ad-hoc nature of such auxiliary regressions, the 

computations of the structural distorts attributed to infrastructure provision will not be 

theoretically consistent with the previously computed intra-industry productivity effect. 

Given the above limitations, we next develop a decomposition of the inter-industry 

productivity effects attributable to infrastructure provision when the relative size of a particular 

industry is measured in terms of output. The corresponding expressions for other determinants 

of the relative industry sizes are also provided. The salient feature of this model is that the 

proposed decomposition is consistent with the intra-industry decomposition developed in 

Subsection 3.2.  

 

3.3.1. Output-based decomposition of inter-industry effects 

First, assume that the relative size of industry j at period t is given by its value-added 

share; i.e. 𝑆𝑗𝑡 = 𝑦𝑗𝑡 ∑ 𝑦𝑠𝑡
𝐽
𝑠=1⁄ . Given the production model in (11), this output-based share can 

be rewritten as: 

𝑆𝑗𝑡 = 𝑆𝑗𝑡(𝑧𝑡, 𝐾𝑡, 𝐿𝑡) =
A𝑗𝑐𝑡𝐾𝑡

𝛽𝑘𝑗𝐿𝑗𝑡
𝛽𝐿𝑗

∑ A𝑠𝑡𝐾𝑡
𝛽𝑘𝑠𝐿𝑠𝑡

𝛽𝐿𝑠𝐽
𝑠=1

     (15) 

                                                           
12 Alternatively, more accurate results can be obtained if a set of auxiliary equations for each industry are 

estimated. In this case, the structural distortions caused by changes in infrastructure provision, is a weighted 

average of industry-specific productivity effects. As the economic activity is not distributed uniformly across 

countries, the overall effect is country specific even when the industry productivity effects are the same. 



 

12 
 
 

where 𝐿𝑡 = (𝐿1𝑡, … , 𝐿𝐽𝑡) is the vector of industry-specific labor variables, 𝑧𝑡 = (𝑧1𝑡, … , 𝑧𝐻𝑡) is 

the vector of infrastructure variables common to all industries, and 

𝑙𝑛A𝑗𝑡 = β0𝑗 + ∑ γ
𝑗ℎ

𝑧ℎ𝑡
𝐻
ℎ=1 + 𝑣𝑗𝑡 − 𝑢𝑗𝑡(𝑧𝑡)     (16) 

can be interpreted as the logarithm of a total factor productivity index, which is a function of 

infrastructure provision (𝑧𝑡). The effect of a particular infrastructure on industry output is given 

by: 

 
𝜕𝑦𝑗𝑡

𝜕𝑧ℎ
=

𝜕𝑙𝑛𝐴𝑗𝑡

𝜕𝑧ℎ
y𝑗𝑡 = θ𝑗ℎ𝑡y𝑗𝑡 = (γ

𝑗ℎ
−

𝜕𝑢𝑗𝑡

𝜕𝑧ℎ
) y𝑗𝑡    (17) 

Given (17), the effect of infrastructure provision on the industry j output share is: 13 

𝜕𝑆𝑗𝑡(𝑧𝑡,𝐾𝑡,𝐿𝑡)

𝑧ℎ
= 𝑆𝑗𝑡[θ𝑗ℎ𝑡 − ∑ θ𝑠ℎ𝑡𝑆𝑠𝑡

𝐽
𝑠=1 ] = 𝑆𝑗𝑡[θ𝑗ℎ𝑡 − θ̅ℎ𝑡]    (18) 

where θ̅ℎ𝑡 = ∑ 𝑆𝑠𝑡θ𝑠ℎ𝑡
𝐽
𝑠=1 . This equation indicates that the effect of infrastructure provision on 

the relative size of industry j depends on the relative size of industry j (𝑆𝑗𝑡) and on how different 

the intra-industry productivity effect is with respect to the average. If the productivity effect of 

infrastructure provision is the same for all industries (i.e. θ𝑗ℎ𝑡 = θ̅ℎ𝑡 j=1,…,J), the 

productivity effect of infrastructure provision thought structural changes in the economy 

disappears. If not, the overall inter-industry marginal effect of infrastructure provision in (9) 

can be measured in practice as: 

𝜕𝑆̅𝑡

𝜕𝑧ℎ
= ∑

𝑙𝑛𝑃𝑗𝑡−1+𝑙𝑛𝑃𝑗𝑡

2
{

𝑆𝑗𝑡−1+𝑆𝑗𝑡

2
[θ𝑗ℎ𝑡 − θ̅ℎ𝑡]}𝐽

𝑗=1    (19) 

It is worth mentioning that the output-based share of each industry also depends on 

capital and labor. i.e. 𝑙𝑛𝐾𝑡 and 𝑙𝑛𝐿𝑗𝑡 are “q” variables. Therefore, they also generate reallocation 

or inter-industry effects. The inter-industry marginal effect of capital can be computed using a 

similar expression to (19) because this variable is also common to all industries in our 

application, but without an indirect effect through the inefficiency term. That is: 

𝜕𝑆̅𝑡

𝜕𝑙𝑛𝐾𝑡
= ∑

𝑙𝑛𝑃𝑗𝑡−1+𝑙𝑛𝑃𝑗𝑡

2
{

𝑆𝑗𝑡−1+𝑆𝑗𝑡

2
[𝛽𝑘𝑗 − β̅

𝐾
]}𝐽

𝑗=1    (20) 

where β̅𝐾 = ∑ 𝑆𝑠𝑡𝛽𝑘𝑠
𝐽
𝑠=1 . The inter-industry marginal effect of labor should be computed using 

a slightly different expression because this variable is specific for each industry. The effect of 

𝐿𝑗 on the output-based share of industry j and industry sj is given by: 

 
𝜕𝑆𝑗𝑡

𝜕𝑙𝑛𝐿𝑗
= 𝛽𝐿𝑗𝑆𝑗𝑡(1 − 𝑆𝑗𝑡)    (21a) 

𝜕𝑆𝑠𝑡

𝜕𝑙𝑛𝐿𝑗
= −𝛽𝐿𝑗𝑆𝑗𝑡𝑆𝑠𝑡     (21b) 

Thus, the overall inter-industry marginal effect of a particular industry labor variable 

can be measured in practice as: 

𝜕𝑆̅𝑡

𝜕𝑙𝑛𝐿𝑗
= 𝛽𝐿𝑗

𝑆𝑗𝑡−1+𝑆𝑗𝑡

2
[

𝑙𝑛𝑃𝑗𝑡−1+𝑙𝑛𝑃𝑗𝑡

2
− ∑

𝑙𝑛𝑃𝑠𝑡−1+𝑙𝑛𝑃𝑠𝑡

2

𝑆𝑠𝑡−1+𝑆𝑠𝑡

2

𝐽
𝑠=1 ]  (22) 

 

3.3.2. A discussion on input-based decompositions of inter-industry effects 

                                                           
13 Notice that this derivative is conditional on labor and capital variables. Thus, it might be ignoring or 

underestimating the structural and economic transformations associated to the well-known rural-to-urban 

migrations which have occurred in many countries. 
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 The question regarding which weights (output- or input-based?) are appropriate to 

ensemble the industries, has received some attention in the literature because of the potentially 

significantly different results (see, e.g. Karagiannis, 2013). Using a theoretical approach 

instead, Balk (2016a, section 9) examined whether several aggregate productivity measures 

based on different weighting strategies are equal to the productivity of the aggregate. This 

author showed that a labor-share weighted mean of labor productivities understates aggregate 

labor productivity, whereas a value-added-share weighted mean overstates aggregate labor 

productivity. The latter result has to do with the decomposition of economy-wide labor 

productivity proposed by Diewert (2015) using a top-down perspective. He shows that while 

the intra-industry (within) effects are computed using output-based shares, the inter-industry 

(reallocation) effects should be computed using labor shares. Thus, both types of shares should 

be used in a top-down decomposition of labor productivity.  

It should be highlighted here that, regardless of whether we use a top-down approach 

to decompose an economy-wide labor productivity measure or alternatively follow a bottom-

up approach to aggregate the productivity measure of each industry using labor shares, the 

inter-industry (reallocation) term is computed using rates of growth of industry labor shares. 

The decomposition of this term is, however, much more challenging than the decomposition in 

Subsection 3.3.1. for several reasons. First, measuring the effect of a particular variable on 

labor is a difficult task as employment is an intrinsically complex phenomenon. As Vivarelli 

(2012) points out in his literature review on employment and innovation, employment is 

influenced by many factors: namely, macroeconomic and cyclical conditions, labor market 

dynamics, demographic structure, policy and institutional mechanisms, trends in working time 

and so on. Second, it requires “endogenizing” the industry-specific input levels using a 

theoretical framework that more than likely ignores many relevant features of the labor market. 

Third, the development of such a theoretical model requires making behavioral assumptions 

about firms’ objectives. Not only the selection of a proper framework is uncertain but also the 

computed inter-industry effects might change a lot depending on whether e.g. firms maximize 

profits or minimize cost. Indeed, we show in Appendix B that the cost-based effect of 

infrastructure provision on the industry j labor share is negative in those industries where the 

output effect (θ𝑗ℎ𝑡) is larger than the average effect (θ̅ℎ𝑡),
14 whereas it is positive if we compute 

a profit-based effect. Moreover, both effects are likely to over or under-estimate the true effects 

because output and input prices are taken as given. If we allowed a fully adjustment of the 

economy, we should expect changes in both prices.  

Given the above limitations and the need to estimate a production model in order to 

obtain the intra-industry effects of infrastructure provision, we will use the analytical 

expressions developed in Subsection 3.3.1. to compute the inter-industry productivity effects 

of our empirical application. We leave for future research the use, and selection, of a dual 

approach to decompose the inter-industry effects in both bottom-up and top-down frameworks.  

 

4. Empirical illustration 

 

4.1. Data and sample  

                                                           
14 This somewhat counterintuitive result is caused by the fact the computed effect is conditional on industry output 

levels. Thus, the estimated adjustments in labor do not take into account the output side of the adjustments that 

are arising in the economy. This limitation then calls for a model that also endogenizes the output of each industry. 
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To illustrate the proposed decompositions of both the inter and intra-industry 

productivity effects of several types of infrastructures we use a balanced data panel for 39 

countries and 5 industries over the period 1995-2010. The industries examined in this paper 

are fairly aggregated: Agriculture, Energy, Manufacturing, Construction and Services. To 

simplify the empirical exercise, we have aggregated mining together with electricity, gas and 

water supply into one sector. In addition, the Services sector includes a large range of services 

such as wholesale and retail trade, hotels, transport, storage, and communications, finance and 

insurance.  

The dataset includes annual observations on sectoral value-added, physical capital and 

labor, the quality of labor, and the telecommunication, transport and electricity networks in 

each country. In order to implement the proposed decomposition, we were forced to drop many 

countries from the sample given that many years suffered from missing values in value-added 

or labor at sectoral level or/and in the provision of infrastructures at country level. Moreover, 

we found that the (lack of) information in infrastructures and in economic variables did not 

coincide in most cases. In order to work with a reasonable number of observations, we were 

forced to use the amount of physical capital for the whole country in all the sectoral 

regressions.15 Otherwise, the sample size would have been reduced to only 11 countries. 

Despite these data issues, we were able to work with a sample of countries that belong to 

different regions in the World (see Appendix A). As these regions exhibit different temporal 

patterns in their productivity indicators, the relative importance of the intra and inter-industry 

effects on the observed productivity growth rates will probably vary substantially across 

regions.  

Unlike most of the economic growth literature that adopts a country-wide perspective, 

we required data collection at sectoral level in order to examine the intra and inter-industry 

productivity effects of infrastructure provision. In this regard, the Groningen Growth and 

Development Centre (GGDC) 10-Sector Database provides a long-run global set of variables 

for gross value added (Y) and labor (L) for each industry. While the output variable Y is 

measured at constant local currency, the input L is measured in thousands of jobs. Equally, the 

latter source provides capital stock (K) at constant local currency as well as the human capital 

index (Human capital), based on years of schooling. Unfortunately, this variable does not vary 

across industries as it is only available for the whole economy. The data on technological 

indicators that have to do with the expansion of telecommunication networks are taken from 

the World Development Indicators (World Bank). In particular, we use two technological 

indicators. The first one is the percentage of cellular subscriptions (Cellular Phones), which is 

defined as the weight of mobile cellular subscriptions over total fixed line and mobile cellular 

subscriptions. The second technological indicator is the percentage of internet users over total 

population (Internet). The latter variable aims to proxy digital literacy and IT assets provision. 

We have also collected from the World Bank a couple of indicators that have to do with 

more mature infrastructures, namely transportation and electricity. The first variable (Roads) 

is fairly standard and measures the length of the total road network in millions of kilometers. 

The second variable (Electricity Access) is the percentage of population that has access to 

electricity, which can be viewed as a proxy of the available electricity distribution network in 

the country.  

Finally, it should be noted that we have not expressed our monetary variables in a 

unique currency for two reasons. First, because many exchange rates with respect to the US 

                                                           
15 Thus the estimated parameter of this variable is not only capturing the true elasticity of output with respect to 

capital in each industry, but also the bias caused by replacing an industry-specific variable with its value for the 

whole economy.   
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dollar are quite volatile in the sample period (see, e.g. the Argentinian peso). The second reason 

has to do with the estimators used in our empirical application. We use fixed-effect type 

estimators that ignore the cross-sectional information contained in the data to estimate the 

parameters of the model. As only the temporal variation of the data is employed, it is not 

necessary to express our monetary variables in a unique currency.   

Table 1 summarizes the descriptive statistics of the variables used in the empirical 

application. 

 [Insert Table 1 here] 

The temporal evolution of the infrastructures variables is of special interest given the 

objective of the current paper. We depict in Figure 1 the regional temporal patterns of the 

standard and technological infrastructure variables in order to identify which type of 

investment (e.g. telecommunications, transportation, electrification or education) has been 

more intense. As expected, while the infrastructure network in roads and electricity has only 

changed slightly over time, the infrastructure in internet and mobile phone networks has risen 

notably over the last decades. This increase is especially large in Africa. This figure also shows 

that the variable human capital, which can be interpreted as a proxy of investment in education, 

has also increased over time, although the initial levels are quite different between regions. The 

distinct patterns found in the four regions, the notable labor productivity differences across 

industries and the potentially diverse effect of infrastructure variables on each sector’s 

production, together lead us to expect some noteworthy inter-industry or reallocation 

productivity effects attributable to these variables on a regional basis..    

[Insert Figure 1 here] 

4.2. Parameter estimates  

The proposed productivity decompositions rely on the estimation of a heteroscedastic 

production frontier model for five industries: Agriculture, Energy, Manufacturing, 

Construction and Services. We have followed Reifschneider and Stevenson (1991), Caudill 

and Ford (1993) and Caudill et al. (1995) and assumed that the inefficiency term, 𝑢𝑖𝑡, is 

distributed as an heteroscedastic half-normal distributed random variable, i.e. as 𝑁+(0, 𝜎𝑖𝑡
2) 

where 𝜎𝑖𝑡 (𝑧𝑖𝑡, 𝜃) depends on a set of covariates and some parameters 𝜃. As pointed out by 

Álvarez et al. (2006), the so-called RSCFG model has the scaling property because it is 

equivalent to saying that the distribution of 𝑢𝑖𝑡 can be multiplicatively decomposed as the 

product of a scaling function that depends on 𝑧𝑖𝑡 and a basic inefficiency term that does not 

depend on 𝑧𝑖𝑡. Moreover, as mentioned above, all the models have been estimated using a set 

of country-specific dummy variables in order to control for country unobserved heterogeneity. 

In this sense, our model can be viewed as a heteroscedastic version of the so-called True Fixed 

Effect (TFE) stochastic frontier model introduced by Greene (2005).16  

The industry-specific parameter estimates are shown in Table 2. Our estimates are 

consistent with the literature, since both capital stock and labor exhibit positive elasticities in 

all industries. The simple arithmetic means of the elasticities of private capital and labor are 

0.45 and 0.50 respectively. Therefore, the effect of both private inputs follows conventional 

growth accounting, where labor elasticity is higher (around two thirds) than the capital 

elasticity (around one third). We also find significant coefficients for many of the infrastructure 

variables. Moreover, quite often the estimated coefficients differ substantially across 

                                                           
16 As all slope parameters are still common to all countries, regardless they are developed or developing countries, 

we will examine in the near future whether a random coefficient stochastic frontier model (e.g. using a latent class 

structure) is more appropriate. 
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industries. As shown in Section 3.2. the inter-industry effects rely greatly on an uneven 

distribution of the estimated coefficients associated to the infrastructure variables. This result, 

together with the large rates of growth found in some of the infrastructure variables (in 

particular, in internet and cellular phones penetration) appears to anticipate the existence of 

non-negligible inter-industry or reallocation productivity effects attributable to these variables, 

at least in some regions.    

Electricity access has a positive and significant effect in all sectors, except in the 

construction sector. By far the largest direct effect of access to electricity is in Agriculture, a 

reasonable result due to the fact that the production of this industry often takes place in rural 

areas located far away from the main electricity networks. As expected, the infrastructure in 

roads is a production input with a significant positive effect in all industries. The largest effects 

are found in Manufacturing and Services. It is well known in the literature that the production 

activity in the manufacturing sector relies particularly on transportation. The effect on Services 

is twice that of the manufacturing sector, a result that can be explained because it includes 

transportation services. Regarding the technological indicators that have to do with 

telecommunication infrastructure, they mostly have a direct positive effect on production. 

However, we find that a larger penetration of cellular phones in a country tends to penalize 

production in the Energy and Manufacturing sectors. Regarding the use of internet, the effect 

is positive in Agriculture, Manufacturing and, in particular, in the Services sector. In general 

we do not find a positive effect for human capital as standard input. Moreover, its effect is 

remarkably negative in the construction sector. However, it should be taken into account that 

this variable might have a positive indirect effect on sector production if it tends to reduce 

sectors' inefficiency. The same applies to other infrastructure variables.  

In this context, Table 2 shows that many of the inefficiency drivers have a negative 

sign. For instance, the penetration of cellular phones in the population tends to reduce 

inefficiency in all sectors, except in Construction. We also found that internet not only plays a 

significant role as a standard input, but also it tends to reduce the other sectors' inefficiency. A 

notable exception is the Service sector. This might indicate that internet boosts growth, but it 

also increases the differences between those firms providing services. In addition to shifting 

the production frontier, the investment in road network infrastructures has had a catching up 

effect. This result clearly supports the hypothesis defended by Straub (2011) and other authors 

that consider public infrastructures as an efficiency-enhancing externality. Finally, although 

we did not find a significant (positive) effect for human capital as a standard input, a more 

educated population tends to improve the Agriculture and Services sectors’ production through 

an increase in efficiency. In contrast, human capital has a negative indirect effect on production 

in the Energy, Manufacturing and Construction sectors. 

In Table 3 we show the overall effect of the efficiency determinants taking into account 

that these variables also have a direct or frontier effect on an industry’s output. The indirect 

effect might reinforce, attenuate or even reverse the frontier effect of these variables. For 

instance, the catching-up effect that the investment in roads networks has in most sectors serves 

to reinforce the direct effect that this infrastructure has on the sectors’ output. Thus, this 

infrastructure promotes economy-wide economic growth through two channels: as an input and 

as a total factor productivity driver. In contrast, the negative frontier effect found in the 

Manufacturing (Energy) sector is offset completely (partially) by its indirect effect as 

inefficiency tends to decrease with the penetration of cellular phones in the population of these 

sectors. As a result, the total marginal effect of cellular phones is positive or much less negative. 

A similar story is found regarding the other technological indicator, the percentage of internet 

users. The positive effect of this variable on the Energy and Construction sectors’ efficiency is 

so large that it is able to offset completely the large negative frontier effects present in these 
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two sectors. Regarding the last efficiency determinant, the negligible direct effect of human 

capital on a sector’s output tends to be negative in the Energy, Manufacturing and Construction 

sectors because a more educated population tends to exacerbate the differences between 

efficient and inefficient production units in these sectors.  

[Insert Table 3 here] 

 

4.3. Decomposing aggregate productivity into intra and inter-industry effects 

In this subsection we first compute the rates of growth of labor productivity for each 

industry. We next aggregate all sector productivities and decompose the economy-wide 

productivity growth rates into intra (within) and inter-industry (reallocation) effects. Table 4 

summarizes the descriptive statistics of the computed rates of growth of labor productivity. The 

largest (smallest) increase in labor productivity growth is found in the agriculture 

(construction) sector. This result is mostly caused by labor mobility, from the agriculture sector 

to the construction sector. The services sector has also employed more labor, but its 

productivity performance was better than in the construction sector due to a better performance 

of its production. On the other hand, the moderate performance of labor productivity in the 

Energy and Manufacturing sectors are mainly caused by the rise in the production figures, 

given the moderate increase in labor occurring in both sectors.  

[Insert Table 4 here] 

Aggregating all sectors, we obtain an average labor productivity rate of growth of about 

1.5 percent. Using equation (2), we have decomposed the economy-wide increase in labor 

productivity into intra and inter-industry effects. As expected, aggregate productivity growth 

is mainly explained by improvements in industry-specific productivities. This better 

performance would yield an increase in labor productivity of 1.6 percent. The productivity 

growth attributable to changes in an economy’s structure is much smaller on average 

(moreover, it is slightly negative) because when some industries increase their relative size, 

other industries reduce it. Two comments are in order regarding this result. First, it should be 

recalled that an apparently small rate of growth might have a noteworthy accumulated effect if 

the period examined is sufficiently large. Second, notice that these numbers are mean values 

of annual rates of growth, and this statistic tends to hide relatively large rates of growth that 

some countries have experienced in specific years. In this sense, it should be empathized that 

the minimum and maximum inter-industry productivity effects in Table 4 are larger than those 

computed for intra-industry productivity. Therefore, it seems that there is room in our empirical 

application for non-negligible inter-industry productivity effects attributable to infrastructure 

provision.  

Table 4 shows that the intra and inter-industry effects also vary across regions. The 

Asian countries show the better performance with an overall increase of 2.7%, and a positive 

and relatively large (0.3%) inter-industry effect. The set of European countries included in our 

sample and USA exhibit a more moderate performance (1.3%). Interestingly enough, this result 

may be attributable to a large negative inter-industry effect (-0.5%) that has partially offset the 

positive intra-industry productivity growth (1.8%). In the next subsection we will examine 

whether the negative reallocation effects found in this region are to any extent caused by 

investments in infrastructure. The productivity growth associated with transformations in the 

economy is slightly negative in African and South American countries. The poor performance 

of these countries is also explained by a modest increase in sector productivities.  
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4.4. Intra and inter productivity effects of infrastructure 

In this subsection we use the parameter estimates of the variables approximating 

different types of infrastructure provision to examine the role that the telecommunication, 

transportation and electricity networks have played in both intra and inter-industry productivity 

growth. To achieve this objective, we use equations (14) and (19). This information is presented 

by regions using accumulated productivity indices. 

We start with Asia, the region with the largest increase in labor productivity. Figure 2 

depicts the productivity indices attributable to the education system (human capital) and to our 

variables measuring the provision of network infrastructures (internet, cellular phones, road 

and electricity) in the Asian countries. We find that the infrastructure that has promoted 

aggregate productivity the most in this region is the investment in roads. This is mainly caused 

by an annual rate of growth of 3.4% in road networks in these countries. It should be noted that 

the inter-industry effect of this infrastructure is extraordinary, at least during a decade (i.e. from 

1995 to 2005). The investment in electricity networks, which allows larger percentages of 

population to have access to electricity, has had a more moderate effect on Asian productivity. 

Its negligible inter-industry effect indicates that this infrastructure has generated similar 

productivity increases in all sectors. The technological indicator measuring the investment in 

internet networks is also a relevant productivity driver in Asia. However, unlike the road 

infrastructure, it does not have significant inter-industry effects. Thus, the investment in both 

electricity and internet networks has promoted similar (at least positive) productivity gains in 

most sectors. Regarding the use of cellular phones, it is worth highlighting that both intra and 

inter-industry effects are quite large but with opposite signs. The more extended use of mobile 

phones has increased labor productivity on average, but this improvement has not been evenly 

spread across sectors (recall that we found negative marginal effects for this variable in Energy 

and Construction). Finally, the moderate increase in human capital did not reveal any relevant 

intra or inter-industry productivity effect. This is caused by the slow increase in the years of 

schooling and its non-significant effect on most sectors’ production.  

[Insert Figure 2 here] 

In summary, the inter-industry productivity effects found for the Asian countries are 

relatively important for the investment in road and cellular networks. Therefore, they should 

not be ignored in a study measuring the productivity effects of these two network infrastructure 

investments. In other words, the traditional intra-industry measures tend to over or under-

estimate the overall productivity effects of road and cellular networks. 

Figure 3 depicts the cumulative productivity indices associated with infrastructure 

provision in a set of European countries and the USA. As these countries developed almost 

completely their transportation and electricity networks a long time ago, they did not 

experience productivity effects on their economies during the sample period. Only the 

investment in new roads had a small intra-industry effect on aggregate productivity. The 

investments in information and telecommunication (IT) networks have promoted noteworthy 

aggregated productivity in these countries. We find a cumulative effect of the investment in 

internet and cellular phones networks of 13% and 2%, respectively. The generalization of 

internet in society is the greatest productivity driver in Europe and the USA. Unlike the Asian 

countries, the investment in internet networks has had negative reallocation effects on 

aggregate productivity. The negative inter-industry effects have partially offset the positive 

intra-industry effects associated with this technological indicator. In summary, the traditional 

intra-industry measures tend to overestimate the overall productivity effects of IT investment. 

Again, the productivity effect of human capital is negligible due to years of schooling rarely 

changing over time and it has a quite modest effect, if any, on sector production. 
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[Insert Figure 3 here] 

Figure 4 depicts the cumulative productivity indices associated with infrastructure 

provision in a set of Latin or South American countries. The productivity effect of the 

investment in new roads is pretty small and a bit erratic. This casts doubts about the quality of 

this variable in Latin America, and thus we do not discuss more results based on the road 

numbers. The access to electricity in the Latin American countries has increased over time. 

This explains the slightly positive effect that this variable has had on aggregate productivity, 

through both inter and intra-industry channels. Again the investment in IT networks has caused 

increases in aggregate productivity, but with a much more modest effect than in Europe and 

the USA. Similar to the latter countries, the intra-industry productivity effects associated with 

these two technological indicators are higher than the overall effects because we found negative 

reallocation effects associated with this region’s IT networks. Again, like the other regions, 

human capital has barely changed aggregate productivity during the sample period. 

[Insert Figure 4 here] 

Figure 5 shows the cumulative productivity indices associated with infrastructure 

provision in our sample of African countries. In line with the other regions, road network 

investments have been very modest in the African countries included in our sample. However, 

the improvements in access to electricity in this region are slightly higher than in other regions. 

This explains why access to electricity is the main productivity driver with a cumulative effect 

of 11% in fifteen years. It should also be noted that the investment in electricity networks has 

not only improved individual productivities in all sectors, but has also promoted a better 

allocation of resources due to most of the productive sectors increasing their relative size. 

Unlike the previous regions, the use of internet in Africa has hardly changed over time during 

the sample period. This explains the small effect of this technological indicator on aggregate 

productivity. Its cumulative effect is 2.5% which is far behind the level of 13% in Europe and 

USA and 8% in Asia. Although the internet network has not been properly developed in the 

African countries, the use of cellular phones displayed an improvement in our sample, with an 

annual increase of 6 percentage units. Thus the investment in cellular phones networks in 

Africa has caused larger increases in aggregate productivity than in other World regions. 

However, similar to other countries, we found negative reallocation effects associated with 

communication networks in this region, indicating that not all sectors in the African countries 

have benefited equally from this technological investment. Finally, and unlike other regions, 

human capital has had a larger but negative effect on aggregate productivity during the sample 

period.  

[Insert Figure 5 here] 

 

5. Conclusions 

In this paper we have tried to examine the role that infrastructure provision has played 

in stimulating aggregate productivity through both a better allocation of resources in the 

economy and as a proper productivity driver. To achieve this objective, we propose a simple 

approach that relies on estimating standard production frontier models. To illustrate the 

proposed decompositions, we have used the sector-level data of 39 countries over the 1995-

2010 period. 

Our industry-specific parameter estimates are consistent with the literature, since both 

capital stock and labor exhibit positive elasticities. Our results also support the hypothesis 

defended by previous researchers that consider public infrastructures as both a standard input 
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and an efficiency-enhancing externality. The estimated coefficients vary considerably across 

industries, a necessary result for non-negligible inter-industry or reallocation productivity 

effects attributable to infrastructures. 

The average rate of growth of labor productivity in our sample is about 1.5 percent. As 

expected, aggregate productivity growth is mainly explained by improvements in industry-

specific productivities. The productivity growth attributable to changes in the structure of the 

economy is small on average, but displaying large rates of growth in some countries. We found 

that the intra and inter-industry effects also vary across regions. The Asian countries show the 

better performance, followed by the set of European countries and the USA. The inter-industry 

effects are non-trivial in some countries and have partially offset the improvements in intra-

industry productivity.  

Finally we used our theoretical framework and parameter estimates to examine the role 

that the telecommunication, transportation and electricity networks have played in both intra 

and inter-industry productivity growth. The results vary across regions. The infrastructure that 

stimulated aggregate productivity in Asia the most during the sample period is the investment 

in new roads, followed by the investment in internet and cellular phones networks. It should be 

noted that the inter-industry effects of some of these infrastructures are notable, and should not 

be ignored in a study examining the productivity impacts of infrastructure provision. In other 

words, the traditional intra-industry measures tend to over or under-estimate the overall 

productivity effects of these infrastructure variables.  

The generalization of internet in society is the greatest productivity driver in Europe 

and the USA. Unlike the Asian countries, the investment in internet networks has had negative 

reallocation effects on aggregate productivity. Thus, traditional intra-industry measures tend to 

overestimate the overall productivity effects of IT investment in most developed countries. 

Again, the investment in internet and cellular phones networks has caused increases in Latin 

America aggregate productivity, but with a much more modest effect than in Europe and the 

USA. The improvements in the access to electricity are the main productivity drivers in the 

African countries. It should also be noted that the investment in electricity networks has not 

only improved individual productivities in all sectors, but has also promoted a better allocation 

of resources due to the most productive sectors increasing their relative size. However, in line 

with other countries, we found negative reallocation effects associated with communication 

networks in this region, indicating that not all sectors in the African countries have benefited 

equally from this technological investment.  

In this paper we propose a bottom-up approach to trace the channels through which 

infrastructure investments stimulate economy-wide productivity improvements. As 

aforementioned, the top-down decompositions are conceptually more appealing than the 

bottom-up decompositions. Thus, a natural extension of this study is the use of a top-down 

approach to obtain a mutually consistent decomposition of both inter- and intra-industry 

productivity effects. This approach is more challenging that our bottom-up approach as it 

requires modelling how market power varies over time as a result of the provision of new 

infrastructures.  

So far we have used value-added-shares to compute aggregate labor productivity. Thus, 

a second extension of this paper is to decompose the inter-industry (reallocation) effects using 

labor-shares. The decomposition of this term is, however, much more challenging than the 

decomposition developed here for two reasons. First, because employment is influenced by 

many factors that are difficult to fully control in practice; and second because different 

theoretical frameworks (e.g. cost vs. profit-based) yield very different results (see Appendix 



 

21 
 
 

B) and we do not know a priori which framework is more appropriate. Finally, we have 

decomposed an aggregated measure of labor productivity. This is a partial productivity measure 

and does not take into account the effect of other inputs. Thus, an interesting research topic is 

the development of a similar productivity decomposition using an aggregate measure of total 

factor productivity, assuming or not constant returns to scale. 
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Table 1. Descriptive statistics 
 

Variable Obs Mean Std. Dev. Min Max 

Technological indicators, infrastructures, and human capital       

Capital stock (mil US$) 585 2615655 7181440 85 48200000 

Human capital (years) 585 2.46 0.60 1.13 3.69 

Cellular subscriptions (%) 585 0.52 0.28 0.00 0.99 

Electricity access (%) 585 0.78 0.31 0.04 1.00 

Internet users (%) 585 0.18 0.24 0.00 0.91 

Roads 585 0.52 1.18 0.00 6.52 

Gross Value Added (million US$)         

Agriculture 585 85529 440471 48 6688307 

Energy 585 67245 212980 54 2632056 

Manufacturing 585 162751 339038 216 2641436 

Services 585 419997 1213204 749 7502153 

Construction 585 64748 155187 114 1345587 

Labor (thousand jobs)         

Agriculture 585 20435 65599 5 366400 

Energy 585 639 2145 5 15730 

Manufacturing 585 7007 19728 27 144632 

Services 585 11547 20619 81 114051 

Construction 585 3041 7891 21 52412 
Note: the monetary variables have been expressed in US dollars for the unique purpose of issuing this table. 
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Table 2. Maximum likelihood estimates 
 

 Agriculture Energy Manufacturing Services Construction 
 Coef.  s.e. Coef.  s.e. Coef.  s.e. Coef.  s.e. Coef.  s.e. 

Frontier                

ln(Capital) 0.137 ** 0.063 0.808 *** 0.071 0.413 *** 0.055 0.160 *** 0.065 0.755 *** 0.070 

ln(Labor) 0.499 *** 0.058 0.118 *** 0.036 0.550 *** 0.031 0.648 *** 0.053 0.713 *** 0.035 

Human Capital -0.066  0.104 0.101  0.105 -0.150 * 0.079 0.040  0.088 -0.532 *** 0.103 

Cellulars 0.077 * 0.044 -0.129 *** 0.053 -0.093 *** 0.044 0.020  0.046 -0.025  0.060 

Electricity access 0.665 *** 0.177 0.471 ** 0.207 0.311 *** 0.149 0.328 ** 0.153 -0.329  0.231 

Internet 0.181 *** 0.051 -0.214 *** 0.050 0.278 *** 0.061 0.363 *** 0.045 -0.389 *** 0.052 

Roads 0.061 * 0.033 0.087 *** 0.032 0.127 *** 0.021 0.247 *** 0.027 0.093 *** 0.026 

Intercept 9.994 *** 0.807 4.824 *** 0.768 7.879 *** 0.598 10.463 *** 0.658 4.181 *** 0.765 

Inefficiency                

Human Capital -2.816 *** 0.922 3.658 *** 0.729 1.387 *** 0.446 -6.235 *** 1.425 1.447 *** 0.338 

Cellulars -5.546 *** 1.564 -2.544 *** 0.607 -3.847 *** 0.787 -1.520 *** 0.672 0.041  0.473 

Electricity access 1.014  0.997 -7.112 *** 1.312 -0.420  0.709 6.091 *** 1.820 -1.064 ** 0.525 

Internet -3.562  4.232 -13.602 *** 5.543 -0.060  0.888 6.556 *** 2.032 -6.904 *** 1.185 

Roads 0.998 *** 0.277 -15.292 *** 3.670 -0.319 *** 0.127 -0.429  0.319 -2.529 *** 0.913 

Intercept 0.574  1.250 -5.375 *** 1.062 -5.693 *** 0.968 3.967 *** 1.453 -4.910 *** 0.696 

Noise                

lnsv -4.671 *** 0.065 -4.581 *** 0.070 -5.650 *** 0.189 -5.147 *** 0.100 -5.303 *** 0.154 

LogL 499.21   416.16   606.55   587.62   436.69   

Notes: ** denotes statistical significance at the 1% level and * at 5% level. 
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Table 3. Total marginal effects of the efficiency determinants 

 Agriculture  Energy Manufacturing Services Construction  

  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Human Capital -0.019  0.088  -0.043  0.324  -0.210  0.034  0.210  0.180  -0.625  0.060  

Cellular phones 0.170  0.174  -0.029  0.225  0.073  0.094  0.061  0.044  -0.027  0.002  

Electricity access 0.648  0.032  0.751  0.630  0.329  0.010  0.162  0.176  -0.261  0.044  

Internet 0.241  0.112  0.322  1.205  0.281  0.001  0.184  0.189  0.056  0.288  

Roads 0.044  0.031  0.690  1.355  0.141  0.008  0.259  0.012  0.256  0.106  
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Table 4. Sectoral and aggregate productivity growth 

  Obs Mean Std. Dev. Min Max 

Sector productivity growth rates (%)          

   Agriculture 546 2.7 8.5 -54.9 43.7 

   Energy 546 2.2 13.1 -78.4 60.1 

   Manufacturing 546 1.8 5.5 -20.5 24.3 

   Services 546 1.1 4.6 -22.1 16.5 

   Construction 546 0.1 8.5 -49.1 41.3 

Aggregate productivity growth and intra vs. Inter-effects (%)       

ALL Regions           

   Economy 546 1.5  5.5  -41.2  25.6  

   Intra-effect 546 1.6  3.7  -13.1  13.9  

   Inter-effect 546 -0.1  4.1  -51.4  20.1  

ASIA           

   Economy 140 2.7  4.4  -10.1  12.4  

   Intra-effect 140 2.4  4.0  -9.4  10.1  

   Inter-effect 140 0.3  1.3  -2.9  4.8  

EUR and USA           

   Economy 112 1.3  2.9  -9.4  14.2  

   Intra-effect 112 1.8  2.9  -8.6  13.9  

   Inter-effect 112 -0.5  1.0  -6.5  1.6  

LATIN AMERICA           

   Economy 126 0.5  4.5  -14.2  9.7  

   Intra-effect 126 0.7  4.0  -12.5  9.5  

   Inter-effect 126 -0.2  2.4  -11.0  9.6  

AFRICA           

   Economy 168 1.2  7.7  -41.2  25.6  

   Intra-effect 168 1.3  3.6  -13.1  11.6  

   Inter-effect 168 -0.1  6.8  -51.4  20.1  
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Figure 1. Temporal evolution of the infrastructure variables by region. 
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Figure 2. Intra and inter-industry effects attributed to infrastructure variables.  

ASIA. 
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Figure 3. Intra and inter-industry effects attributed to infrastructure variables.  

Europe and USA. 
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Figure 4. Intra and inter-industry effects attributed to infrastructure variables.  

Latin America. 
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Figure 5. Intra and inter-industry effects attributed to infrastructure variables.  

Africa. 
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Appendix A. List of countries and selected regions 

 

Region Countries 

Africa 
Botswana, Egypt, Ethiopia, Ghana, Kenya, Mauritius, Malawi, 

Nigeria, Senegal, Tanzania, South Africa, Zambia. 

Asia 
China, China, Indonesia, India, Japan, Republic of Korea, Malaysia, 

Philippines, Singapore, Thailand. 

Europe and USA 
Denmark, Spain, France, United Kingdom, Italy, Netherlands, 

Sweden, United States. 

Latin America 
Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, México, 

Perú, Venezuela. 
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Appendix B. Input-based decompositions of inter-industry effects 

We use in this appendix a profit and cost framework to both “endogenize” the industry-

specific labor levels and that appear in 𝑆𝑗𝑡 = 𝐿𝑗𝑡 ∑ 𝐿ℎ𝑡
𝐻
ℎ=1⁄ . For simplicity we hereafter assume 

full allocative efficiency in both cost and profit optimization. 

Cost approach 

Assume that the problem of a representative firm belonging to industry j is to minimize 

the cost of employing 𝐾𝑗𝑡 and 𝐿𝑗𝑡, given the capital and labor prices (𝑟𝑗𝑡 and 𝑤𝑗𝑡), and the 

technology. The solution to the optimization problem yields a cost function that is dual to the 

production function (11):  

C𝑗𝑡 = Ψ𝑗𝑡𝑤𝑗𝑡
𝛽𝐿𝑗 𝛽𝑗⁄ · 𝑟𝑗𝑡

𝛽𝐾𝑗 𝛽𝑗⁄ · y𝑗𝑡
1 𝛽𝑗⁄     (B.1) 

where 𝛽𝑗 = 𝛽𝐿𝑗 + 𝛽𝐾𝑗 and 𝑙𝑛Ψ𝑗𝑡 = 𝑙𝑛𝛽𝑗 −
1

𝛽𝑗
𝑙𝑛A𝑗𝑡 −

1

𝛽𝑗
(𝛽𝐿𝑗𝑙𝑛𝛽𝐿𝑗 + 𝛽𝐾𝑗𝑙𝑛𝛽𝐾𝑗). The optimal 

labor demand can be obtained by means of the Shepard lemma. After taking logs, the labor 

demand is equivalent to:  

𝑙𝑛𝐿𝑗𝑡 = 𝑙𝑛(𝛽𝐿𝑗 𝛽𝑗⁄ ) + 𝑙𝑛𝛼𝑗 −
1

𝛽𝑗
(β0𝑗 + ∑ γ

𝑗ℎ
𝑧ℎ𝑡

𝐻
ℎ=1 − 𝑢𝑗𝑡(𝑧𝑡)) −

1

𝛽𝑗
(𝛽𝐿𝑗𝑙𝑛𝛽𝐿𝑗 +

𝛽𝐾𝑗𝑙𝑛𝛽𝐾𝑗) + (
𝛽𝐿𝑗

𝛽𝑗
− 1) 𝑙𝑛𝑤𝑗𝑡 +

𝛽𝐾𝑗

𝛽𝑗
𝑙𝑛𝑟𝑗𝑡 +

1

𝛽𝑗
𝑙𝑛y𝑗𝑡      (B.2) 

Given (B.2), the effect of infrastructure provision on the labor demand is: 

 
𝜕𝐿𝑗𝑡

𝜕𝑧ℎ
= −Θ𝑗ℎ𝑡𝐿𝑗𝑡       (B.3) 

where Θ𝑗ℎ𝑡 = θ𝑗ℎ𝑡/𝛽𝑗. The cost-based effect of infrastructure provision on the industry j labor 

share is: 

𝜕𝑆𝑗𝑡(𝑧𝑡,𝑦𝑡,𝑤𝑡,𝑟𝑡)

𝑧ℎ
= 𝑆𝑗𝑡[Θ̅ℎ𝑡 − Θ𝑗ℎ𝑡]     (B.4) 

where  Θ̅ℎ𝑡 = ∑ 𝑆𝑠𝑡Θ𝑠ℎ𝑡
𝐽
𝑠=1 . The overall inter-industry marginal effect of infrastructure provision 

in (9) can then be measured in practice as: 

𝜕𝑆̅𝑡

𝜕𝑧ℎ
= ∑

𝑙𝑛𝑃𝑗𝑡+𝑙𝑛𝑃𝑗𝑡−1

2
{

𝑆𝑗𝑡−1+𝑆𝑗𝑡

2
[Θ̅ℎ𝑡 − Θ𝑗ℎ𝑡]}𝐽

𝑗=1    (B.5) 

 

Profit approach 

 Kumbhakar and Lovell (2000, p. 188) show that if the production frontier takes the 

Cobb-Douglas form as in (11), the first-order conditions for profit maximization (ignoring v) 

can be written as:  

ln𝐿𝑗𝑡 = β0𝑗 + ∑ γ
𝑗ℎ

𝑧ℎ𝑡
𝐻
ℎ=1 + (1 + 𝛽𝐿𝑗)𝑙𝑛𝐿𝑗𝑡 + 𝛽𝐾𝑗𝑙𝑛𝐾𝐾𝑡 − 𝑙𝑛 (

𝑤𝑗𝑡

p𝑗𝑡
) − 𝑢𝑗𝑡  (B.6) 

ln𝐾𝑗𝑡 = β0𝑗 + ∑ γ
𝑗ℎ

𝑧ℎ𝑡
𝐻
ℎ=1 + 𝛽𝐿𝑗𝑙𝑛𝐿𝑗𝑡 + (1 + 𝛽𝐾𝑗)𝑙𝑛𝐾𝐾𝑡 − 𝑙𝑛 (

𝑟𝑗𝑡

p𝑗𝑡
) − 𝑢𝑗𝑡  (B.7) 

 The profit-maximizing choice of both output and input levels gives the following output 

supply and labor demand equations:  

ln𝑦𝑗𝑡 =
1

1−𝛽𝑗
(β0𝑗 + ∑ γ

𝑗ℎ
𝑧ℎ𝑡

𝐻
ℎ=1 − 𝑢𝑗𝑡) +

1

1−𝛽𝑗
𝛽𝐿𝑗 (𝑙𝑛𝛽𝐿𝑗 − 𝑙𝑛 (

𝑤𝑗𝑡

p𝑗𝑡
)) +

1

1−𝛽𝑗
𝛽𝐾𝑗 (𝑙𝑛𝛽𝐾𝑗 − 𝑙𝑛 (

𝑟𝑗𝑡

p𝑗𝑡
))   (B.9) 
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ln𝐿𝑗𝑡 =
1

1−𝛽𝑗
(β0𝑗 + ∑ γ

𝑗ℎ
𝑧ℎ𝑡

𝐻
ℎ=1 − 𝑢𝑗𝑡) +

1

1−𝛽𝑗
(𝛽𝐿𝑗 + (1 − 𝛽𝑗)) (𝑙𝑛𝛽𝐿𝑗 − 𝑙𝑛 (

𝑤𝑗𝑡

p𝑗𝑡
)) +

1

1−𝛽𝑗
𝛽𝐾𝑗 (𝑙𝑛𝛽𝐾𝑗 − 𝑙𝑛 (

𝑟𝑗𝑡

p𝑗𝑡
))  (B.10) 

The effect of infrastructure provision on labor demand is given by: 

 
𝜕𝐿𝑗𝑡

𝜕𝑧ℎ
= Ω𝑗ℎ𝑡𝐿𝑗𝑡         (B.11) 

where Ω𝑗ℎ𝑡 = θ𝑗ℎ𝑡/(1 − 𝛽𝑗). The profit-based effect of infrastructure provision on the industry 

j labor share is: 

𝜕𝑆𝑗𝑡(𝑧𝑡,𝑤𝑡,𝑟𝑡,𝑝𝑡)

𝑧ℎ
= 𝑆𝑗𝑡[Ω𝑗ℎ𝑡 − Ω̅ℎ𝑡]     (B.12) 

where  Ω̅ℎ𝑡 = ∑ 𝑆𝑠𝑡Ω𝑠ℎ𝑡
𝐽
𝑠=1 . Finally, the overall inter-industry marginal effect of infrastructure 

provision in (9) can then be measured in practice as: 

𝜕𝑆̅𝑡

𝜕𝑧ℎ
= ∑

𝑙𝑛𝑃𝑗𝑡+𝑙𝑛𝑃𝑗𝑡−1

2
{

𝑆𝑗𝑡−1+𝑆𝑗𝑡

2
[Ω𝑗ℎ𝑡 − Ω̅ℎ𝑡]}𝐽

𝑗=1    (B.13) 

 

 

 


