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Abstract 

 

This working paper serves as guide to efficiency evaluation from an econometric 

perspective. The analytical framework relies on the most general parametric models and up to 

date representations of the production technology through Translog and Quadratic distance 

functions. We outline the most popular estimation methods: maximum likelihood, method-of-

moments and distribution-free approaches. In the last section we discuss more advance topics 

such as how to control for observed and unobserved environmental variables or endogeneity 

issues. Other topics examined are dynamic efficiency measurement, production risk and 

uncertainty, and the decomposition of Malmquist productivity indices. 
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1. Introduction 

In this paper we summarize the main features of the standard econometric approach to 

measuring firms’ inefficiency (and productivity). Given that the efficient production/cost of 

each firm is not directly observed, it must be inferred from real data using frontier models that 

involves the estimation of both the technological parameters and the parameters of firms’ 

inefficiency. In this paper we provide guidance on the options that are available in order to 

successfully undertake research in this field using the so-called Stochastic Frontier Analysis 

(SFA) models, the most popular parametric frontier technique.1 This ranges from the selection 

of the appropriate theoretical model to the use of the empirical techniques best suited to 

achieving reliable results. The selection of analytical frameworks and methods presented in the 

paper is necessarily partial, as it is virtually impossible to cover all recent research in such a 

dynamic area.2  

We start this paper summarizing in Section 2 the main results of production theory; 

particularly the possibility of characterizing the behaviour of the firm from the 

primal−technological perspective. As firms produce multiple outputs using multiple inputs, the 

primal representation of the technology relies on the concept of distance function, which is also 

interpreted as a measure of productive performance. We discuss in this section the choice of 

functional forms when representing firms’ technology and examine the advantages and 

drawbacks of the so-called flexible functional forms.  

Section 3 outlines the most popular estimation methods available to undertake SFA 

efficiency analyses. The most popular estimation method is maximum likelihood, where the 

parameters of the distance (production) function and the random term capturing firms’ 

inefficiency are estimated in a single stage. A second method is the method-of-moments 

approach, where the distance function is first estimated using standard econometric techniques 

and distributional assumptions are only invoked in a second stage to estimate the parameter(s) 

describing the structure of the error components. Unlike the two abovementioned methods, 

firms’ efficiency scores can also be computed without making specific distributional 

assumptions using the so-called distribution-free approach. 

Section 4 discusses more advance topics and extends somehow the basic models 

introduced in the previous section. In Subsection 4.1, we examine how to control for 

environmental or contextual variables that do not fall within managerial discretion. To deal 

with this issue, non-discretionary variables can be included not only as frontier regressors but 

also as determinants of firms’ inefficiency, and we discuss the implications of several empirical 

strategies to achieve this aim.  

Subsection 4.2 presents a series of recent models addressing endogeneity issues using 

the SFA approach. Some focus on the correlation between the regressors and the noise term, 

while others address the correlation with the inefficiency term. Models can be estimated using 

different techniques and using one or two-stage methods. In Subsection 4.3 we outline several 

frontier models that control for unobserved differences in firms’ technology or environmental 

conditions. In particular, we examine several panel-data models introduced by Greene (2005) 

                                                 
1 Another popular but non-parametric frontier technique is mathematical programming or Data Envelopment 

Analysis (DEA). The individual results from parametric and non-parametric methods will generally differ. 

However, the difference between the two methods is less pronounced nowadays than they used to be because both 

approaches now benefit from recent advances that address their shortcomings. 

2 For a comprehensive survey of this literature, we recommend the following references: Kumbhakar and Lovell 

(2000), Parmeter and Kumbhakar (2014), and Kumbhakar et al. (2015). 
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and extended later on by other researchers; the latent class stochastic frontier models, and the 

recent spatial frontier models that takes into account the spatial structure of the data. 

Subsection 4.4 is devoted to dynamic efficiency measurement. Considering as a 

departure point the existence of rigidities associated to fixed inputs, information failures when 

planning investment decisions, etc., dynamic modelling emerges naturally. Here we discuss 

two main approaches by which to incorporate the dynamic nature of the decision-making 

process into efficiency analyses. One approach is to use reduced-form models that do not 

require explicit modelling of the firm’s dynamic behaviour, which in turn do not impose strong 

assumptions on the data. The second approach makes use of structural models that make 

explicit assumptions with respect to the firm’s economic objectives.  

In Subsection 4.5 we summarize several approaches proposed in the applied literature 

to account for production risk, stochastic technologies and uncertainty. Indeed, it has been 

found that ignoring the stochastic nature of firms’ performance may have relevant welfare and 

policy implications, as the latter would be based on biased estimates and misleading inference.   

Finally, we study in Subsection 4.6 the popular Malmquist productivity index and its 

decomposition into several terms explaining productivity change (efficiency change, technical 

change…) based on estimated production and distance functions. The decomposition is built 

upon by relying on economic theory approach to index numbers and the exactness between the 

former Malmquist productivity index and some of the flexible functional forms presented in 

our theoretical background section.  

2. Theoretical background 

The point of departure of any theoretical and empirical study of efficiency and 

productivity is whether it is merely concerned with technical performance from an engineering 

perspective or it has an economic dimension. The technical or engineering approach is the only 

available choice when prices are unavailable (for example, the public sector provision of some 

public goods and services), or when they simply do not exist (for example, undesirable by-

products such as waste and pollution). In this case we presume that the objective of the firm is 

technological, based on quantities only, and technology must be inferred using a primal 

approach, such as production or distance functions. On the contrary, as would be the case of 

firms in an industry, if market prices for inputs and outputs are available, then we can extend 

our engineering analysis to the firm’s market environment. In this case we presume that the 

objective of the firm is economic, and its analysis requires data on quantities and prices and 

dual representations of firms’ technology such as cost and profit functions.  

2.1 Primal approach: production and distance functions  

2.1.1. Definitions and properties 

For the single output case, the technology can be represented by the production function 

defined as the maximum amount of output that can be obtained from any combination of inputs:  

𝑓(𝑥) = 𝑚𝑎𝑥{𝑦: (𝑥, 𝑦) ∈ 𝑇}     (1) 

where 𝑇 is the technology set. In the multi-output case, a suitable representation of the 

technology is given by the distance function introduced by Shephard (1970). This 

representation can be made from alternative orientations including the following output and 

input-oriented distance functions:  

𝐷𝑂(𝑥, 𝑦) = 𝑚𝑖𝑛{𝜃: (𝑥, 𝑦/𝜃) ∈ 𝑇}    (2) 

𝐷𝐼(𝑥, 𝑦) = 𝑚𝑎𝑥{𝜆: (𝑥/𝜆, 𝑦) ∈ 𝑇}    (3) 
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 If the technology satisfies the customary axioms, the output distance function, ODF, 

has the range 0 ≤ 𝐷𝑂(𝑥, 𝑦) ≤ 1. It is homogeneous of degree one in outputs, non-decreasing 

in outputs and non-increasing in inputs. Notice that the advantage of this interpretation is that 

it leaves room for technical inefficiency when 𝐷𝑂(𝑥, 𝑦) < 1. In this case, value of the output 

distance function can be directly interpreted as a measure of firms’ technical efficiency, that is 

𝐸𝑇 = 𝐷𝑂. In contrast, the input distance function, IDF, has the range 𝐷𝐼(𝑥, 𝑦) ≥ 1. It is 

homogeneous of degree one in inputs, non-decreasing in inputs, and non-increasing in outputs. 

A firm is inefficient when 𝐷𝐼(𝑥, 𝑦) > 1. Therefore, firms’ technical efficiency can be measured 

as 𝐸𝑇 = 1/𝐷𝐼.
3  

More recent and flexible characterizations are the additive directional distance 

functions that can be defined as: 

𝐷⃗⃗ (𝑥, 𝑦, −𝑔𝑥, 𝑔𝑦) = 𝑚𝑎𝑥{𝜏: (𝑥 − 𝜏𝑔𝑥, 𝑦 + 𝜏𝑔𝑦) ∈ 𝑇}   (4) 

The directional distance function, DDF, measures the simultaneous maximum 

reduction in inputs and expansion in outputs given a pre-specified directional vector defined 

by 𝑔 = (𝑔𝑥, 𝑔𝑦) and the actual technology. The properties of this function are presented in 

Chambers et al. (1996, 1998). Just mention here that this function nests Shephard’s input and 

output distance functions depending on the specific values of the directional vector.  

2.1.2. The importance of imposing theoretical properties.  

Notice that, at first sight, the distance functions in (2)-(4) dependent on the same vector 

of inputs and outputs. Thus, if we were able to estimate a function of inputs and outputs, say 

𝐷(𝑥, 𝑦), how do we ensure that we have estimated our preferred choice, say, an output distance 

function, and not an input distance function? For identification purposes we need to take 

advantage of one of the properties of distance functions. In particular, the key property for 

identification is the homogeneity condition for the input and output distance functions and the 

translation property for the directional distance functions. The latter property is the additive 

analogy to the multiplicative homogeneity property of Shephard’s distance functions. 

Identification works because each homogeneity condition involves different sets of variables.4  

For instance, in an output distance function, the linear homogeneity condition of the 

distance function implies that 𝐷(𝑥, 𝜆𝑦) = 𝜆𝐷(𝑥, 𝑦). If we assume that 𝜆 = 1/𝑦𝑀, we get after 

taking logs that: 

𝑙𝑛𝐷 = 𝑙𝑛𝐷(𝑥, 𝑦/𝑦𝑀) + 𝑙𝑛𝑦𝑀     (5) 

The term measuring firms’ inefficiency (i.e. 𝑙𝑛𝐷) is not observed by the researcher and 

thus it cannot be used as a proper dependent variable to estimate. However, the linear 

homogeneity condition immediately “produces” an observed dependent variable for the above 

model if we rewrite (5) as:  

−𝑙𝑛𝑦𝑀 = 𝑙𝑛𝐷(𝑥, 𝑦/𝑦𝑀) + 𝑢     (6) 

where 𝑢 = −𝑙𝑛𝐷, or 

                                                 
3 I have often been asked whether it is possible to compute the elasticity of a specific input (output) variable using 

distance functions due to its radial definition involving a whole set of inputs (outputs). The answer to this question 

is: yes. In the Appendix we show how to compute relevant economic properties of the multi-input multi-output 

distance function such as specific input and output elasticities or marginal effects, and the scale elasticity 

regardless we use an input or output-oriented distance functions. 

4 Interestingly, although the underlying technology is the same, the coefficients of each distance function differ. 
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𝑙𝑛𝑦𝑀 = −𝑙𝑛𝐷(𝑥, 𝑦/𝑦𝑀) − 𝑢     (7) 

Note that this ODF collapses to a standard production function if M=1, and that we 

have reversed the signs of all the coefficients of 𝑙𝑛𝐷(·). Therefore, the estimated parameters 

can be interpreted as the coefficients of a (multi-output) production function. A similar 

expression can be obtained if we impose the linear homogeneity condition in inputs rather than 

in outputs, and an input distance function is estimated instead.5 

The choice of orientation should be determined, at least partially, by the capability of 

firms to adjust their inputs and outputs in order to become fully efficient. However, Kumbhakar 

et al. (2007) show that, once the distance function is known, input (output) oriented inefficiency 

scores can be obtained from output (input) distance functions. To see this clearly, assume that 

we want to estimate the output distance function (5) but using an input-oriented measure of 

firms’ efficiency. The equation to be estimated can be written as: 

0 = ln𝐷(𝑥𝑒−𝜂 , 𝑦/𝑦𝑀) + 𝑙𝑛𝑦𝑀     (8) 

where now 𝜂 measures firms’ efficiency in terms of input reductions, conditional on the 

observed output vector. Thus, if any measure of firms’ inefficiency can be estimated using any 

primal representation of firms’ technology, why is the choice of orientation a relevant issue?  

It is a relevant issue for at least two empirical reasons. First of all, because both the efficiency 

scores and the estimated technologies are expected to be different due to neglected endogeneity 

issues. The choice of orientation is also relevant for the “complexity” of the stochastic part of 

the model in a SFA model. For instance, Kumbhakar and Tsionas (2006) show that the standard 

maximum likelihood (ML) method cannot be applied to estimate input-oriented production 

functions. This issue is examined later once several functional forms for the distance functions 

have been introduced. 

Regarding the directional distance function, while its general specification is given in 

(4), quite often the directional vector is set to (𝑔𝑥, 𝑔𝑦) = (1,1). In this case, this function can 

be written as:  

𝐷⃗⃗ = 𝐷⃗⃗ (𝑥, 𝑦; −1,1) = 𝐷⃗⃗ (𝑥, 𝑦)     (9) 

If the above directional distance function satisfies the translation property that says 

that if output is expanded by  and input is contracted by , then the resulting value of the 

distance function is reduced by : 

𝐷⃗⃗ (𝑥 − 𝛼,  𝑦 + 𝛼,  ) = 𝐷⃗⃗ (𝑦, 𝑥) − 𝛼    (10) 

Thus, replacing above 𝐷⃗⃗ (𝑥, 𝑦) with 𝐷⃗⃗ (𝑥 − 𝛼, 𝑦 + 𝛼 ) + 𝛼, we get: 

−𝛼 = 𝐷⃗⃗ (𝑥 − 𝛼, 𝑦 + 𝛼,  ) − 𝑢     (11) 

where now 𝑢 = 𝐷⃗⃗ . We obtain variation on the left-hand side by choosing an 𝛼 that is specific 

to each firm. For instance, 𝛼 = 𝑦𝑀. 

2.1.3. Functional forms 

The initial and most commonly employed distance functions (or, equivalently, their 

corresponding production functions in the single output case), i.e., Cobb-Douglas (CD) or 

                                                 
5 The linear homogeneity condition in inputs yields the following IDF:   

𝑙𝑛𝑥𝐽 = 𝑓(𝑥 𝑥𝐽⁄ , 𝑦) + 𝑢 

where now 𝑢 = 𝑙𝑛𝐷 ≥ 0 measures firms’ inefficiency in terms of inputs, and 𝑓(𝑥 𝑥𝐽⁄ , 𝑦) is non-increasing in 

inputs, and non-decreasing in outputs. Therefore 𝑓(𝑥 𝑥𝐽⁄ , 𝑦) can be interpreted as an input requirement function.  
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Constant Elasticity of Substitution (CES), as well as their associated dual functions, place 

significant restrictions on technological and economic behaviour relations. For example, in 

production analysis they restrict all output and input elasticities to be common to all firms and 

returns to scale do not vary with firms’ size; while for cost minimization, the linear or log-

linear specifications imply that inputs demand, or the share of each input in costs, are 

independent of the output level.6 While these characteristics are quite restrictive, these 

functions are “well-behaved” and satisfy all desirable neoclassical properties, particularly they 

are continuous and twice differentiable. In turn, this ensures that relevant theoretical results 

based on the envelopment theorem -i.e., Shephard and Hotelling's lemma, allow the recovery 

of the demand and supply equations- without solving their primal functions, and that 

comparative statics exercises can be easily performed. 

 A subsequent generation of technological representations beyond the CES production 

function nesting the CD, linear and fix-proportions technologies, emerged in the 70s with the 

so-called second order flexible functional forms that permit a more general representation of 

the production technology (see Diewert, 1971; p. 481-507). The specifications can be seen as 

second order Taylor-series mathematical expansions around different points with different 

transformations of the variables -e.g., quadratic, Leontief, or Translog, while successive 

functional forms are based on higher order Laurent and Fourier expansions (Thompson, 1988). 

One advantage of the latter proposal is that it provides a global rather than a local 

approximation to the underlying technology; but since its econometric estimation and 

parameter interpretation prove more demanding, they are by far less popular in empirical 

research. 

The fact that the number of parameters to be estimated increases exponentially with the 

number of variables included in the functional form, empirical research is de facto restricted to 

the quadratic approximation. If a large sample cannot be collected, degrees of freedom can be 

easily exhausted, and a general practice is to aggregate commodities and prices; but consistent 

aggregation is only possible under strong restrictions on the underlying technology―e.g., 

separability. The properties of flexible functional forms ultimately determine whether they are 

globally well-behaved in the presence of large data variability. For instance, the Quadratic 

specification fails to satisfy the regularity conditions over the entire range of sample 

observations. However, how to test those global properties and impose regularity conditions 

globally remains unclear because imposing regularity conditions globally often comes at the 

cost of limiting the flexibility of the functional form. Given this trade-off, the common practice 

is to evaluate the estimated functions at the sample mean, rather than at each individual 

observation.7 

Despite these caveats, flexible functional forms are useful and have become standard 

in empirical studies. To exemplify their capabilities when testing functional, we show two 

representative specifications. The first one makes use of the Translog formulation to specify 

the output distance function, and the second one corresponds to the Quadratic directional 

distance function.  

As for the Translog output distance function with output-oriented inefficiency, the 

specification corresponds to: 

                                                 
6 The limitations of the Cobb-Douglas functions when testing the neoclassical theory of the firm constituted the 

basis for newer, less restrictive functional forms (Zellner and Revankar, 1969).  

7 It should be pointed out, however, that it is possible to maintain local flexibility using Bayesian techniques. See 

Griffiths et al. (2000) and O’Donnell and Coelli (2005). 



8 
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∗ ln 𝑥𝑗 − 𝑢      (12) 

where ln 𝑦𝑚
∗ = ln 𝑦𝑚 − ln 𝑦𝑀. Note that the output-oriented inefficiency term appears above as 

an additive term. Therefore, the above parameters can be easily estimated using the standard 

maximum likelihood (ML) techniques because the typical distributional assumptions for u 

provide a closed-form for the distribution of the error term. If instead we are willing to a 

Translog output distance function using an input-oriented measure of firms’ efficiency, the 

model to be estimated is: 
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𝑘≠𝑗
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𝑁
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𝐽
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𝑀−1
𝑚=1 ln 𝑦𝑚

∗ 𝑙𝑛(𝑥𝑗𝑒
−𝜂)  (13) 

Assuming one input, the model can be written as: 

ln 𝑦𝑀 = −𝑙𝑛𝐷(𝑥, 𝑦/𝑦𝑀) − [𝛽𝑗 + 𝛽𝑗𝑗 + ∑ 𝛽𝑚𝑗 ln 𝑦𝑚
∗𝑀−1

𝑚=1 ]𝜂 + 𝛽𝑗𝑗𝜂
2   (14) 

The presence of the 𝜂2 term makes the derivation of a closed likelihood function 

impossible, and this precludes using standard ML techniques. Similar comments can be made 

if we were to use a directional distance function. In all cases where we have intractable 

likelihood functions, they can be maximized by simulated maximum likelihood.8 A final 

important remark regarding equation (14) is that the output orientation of the distance function 

does not force the researcher to use an input-oriented measure of firms’ inefficiency. We first 

do it just for simplicity, and in doing so are likely to attenuate endogeneity problems as well.  

As for the directional distance function, the reason why the quadratic formulation is the 

best choice is that the translation property can be easily imposed on this specification―just as 

the homogeneity properties corresponding to the radial input or output distance functions can 

be easily imposed on the Translog specification. Once the translation property is imposed using 

𝛼 = 𝑦𝑀, the quadratic specification of (11) can be written as: 

−𝑦𝑀 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗
∗𝐽

𝑗=1 +
1

2
∑ ∑ 𝛽𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1 𝑥𝑗

∗𝑥𝑘
∗ + ∑ 𝛽𝑚𝑦𝑚

∗𝑀−1
𝑚=1     

+
1

2
∑ ∑ 𝛽𝑚𝑛𝑦𝑚

∗ 𝑦𝑛
∗𝑁

𝑛=1
𝑀−1
𝑚=1 + ∑ ∑ 𝛽𝑚𝑗𝑦𝑚

∗ 𝑥𝑗
∗𝐽

𝑗=1
𝑀−1
𝑚=1 − 𝑢  (15) 

where 𝑥𝑗
∗ = 𝑥𝑗 − 𝑦𝑀 and 𝑦𝑚

∗ = 𝑦𝑚 + 𝑦𝑀. It is worth mentioning that inefficiency is measured 

here in physical units, and not in percentage terms as it happens is we use a traditional Translog 

specification. Both measures are correct, albeit they are simply using different approaches to 

measure the distance to the frontier. On the other hand, an interesting feature that is often 

overlooked is that the Quadratic specification is normally estimated once the variables are 

normalized with the sample means (see Färe et al. 2005; p. 480). As the normalized variables 

are unit free, in practice the estimated inefficiency scores can be interpreted as proportional 

changes in outputs and inputs, in the same fashion as in the standard radial distance functions. 

                                                 
8 As shown by Parmeter and Kumbhakar (2014; p. 52) using a Translog cost function, if the production technology 

is homogeneous in outputs, the model can be estimated using simple ML techniques.  
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2.2 Dual approach: cost functions  

 We introduce here a cost minimization objective in order to discuss the duality 

framework allowing for an overall economic efficiency analysis. Based on the previous primal 

representations of the technology, and considering the vectors of input prices, 𝑤,  the following 

cost function can be defined: 

𝐶(𝑦,𝑤) = min
𝑥

{𝑤𝑥: (𝑥, 𝑦) ∈ 𝑇}    (16) 

The cost function represents the minimum cost of producing a given amount of outputs, 

and assuming the necessary derivative properties―including continuity and differentiability, 

yields the input demand functions by applying Shephard’s lemma.9 If the technology satisfies 

the customary axioms, the cost function (16) is homogeneous of degree one in input prices, and 

non-decreasing in outputs and in input prices. Chambers et al. (1998) prove the duality between 

the input distance functions and its associated cost function. Unlike the distance function that 

only provides a measure of technical efficiency, the above definition leaves room for both 

technical and allocative inefficiency. However, Kumbhakar et al. (2015) point out that outputs 

and input prices are endogenous if firms are allocative inefficient because in this case the 

traditional 𝑢 term depends on 𝑦 and 𝑤. 

Regarding the functional forms, the Translog cost function corresponds to: 

𝑙𝑛 (
𝐶
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) = 𝛽0 + ∑ 𝛽𝑗 ln (
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𝑀
𝑚=1 +

1

2
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𝑤𝑗

𝑤𝐽
)
2

𝐽−1
𝑗=1 +

1

2
∑ 𝛽𝑚𝑚 ln 𝑦𝑚

2𝑀
𝑚=1

 +∑ ∑ 𝛽𝑗𝑘
𝐾−1
𝑘≠𝑗

𝐽−1
𝑗=1 ln (

𝑤𝑗

𝑤𝐽
) ln (

𝑤𝑘

𝑤𝐽
) + ∑ ∑ 𝛽𝑚𝑛

𝑁
𝑛≠𝑚

𝑀
𝑚=1 ln𝑦𝑚ln𝑦𝑛    

 +∑ ∑ 𝛽𝑚𝑗ln𝑦𝑚 ln (
𝑤𝑗

𝑤𝐽
)𝐽−1

𝑗=1
𝑀
𝑚=1 + 𝑢      (17) 

where 𝑢 measures firms’ technical and allocative inefficiency in terms of cost increases. Notice 

that we have already imposed linear homogeneity in input prices in the above cost function, 

and that the input-oriented inefficiency term appears above as an additive term. Again, this 

implies that the above parameters can be estimated by ML. Applying the Shephard’s lemma in 

(17), we get the following cost share equations:  

𝑆1 = 𝛽1 + 𝛽11 ln (
𝑤1

𝑤𝐽
) + ∑ 𝛽1𝑘

𝐽−1
𝑘≠1 ln (

𝑤𝑘

𝑤𝐽
) + ∑ 𝛽𝑚1ln𝑦𝑚

𝑀
𝑚=1

⋮

𝑆𝐽−1 = 𝛽𝐽−1 + 𝛽𝐽−1,𝐽−1 ln (
𝑤𝐽−1

𝑤𝐽
) + ∑ 𝛽𝐽−1𝑘

𝐽−2
𝑘≠𝐽−1 ln (

𝑤𝑘

𝑤𝐽
) + ∑ 𝛽𝑚𝐽−1ln𝑦𝑚

𝑀
𝑚=1

 (18) 

In principle, estimating the cost system (17)-(18) is more efficient from a statistical 

perspective because no additional parameters are added to the model.10 However, Kumbhakar 

et al (2015) clearly show that estimating a cost system using (17) and (18) is problematic as, 

except with input-oriented technical inefficiency and zero allocative inefficiency. For this 

                                                 
9 It is also possible to define shadow cost functions 𝐶(𝑦, 𝑤𝑠) constituting the dual representation of the technology 

for non-market oriented (i.e., non-profit) organizations (e.g., public goods such as the provision of health and 

education services). In this case, for instance, the so-called shadow prices 𝑤𝑠 rationalize the observed input 

quantity vector x as a cost-minimizing choice for the observed output vector y. If the minimum-cost condition is 

satisfied, the shadow price vector equals the market price vector. Rodríguez-Álvarez and Lovell (2004) show that 

these vectors may differ as a result of utility maximizing behavior on the part the bureaucrat, restricted by a budget 

constraint. 

10 This happens if we do not allow for non-zero mean values of the error terms traditionally added to each cost 

share equation in (18). 
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reason, they strongly prefer estimating primal system of equations consisting of a stochastic 

production (distance) function and a set of first order conditions for cost minimization.  

3. Estimation methods 

 In this section we outline the most popular parametric frontier techniques aiming to 

measure both firms’ inefficiency and technology. For notational ease, we develop this and next 

sections for cross-sectional data, except when it is compulsory to use a panel data framework. 

We also confine our discussion to the estimation of technical efficiency using output distance 

functions because they can be interpreted as a traditional but multi-output production 

function.11 Thus, firm performance is evaluated by means of the following distance function: 

𝑙𝑛𝑦𝑀𝑖 = − ln𝐷 (𝑥𝑖 ,
𝑦𝑖

𝑦𝑀𝑖
, 𝛽) + 𝑣𝑖 − 𝑢𝑖    (19) 

where the subscript i stands for firm, 𝛽 is now a vector of technological parameters, 𝑣𝑖 is a two-

sided noise term, and 𝑢𝑖 = −𝑙𝑛𝐷𝑖 ≥ 0 is a one-sided term capturing firms’ inefficiency. In 

equation (19) we specify the distance function as being stochastic in order to capture random 

shocks that are not under the control of the firm. It can also be interpreted as a specification 

error term that appears when the researcher tries to model the firm’s technology. Note also that 

this model can be immediately estimated econometrically once a particular functional form is 

chosen for ln 𝐷(𝑥𝑖, 𝑦𝑖/𝑦𝑀𝑖 , 𝛽), and 𝑢𝑖 is properly modelled.12  

Note also that the composed error term 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖 in (19) comprises two independent 

parts, a noise term and an inefficiency term. They are likely to follow different distributions 

given their different nature. Indeed, it is conventionally assumed that 𝑣𝑖follows a symmetric 

distribution since random shocks and specification errors might take both positive and negative 

values. However, by construction, inefficient performance always produces a contraction in 

firms’ output. For this reason, 𝑢𝑖 is assumed to be non-negative (and asymmetrically) 

distributed. This results in a composed error term 𝜀𝑖 that is asymmetrically distributed. As 

customary in the literature, it is also assumed throughout that both random terms are distributed 

independently of each other and of the input variable. 

 We now turn to explaining how to estimate the above frontier model. The estimation of 

the model involves both the parameters of the distance (production) function and the 

inefficiency. Even with very simple SFA models, the researcher has several estimation methods 

at hand, and, in most applications, chooses only one. All have their own advantages and 

disadvantages. Equation (19) can first be estimated via maximum likelihood (ML) once 

particular distributional assumptions on both random terms are made. ML is the most popular 

empirical strategy in the literature, but it relies on (perhaps strong) assumptions regarding the 

distribution of these terms, and the exogenous nature of the regressors. Both technological 

parameters of the distance function (𝛽) and the structure of the two error components (i.e., the 

variance of 𝑣𝑖 and 𝑢𝑖) are estimated simultaneously in a single stage using ML. In this sense, 

ML merges the two stages of the following estimation method.  

 A second method that we can choose is the method-of-moments (MM) approach, where 

all technological parameters of the distance function are first estimated using standard 

econometric techniques (e.g. OLS, IV or GMM) without making specific distributional 

assumptions on the error components. This stage is independent of distributional assumptions 

                                                 
11 Although most early SFA applications used production functions, the distance function became as popular as 

the production functions since Coelli and Perelman (1996), who helped practitioners to estimate and interpret 

properly the distance functions. 

12 The input distance functions as well as the directional distance function deserve similar comments. 
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in respect of either error component. In the second stage of the estimation procedure, 

distributional assumptions are invoked to obtain ML estimates of the parameter(s) describing 

the structure of the two error components, conditional on the first-stage estimated parameters.13 

Although the MM approach is much less used by practitioners than the traditional ML 

approach, the most comprehensive SFA versions of the MM estimator are becoming 

increasingly popular among researchers because it allows for instance dealing with endogenous 

variables (see Guan et al, 2009), or distinguishing between transient and permanent efficiency 

(Filippini and Greene, 2016).  

 Once the model has been estimated using either ML or MM, the next step is to obtain 

the efficiency values for each firm. They are often estimated by decomposing the estimated 

residuals of the production function. Following Jondrow et al. (1982), both the mean and the 

mode of the conditional distribution of 𝑢𝑖 given the composed error term 𝜀𝑖 can be used as a 

point estimate of 𝑢𝑖. 

 Firms’ efficiency scores can also be computed without making specific distributional 

assumptions on the error components using the so-called distribution-free approach. This 

approach includes the well-known COLS method for cross-sectional data, and the SS and CSS 

methods for panel data settings. As Kumbhakar et al. (2015; p. 49) remark, the drawback of 

this approach is that the statistical properties of the estimator of 𝑢𝑖 may not be readily available. 

3.1. ML estimation 

3.1.1. Single equation models  

In order to estimate equation (19) using ML, we are forced to choose a distribution for 

𝑣𝑖 and  𝑢𝑖. The noise term is often assumed to be normally distributed with zero mean and 

constant standard deviation, i.e. 𝑣𝑖~𝑁(0, 𝜎𝑣), with the following density function: 

𝑓(𝑣𝑖) = 𝜙(
𝑣𝑖

𝜎𝑣
) =

1

√2𝜋𝜎𝑣
exp (−

𝑣𝑖
2

2𝜎𝑣
2)    (20) 

Note that 𝑣𝑖 = 𝜀𝑖 + 𝑢𝑖 ,  where 𝜀𝑖 = 𝑙𝑛𝑦𝑀𝑖 − 𝑋𝑖𝑡
′ 𝛽 , and 𝑋𝑖𝑡

′ 𝛽 is the log of the frontier 

production (distance) function (e.g., Translog). So, 

𝑓(𝑣𝑖) = 𝑓(𝜀𝑖 + 𝑢𝑖) =
1

√2𝜋𝜎𝑣
exp (−

(𝜀𝑖+𝑢𝑖)
2

2𝜎𝑣
2 )   (21) 

 Regarding the inefficiency term, several distributions have been proposed in the 

literature for this one-sided random term, viz., half-normal (Aigner et al., 1977), exponential 

(Meeusen and van den Broeck, 1977), and gamma (Greene, 1990). By far, the most popular 

distribution is the half-normal, which is the truncation (at zero) of a normally-distributed 

random variable with zero mean and constant standard deviation, that is 𝑢𝑖~𝑁+(0, 𝜎𝑢).14 Note 

that, for notational ease, we use 𝜎𝑢  to indicate hereafter the standard deviation of the pre-

truncated normal distribution, and not the standard deviation of the post-truncated variable. If 

𝑢𝑖 follows a (homoscedastic) half-normal distribution, its density function can be written as: 

                                                 
13 Both variances can also be estimated using the second and third moments of the composed error term taking 

advantage of the fact that, while the second moment provides information about both variances, the third moment 

only provides information about the asymmetric random conduct term. 

14 The most important characteristic of this distribution is that the modal value of the inefficiency term is close to 

zero, and higher values of 𝑢𝑖 are increasingly less likely. Stevenson (1980) relaxed the somehow strong 

assumption that the most probable value is being fully efficient by introducing the truncated-normal distribution, 

which replaces the zero mean of the pre-truncated normal distribution by a new parameter to be estimated. 
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𝑓(𝑢𝑖) =
2

𝜎𝑢
𝜙(

𝑢𝑖

𝜎𝑢
) =

2

√2𝜋·𝜎𝑢
exp (−

𝑢𝑖
2

2𝜎𝑢
2)   (22) 

 Assuming that of 𝑣𝑖 and 𝑢𝑖 are distributed independently, the density function of the 

composed error term 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖 can be written as: 

𝑓(𝜀𝑖) = ∫ 𝑓(𝜀𝑖 + 𝑢𝑖) · 𝑓(𝑢𝑖)𝑑𝑢𝑖
∞

0
    (23) 

 Given the assumed distributions, the above integration can be computed analytically. 

The density function of the composed error term of a normal-half-normal model is: 

𝑓(𝜀𝑖) =
2

𝜎
𝜙 (

𝜀𝑖

𝜎
)𝛷 (−

𝜀𝑖𝜆

𝜎
) =

2

𝜎
[

1

√2𝜋
exp (−

𝜀𝑖
2

2𝜎2 )]𝛷 (−
𝜀𝑖𝜆

𝜎
)  (24) 

where 𝜎 = √𝜎𝑢
2 + 𝜎𝑣

2 and 𝜆 = 𝜎𝑢 𝜎𝑣⁄ . Therefore, the log-likelihood function for the whole 

sample (assuming N observations) can be written as: 

𝑙𝑛𝐿𝐹 = 𝑁

2
ln(2/𝜋) − 𝑁𝑙𝑛𝜎 − ∑

𝜀𝑖
2

2𝜎2
𝑁
𝑖=1 + ∑ 𝑙𝑛𝛷 (−

𝜀𝑖𝜆

𝜎
)𝑁

𝑖=1    (25) 

 Notice that the standard distributional assumptions for 𝑣𝑖 and 𝑢𝑖 provide a closed-form 

for the distribution of the composed error term, making the direct application of ML 

straightforward. The model is simply estimated by choosing the parameters that maximize the 

likelihood function (25). Newer models are appearing in the literature that do not yield tractable 

likelihood functions and must be estimated by simulated maximum likelihood. See Parmeter 

and Kumbhakar (2014, section 7) for an excellent review of recent contributions dealing with 

this issue. To catch an idea about how this approach works, let us point out that the model can 

be estimated if we integrate out 𝑢𝑖 from 𝑓(𝜀𝑖 + 𝑢𝑖) in (21):  

𝑓(𝜀𝑖) = ∫
1

√2𝜋𝜎𝑣
exp (−

(𝜀𝑖+𝑢𝑖)
2

2𝜎𝑣
2 ) 𝑓(𝑢𝑖)𝑑𝑢𝑖

∞

0
    (26) 

Notice that the integral can be viewed as an expectation, which we can evaluate through 

simulation as opposed to analytically. Taking many draws, the above integral can be 

approximated as: 

𝑓(𝜀𝑖) ≈ 1

𝑅
∑

1

√2𝜋𝜎𝑣
exp (−

(𝜀𝑖+𝜎𝑢|𝑈𝑟|)
2

2𝜎𝑣
2 )𝑅

𝑟=1     (27) 

The final task is obtaining the efficiency scores for each firm. As the procedure to get 

these scores is the same in ML and MM, it is explained later on in Subsection 3.2. 

3.1.2. System models  

 The previous discussion is concerned with the technical side of the firm. The allocation 

of inputs in a production model, or in our output distance function, is assumed to be either 

100% efficient or they are assumed to be exogenously given. Recent developments in duality 

theory allow the decomposition of overall economic efficiency into technical and allocative 

terms in a consistent way. When the production or cost function and the structure of the two 

error components should be estimated, Parmeter and Kumbhakar (2014) summarize the 

existing methods, favouring those relying on the primal perspective that are easier to identify 

and estimate, over systems of equations based on the dual cost approach. Their preferred 

approach estimates a system consisting of a stochastic production (distance) function, which 

allows for technical inefficiency, and a set of first order conditions (FOC) for cost 

minimization, which allow for allocative inefficiency if the FOCs are not fulfilled.  

 Following Kumbhakar et al. (2015, pp. 210-223), this primal system of equations can 

be written using a two-input Cobb-Douglas distance function as: 
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ln 𝑦𝑀𝑖 = 𝛼0 + 𝛼1 ln 𝑥1𝑖 + 𝛼2 ln 𝑥2𝑖 + 𝑓 (
𝑦𝑖

𝑦𝑀𝑖
, 𝛽) + 𝑣𝑖 − 𝑢𝑖    

ln(𝛼2 𝛼1⁄ ) − ln(𝑤2𝑖 𝑤1𝑖⁄ ) − ln 𝑥2𝑖 + ln 𝑥1𝑖 = 𝜉2𝑖   (28) 

where 𝑣𝑖~𝑁(0, 𝜎𝑣), 𝑢𝑖𝑡~𝑁+(0, 𝜎𝑢), and 𝜉𝑖~𝑁(𝜌, 𝜎𝜉).15 The likelihood function of the whole 

system is: 

𝐿𝐹𝑖 = 𝑔(𝑣𝑖 − 𝑢𝑖) · 𝑑(𝜉𝑖) · |𝐽𝑖|     (29) 

where 𝑔(𝑣𝑖 − 𝑢𝑖) is the density function of a normal-half-normal random variable, 𝑑(𝜉𝑖) is the 

probability density function for 𝜉𝑖 , and |𝐽𝑖| is the determinant of the Jacobian matrix:  

|𝐽𝑖| = |
𝜕(𝑣𝑖−𝑢𝑖,𝜉𝑖)

𝜕(ln𝑥1𝑖, ln 𝑥2𝑖)
|     (30) 

After estimating the parameters of the model by ML, firm-specific efficiency scores 

can be computed using the Jondrow et al. (1982) formula. Allocative inefficiency can be 

obtained from the residuals of the FOCs. If 𝜉𝑖 < 0, input 𝑥2𝑖 is overused relative to input 𝑥1𝑖, 

underused otherwise.   

3.2. MM estimation 

The MM approach involves three stages. In the first stage, we ignore the structure of 

the composed error term and estimate the frontier parameters using OLS if the explanatory 

variables are exogeneous or GMM if they are endogenous.16 Taking expectations in (19), the 

model to be estimated in the first stage can be written as: 

𝑙𝑛𝑦𝑀𝑖 = 𝐸 (𝑙𝑛𝑦𝑀𝑖|𝑥𝑖 ,
𝑦𝑖

𝑦𝑀𝑖
; 𝛽) + 𝜀𝑖 = 𝑋𝑖𝑡

′ 𝛽 + 𝑣𝑖 − 𝑢𝑖  (31) 

The endogeneity of some regressors will lead to OLS being biased and inconsistent. 

This source of inconsistency can be dealt with by using GMM. However, the parameter 

estimates can still be inconsistent if 𝑢𝑖 is heteroskedastic itself. To achieve consistent estimates, 

it is critical to ensure that chosen instruments do not include determinants of 𝑢𝑖. Suppose that 

we can find a vector of instruments 𝑀𝑖 that satisfy the following moment condition: 

𝐸[𝑀𝑖 · 𝜀𝑖] = 𝐸[𝑀𝑖 · (𝑙𝑛𝑦𝑀𝑖 − 𝑋𝑖𝑡
′ 𝛽 )] = 𝐸[𝑚𝑖(𝛽)] = 0  (32) 

The efficient two-step GMM estimator is then the parameter vector that solves: 

𝛽̂ = arg min[∑ 𝑚𝑖(𝛽)𝑁
𝑖=1 ]′𝑊−1[∑ 𝑚𝑖(𝛽)𝑁

𝑖=1 ]  (32) 

where W is an optimal weighting matrix obtained from a consistent preliminary GMM 

estimator. This optimal weighting matrix can take into account both heteroskedasticity and 

autocorrelation of the error term.17 

In the second stage of the estimation procedure, distributional assumptions are invoked 

to obtain consistent estimates of the parameter(s) describing the standard deviations of allow 

𝑣𝑖 and 𝑢𝑖, conditional on the first-stage estimated parameters.  Given that we are going to 

                                                 
15 If there are more than two inputs, 𝜉𝑖 = (𝜉2𝑖 , … , 𝜉𝐽𝑖) follows a multivariate normal distribution. 

16 The endogeneity of some regressors will lead to least squares being biased and inconsistent. This source of 

inconsistency can be dealt with by using GMM. However, the parameter estimates can still be inconsistent if 𝑢𝑖 

is heteroskedastic itself. Indeed, a relevant issue that is often ignored when using OLS or GMM in a stochastic 

frontier framework is the endogeneity problem caused by the so-called "left-out variables" (Wang and Schmidt, 

2002), which arises because variables influencing technical inefficiency are ignored when estimating the model. 

To achieve consistent estimates, it is critical to ensure that chosen instruments do not include determinants of 𝑢𝑖. 

17 If we allow 𝑣𝑖 or 𝑢𝑖 be heteroscedastic, an efficient GMM estimator is needed. 
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assume a particular distribution for the inefficiency term, both variances can be estimated using 

ML. The ML estimators are obtained by maximizing the likelihood function associated to the 

error term 𝜀𝑖̂ = 𝑙𝑛𝑦𝑀𝑖 − 𝑋𝑖𝑡
′ 𝛽  that can be obtained from an estimate of the first-stage 

production equation (31).  However, it should be pointed out that 𝜀𝑖̂ is a biased estimate of 𝜀𝑖 

because 𝐸(𝑢𝑖) > 0. We have two options to control for this bias. First, we can estimate the 

following (unrestricted) ML model: 

  𝜀𝑖̂ = 𝛾0 + 𝑣𝑖 − 𝑢𝑖                 (33) 

where 𝛾0 is an estimate of 𝐸(𝑢𝑖). If we assume that 𝑢𝑖 follows a half-normal distribution, its 

mean value is equal to √2/𝜋𝜎𝑢. Thus, the second option is estimating the above ML model 

with the following restriction 𝛾0 = √2/𝜋𝜎𝑢.18 

In the third stage we obtain the efficiency scores for each firm.  From previous stages 

we have estimates of 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖, which obviously contain information on 𝑢𝑖. The problem is 

to extract the information that 𝜀𝑖 contains on 𝑢𝑖. Jondrow et al. (1982) propose using the 

conditional distribution of the asymmetric random term 𝑢𝑖 given the composed error term 𝜀𝑖. 

The best predictor of 𝑢𝑖 is the conditional expectation 𝐸(𝑢𝑖|𝜀𝑖) (see Kumbhakar and Lovell, 

2000). Given our distributional assumptions, 𝐸(𝑢𝑖|𝜀𝑖) can be written as follows:  

𝑢̂𝑖 = 𝐸(𝑢𝑖|𝜀𝑖) = 𝜇∗ +
𝜎∗ϕ(

𝜇∗𝑖
𝜎∗

)

ϕ(
𝜇∗𝑖
𝜎∗

)
= 𝐸(𝑢𝑖

∗|𝜀𝑖)   (34) 

where 𝜇∗ = −𝜀𝑖𝜎𝑢
2(𝜎𝑣

2 + 𝜎𝑢
2)−1 and 𝜎∗

2 = 𝜎𝑣
2𝜎𝑢

2(𝜎𝑣
2 + 𝜎𝑢

2)−1. One might be tempted to 

validate the chosen specification of the inefficiency term by simply comparing the observed 

distribution of 𝑢̂𝑖 to the assumed distribution for 𝑢𝑖. Wang and Schmidt (2009) show that this 

is not a good idea. To carry out this test we should compare the distribution of 𝑢̂𝑖  and 𝐸(𝑢𝑖|𝜀𝑖). 

In this sense, they propose non-parametric Chi-square and Kolmogorov-Smirnov type statistics 

to perform this test properly. These authors also point out that, although 𝑢̂𝑖 is the minimum 

mean squared error estimate of 𝑢𝑖, and it is unbiased in the unconditional sense 𝐸(𝑢̂𝑖 − 𝑢𝑖) =
0, it is a shrinkage of 𝑢𝑖 toward its mean. An implication of shrinkage is that on average we 

will overestimate 𝑢𝑖 when it is small and underestimate 𝑢𝑖 when it is large. This result, 

however, simply reflects the familiar principle that an optimal (conditional expectation) 

forecast is less variable than the term being forecasted. 

Two comments are in order to conclude this section. First, it should be pointed out that, 

although we do not make any distributional assumptions on the noise and inefficiency terms 

when estimating the first-stage least squares equation, we still need the distributional 

assumptions to calculate the JLMS-type efficiency estimates based on Jondrow et al. (1982) 

formula, so that using OLS or GMM does not let researchers dispense with distributional 

assumptions altogether. Moreover, the computed efficiency scores rely in the end on the same 

                                                 
18 The second-stage model can be also estimated by MM that relies on the second and third moments of the error 

term 𝜀𝑖̂ in equation (31). This approach takes advantage of the fact that, while the second moment provides 

information about both  𝜎𝑣 and  𝜎𝑢, the third moment only provides information about the asymmetric random 

conduct term. Olson et al. (1980) showed using simulation exercises that the choice of the estimator (ML versus 

MM) depends on the relative values of the variance of both random terms and the sample size. When the sample 

size is large and the variance of the one-sided error component is small, compared to the variance of the noise 

term, ML outperforms MM. Second, the MM approach has some practical problems. Neglected heteroskedasticity 

in either or both of the two random terms causes estimates. Kumbhakar and Lovell (2000) pointed out that only 

the ML approach can be used to address this problem. Another practical problem arises when, in homoscedastic 

specifications of the model, the implied 𝜎𝑢 becomes sufficiently large to cause 𝜎𝑣 < 0, which violates the 

assumptions of the econometric theory. 
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distributional assumptions regardless of whether we use OLS or ML. Second, using a Hausman 

test of the difference between the ML and first-stage OLS equation to test distributional 

assumptions might not be a good idea. In principle, the ML estimator should be more efficient 

because it uses the distributional information, and the first-stage OLS estimator is likely to be 

consistent regardless of whether or not the inefficiency term follows a particular 

(homoscedastic) distribution. But, what about the ML estimator? This is not a trivial question. 

In particular, it is not clear whether the ML estimator is still consistent if we assume the wrong 

distribution for the inefficiency term. In the case that both estimators are consistent, we can use 

a Hausman test, but it will not necessarily show power if the ML is consistent too. 

3.3. Distribution-free approaches 

 Firms’ efficiency scores can also be computed without making specific distributional 

assumptions on the error components using the so-called distribution-free approach. In the 

following paragraphs, we present three methods that do not make distributional assumptions 

on either allow 𝑣𝑖 or 𝑢𝑖 . 

3.3.1. COLS method  

 The Corrected Ordinary Least Squares (COLS) method was proposed by Winsten 

(1957) and can be used with cross-sectional or panel data sets. The estimation proceeds in two 

stages. In the first stage, we estimate the frontier parameters of (31) using OLS if the 

explanatory variables are exogeneous, or GMM if they are endogenous. At this stage, we obtain 

the zero-mean first-stage residuals as 𝜀𝑖̂ = 𝑙𝑛𝑦𝑀𝑖 − 𝑋𝑖𝑡
′ 𝛽̂.  The value of 𝜀𝑖̂ can be greater, equal 

to, or less than zero. At the second stage, the estimated function is shifted upward to the extent 

that the function after the adjustment bounds all observations below. Once the residuals are 

adjusted upward, the frontier model becomes: 

𝑙𝑛𝑦𝑀𝑖 = max(𝜀𝑖̂) + 𝑋𝑖𝑡
′ 𝛽̂ − 𝑢̂𝑖    (35) 

and the inefficiency term is computed as: 

𝑢̂𝑖 = max
𝑖

(𝜀𝑖̂) − 𝜀𝑖̂ ≥ 0     (36) 

 Notice that frontier model in (35) is deterministic in nature because any deviation from 

the frontier is now interpreted as inefficiency. This limitation can be addressed if panel data is 

available. 

3.3.2. SS method 

 A fixed-effect estimator can be used to estimate the frontier model if panel data is 

available. In this case, it is possible to compute firm-specific efficiency scores without making 

specific distributional assumptions on the error components and using a stochastic or non-

deterministic frontier framework. 

 Schmidt and Sickles (1984) assumed a production (distance) model with firm-specific 

intercepts that can be written as: 

𝑙𝑛𝑦𝑀𝑖𝑡 = 𝛽0 + 𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡 − 𝑢𝑖 = 𝛼𝑖 + 𝑋𝑖𝑡

′ 𝛽 + 𝑣𝑖𝑡   (37) 

where 𝛼𝑖 = 𝛽0 − 𝑢𝑖 are firm-specific intercepts that are to be estimated along with the 

parameter vector 𝛽, and  𝑋𝑖𝑡
′ 𝛽 is the log of the frontier production (distance) function. Schmidt 

and Sickles (1984) showed that we can apply standard FE panel data estimation methods to 

estimate the firm-specific effects. Once 𝛼̂𝑖 are available, the following transformation is used 

to get time-invariant inefficiency scores for each firm: 

𝑢̂𝑖 = max
𝑖

(𝛼̂𝑖) − 𝛼̂𝑖 ≥ 0    (38) 
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3.3.3. CSS method 

 To make the inefficiency term time-varying, Cornwell et al. (1990) suggest replacing 

𝛼𝑖 by 𝛼𝑖𝑡 = 𝛼0𝑖 + 𝛼1𝑖𝑡 + 𝛼2𝑖𝑡
2. The model can be estimated using OLS if a set of firms’ 

dummies and their interaction with 𝑡 and 𝑡2 are added to the model: 

𝑙𝑛𝑦𝑀𝑖𝑡 = ∑ (𝛼0𝑖 + 𝛼1𝑖𝑡 + 𝛼2𝑖𝑡
2)𝐷𝑖

𝑁
𝑖=1 + 𝑋𝑖𝑡

′ 𝛽 + 𝑣𝑖𝑡   (39) 

Finally, 𝑢̂𝑖𝑡 is obtained by: 

𝑢̂𝑖𝑡 = 𝛼̂𝑡 − 𝛼̂𝑖𝑡 = max
𝑖

(𝛼̂𝑖𝑡) − 𝛼̂𝑖𝑡 ≥ 0   (40) 

Notice that we can rewrite (39) using (40) as 𝑙𝑛𝑦𝑀𝑖𝑡 = α̂𝑡 + 𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡 + 𝑣𝑖𝑡 − 𝑢̂i𝑡. As α̂𝑡 

changes over time, the CSS model allows implicitly for technical change, and the rate of 

technical change can be computed as 𝑇𝐶 = α̂𝑡 − α̂𝑡−1. 

4. More (advanced) topics and extensions 

4.1. Observed environmental conditions 

 The concern about the inclusion of environmental variables (also called contextual or 

z-variables) has generated the development of several models either using parametric, 

nonparametric or semi-parametric techniques. Here we only mention the methods most 

frequently applied that include z-variables as determinants of firms’ inefficiency.  

The first methodological choice is whether we should incorporate the z-variables as 

either frontier determinants, determinants of firms’ inefficiency, or as determinants of both the 

frontier and the inefficiency term. The key question that should be responded in order to include 

the z-variables as frontier determinants is whether a fully efficient firm will need to use more 

inputs to provide the same services or produce the same output level if an increase in a 

contextual variable represents a deterioration in the environment where it operates. In general, 

we should include as frontier drivers those variables that are fundamental to production. If they 

in addition make it more difficult or easier to manage the firm, they should be also treated as 

determinants of firms’ inefficiency.  

 Like the two-stage DEA method, early papers aiming to understand firms’ inefficiency 

using the SFA approach proceeded in two steps. In the first step, one estimates the stochastic 

frontier model and the firms’ efficiency levels, ignoring the z-variables. In the second step, one 

tries to see how efficiency levels vary with z. It has long been recognized that such a two-step 

procedure will give biased results (see, for instance, Wang and Schmidt, 2002). The solution 

to this bias is a one-step procedure based on a heteroscedastic SFA model.  

Once heteroscedastic SFA models are to be estimated, a second methodological choice 

appears: how to do it. Summaries of this literature can be found in Kumbhakar and Lovell 

(2000) and Parmeter and Kumbhakar (2014). The available options can be discussed using the 

general specification of the inefficiency term introduced by Álvarez et al. (2006): 19 

𝑢𝑖 ∼ 𝑁+(𝜇(𝑧𝑖), 𝜎𝑢(𝑧𝑖))     (41) 

where both the pre-truncation mean and standard deviation of the distribution might depend on 

the z-variables. According to this model, Álvarez et al. (2006) divide most heteroscedastic SFA 

models into three groups. In the mean-oriented models, it is assumed that the variance of the 

pre-truncated normal variable is homoscedastic and, thus, the contextual variables are 

                                                 
19 The general models introduced by Wang (2002) and Lai and Huang (2010) are similar but they parameterize 

the pre-truncation mean of the distribution as a linear function of the z-variables. 
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introduced here through the pre-truncated mean. Following Battese and Coelli (1995), this 

specification can be written as: 

𝑢𝑖 ∼ 𝑁+(𝜃0 + 𝑧𝑖
′𝜃, 𝑒𝛾0)     (42) 

In contrast, in the variance-oriented models, it is assumed that the mean of the pre-

truncated normal variable is homoscedastic and, hence, the environmental variables are treated 

as determinants of the variance of the pre-truncated normal variable. Following Caudill et al. 

(1995), this specification can be illustrated as: 

𝑢𝑖 ∼ 𝑁+(0, 𝑒𝛾0+𝑧𝑖
′𝛾)      (43) 

In more general models, the contextual variables are introduced through both the mean 

and variance of the pre-truncated normal distributed random variable. Álvarez et al. (2006) and 

Lai and Huang (2010) proposed respectively exponential and lineal specifications for this 

model: 

𝑢𝑖 ∼ 𝑁+ (𝑒𝜃0+𝑧𝑖
′𝜃, 𝑒𝛾0+𝑧𝑖

′𝛾)    (44) 

𝑢𝑖 ∼ 𝑁+(𝜃0 + 𝑧𝑖
′𝜃, 𝑒𝛾0+𝑧𝑖

′𝛾)     (45) 

Some of the above models satisfy the so-called scaling property in the sense that the 

inefficiency term can be written as a deterministic (scaling) function of a set of efficiency 

covariates (ℎ𝑖) times a one-sided random variable (𝑢𝑖
∗) that does not depend on any efficiency 

determinant. That is: 

𝑢𝑖 = ℎ(𝑧𝑖
′𝛾) · 𝑢𝑖

∗ = ℎ𝑖𝑢𝑖
∗    (46) 

where e.g. 𝑢𝑖
∗ might follow a truncated normal or a half-normal distribution. For instance, the 

variance-oriented model in (43) has the scaling property due it can be rewritten as: 

𝑢𝑖 = 𝑒𝑧𝑖
′𝛾 · 𝑢𝑖

∗          (47) 

where ℎ𝑖 = 𝑒𝑧𝑖
′𝛾 and 𝑢𝑖

∗ ∼ 𝑁+(0, 𝑒𝛾0). As Parmeter and Kumbhakar (2014) point out, the 

ability to reflect the scaling property requires that both the mean and the variance of the 

truncated normal are parameterized identically and with the same parameters in each 

parameterization. In this sense, the general model introduced by Álvarez et al (2006) also has 

the scaling property if we impose in (44) that 𝜃 = 𝛾. In this case, ℎ𝑖 = 𝑒𝑧𝑖
′𝛾 and 𝑢𝑖

∗ ∼

𝑁+(𝑒𝜃0 , 𝑒𝛾0).  

The defining feature of models with the scaling property is that firms differ in their 

mean efficiencies, but not in the shape of the distribution of inefficiency. That is, the scaling 

property implies that changes in 𝑧𝑖 affect the scale but not the shape of 𝑢𝑖. In this model 𝑢𝑖
∗ can 

be viewed as a measure of basic inefficiency which captures things like the managers’ natural 

skills, which we view as random. How well these natural skills are exploited to manage the 

firm efficiently depends on other variables 𝑧𝑖, which might include the manager’s education or 

experience, or measures of the environment in which the firm operates.  

Although it is an empirical question whether or not the scaling property should be 

imposed, it has some features that make it attractive to some authors (see, e.g., Wang and 

Schmidt, 2002). Several authors have found the scaling property useful to remove individual 

fixed effects and still get a closed-form for the likelihood function (Wang and Ho, 2010), to 

address endogeneity issues (Griffiths and Hajargasht, 2016) or to relax the zero-rebound effect 

assumption in traditional demand frontier models (Orea et al., 2015).   
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As noted by Simar et al. (1994), Wang and Schmidt (2002), and Álvarez et al. (2006), 

the most fundamental benefit of the scaling property from a statistical point of view is that the 

stochastic frontier and the deterministic component of inefficiency can be recovered without 

requiring a specific distributional assumption on 𝑢𝑖
∗. Indeed, if we take into account our 

specification of firms’ inefficiency in (47) and define 𝜇∗ = 𝐸(𝑢𝑖
∗) ≥ 0, then taking 

expectations in (31) yields: 

𝑙𝑛𝑦𝑀𝑖 = 𝑋𝑖
′𝛽 − ℎ(𝑧𝑖

′𝛾) · 𝜇∗ + 𝜀𝑖
∗    (48) 

where again and 𝑋𝑖
′𝛽 is the log of the frontier production (distance) function, and 

𝜀𝑖
∗ = 𝑣𝑖 − ℎ(𝑧𝑖

′𝛾)[𝑢𝑖
∗ − 𝜇∗]     (49) 

The parameters in (49) can be estimated using nonlinear least squares as:20  

(𝛽̂, 𝛾, 𝜇̂∗) = arg𝑚𝑖𝑛
1

𝑁
∑ [𝑙𝑛𝑦𝑀𝑖 − 𝑋𝑖

′𝛽 + ℎ(𝑧𝑖
′𝛾)𝜇∗]2𝑁

𝑖=1    (50) 

Given that 𝜀𝑖
∗ is heteroscedastic, robust standard errors should be constructed to ensure 

valid inferences. The presence of  𝜇∗ in (50) implies that one cannot include a constant in ℎ𝑖 as 

this leads to identification issues (see Parmeter and Kumbhakar, 2014, p. 88). Interesting 

enough, 𝜇∗cannot be estimated in a simple model where the inefficiency term is homoskedastic 

because, in this case, it cannot be distinguished from the intercept of the production frontier. 

As 𝜇∗ is multiplied by ℎ𝑖 in (50), we can get a separate estimate of both parameters.  

In a second stage, distributional assumptions are invoked to obtain ML consistent 

estimates of the parameter(s) describing the variance and covariance of 𝑣𝑖, conditional on the 

first-stage estimated parameters. Notice that, if we assume that 𝑢𝑖
∗~𝑁+(0, 𝜎𝑢), we have already 

got an estimate of 𝜎𝑢 using the first-stage estimate of 𝜇∗as follows: 𝜎̂𝑢 = 𝜇̂∗√𝜋 2⁄ . Thus, only 

𝜎𝑣 should be estimated in the second-stage of the procedure. In a third stage, we can obtain the 

estimates of efficiency for each firm using the conditional expectation 𝐸(𝑢𝑖|𝜀𝑖
∗). 

All heteroscedastic frontier models above can be used to examine exogenous (marginal) 

effects on firm’s expected inefficiency. These effects can be easily computed if the inefficiency 

term has the scaling property. For instance, assume 𝑢𝑖 follows the heteroscedastic half-normal 

distribution in (43). In this case, the conditional expectation 𝐸(𝑢𝑖|𝑧𝑖) is equal to ℎ𝑖 · 𝐸(𝑢𝑖
∗) =

𝑒𝑧𝑖
′𝛾 · [√2/𝜋𝑒𝛾0]. Thus, the marginal effect of 𝑧𝑖 on 𝐸(𝑢𝑖|𝑧𝑖) is: 

𝜕𝐸(𝑢𝑖|𝑧𝑖)

𝜕𝑧𝑖
= 𝛾 · 𝑒𝑧𝑖

′𝛾[√2/𝜋𝑒𝛾0]     (51) 

In order to get non-monotonic effects, we could include quadratic terms, or estimate 

more general models with both heteroscedastic mean and variance. However, in the latter case, 

Wang (2002) shows that the marginal effects are complex functions of both 𝛾 and 𝜃 parameters. 

4.2. Endogeneity issues 

 Endogeneity problems can arise in stochastic frontier models if the frontier 

determinants are correlated with the noise term, the inefficiency term or both. As noted by 

Kumbhakar et al. (2013), the endogeneity issue is typical in econometric models, especially 

when economic behaviours are believed to affect both inputs and/or outputs levels and inputs 

                                                 
20 To impose 𝜇∗ ≥ 0 in practice, we could replace 𝜇∗ in (48) with 𝑒𝜃𝜇.  
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and/or outputs ratios.21 Dealing with the endogeneity issue is relatively more complicated in a 

SFA framework than in standard regression models due to the special nature of the error term. 

Several authors have recently proposed alternative empirical strategies to account for 

endogenous regressors in SFA settings. In the next paragraphs we outline the main features of 

these methods, trying to identify their relative advantages and disadvantages.  

 Let us first assume that we are interested in estimating the following production model 

with endogenous regressors: 

𝑙𝑛𝑦𝑀𝑖 = 𝑋𝑖
′𝛽 + 𝑣𝑖 − 𝑢𝑖     (52) 

𝑋𝑖 = 𝑧𝑖
′𝛿 + 𝜂𝑖      (53) 

where 𝑋𝑖 is a vector of endogenous production drivers, and 𝑧𝑖 is a vector of exogenous or 

instrumental variables. Equation in (53) can be viewed as a reduced form expression that links 

the endogenous variables with the set of instruments. The endogeneity problem arises if 𝜂𝑖 is 

correlated with either 𝑣𝑖 or 𝑢𝑖. In order to estimate consistently the frontier model (52), Guan 

et al. (2009) propose a two-step MM estimation strategy. In the first step, they suggest 

estimating the frontier parameters using a GMM estimator as long as valid instruments are 

found. In the second step, 𝜎𝑣 and 𝜎𝑢 are estimated using ML, conditional on the first-stage 

estimated parameters.  

Instead of introducing instruments for these endogenous variables in an ad hoc fashion 

(e.g., temporal lags of inputs and outputs), Kumbhakar et al. (2013) and Malikov et al. (2015) 

bring additional equations for the endogenous variables from the first-order conditions of 

profitability (cost) maximization (minimization). They advocate using a system approach for 

two reasons. First, estimates of allocative inefficiencies can be obtained from the residuals of 

the first-order conditions. Second, since the first-order conditions contain the same technology 

parameters, their estimates are likely to be more precise (efficient). However, estimation of 

such a system requires availability of input and output prices. Their identification strategy also 

relies on competitively determined output and input prices as a source of exogenous variation. 

Other authors make efforts to address the endogeneity problem in a fully ML estimation 

context. They use likelihood based instrumental variable estimation methods that rely on the 

joint distribution of the stochastic frontier and the associated reduced form equations in (53). 

The simultaneous specification of both types of equations has the advantage that it provides 

more efficient estimates of the frontier parameters as well as improvement in predicting the 

inefficiency term. For instance, Karakaplan and Kutlu (2013) assume that the error terms in 

(52) and (53) satisfy the following: 22 

(Ω𝜂
−1/2

𝜂𝑖

𝑣𝑖

)~𝑁 ([
0
0
] , [

𝐼𝑝 𝜌𝜎𝑣

𝜌′𝜎𝑣 𝜎𝑣
2 ])    (54) 

where Ω𝜂 is the variance-covariance matrix of 𝜂𝑖 and 𝜌 is a correlation vector between 𝑣𝑖 and 

𝜂𝑖. Based on (54), the equations in (52) and (53) can be written as: 

𝑙𝑛𝑦𝑀𝑖 = 𝑋𝑖
′𝛽 + 𝜏(𝑋𝑖 − 𝑧𝑖

′𝛿) + 𝜔𝑖 − 𝑢𝑖    (55) 

                                                 
21 On the other hand, in cost (profit) settings, endogeneity problems might appear when the outputs’ levels (prices) 

or input prices depend on random shocks and economic inefficiency. This might happen if firms are allocative 

inefficient, or firms have market power as, in this case, input/output prices are not set competitively in the market. 

22 In his model, the distribution of 
iu  is not allowed to have efficiency determinants. 
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where 𝜔𝑖 = (1 − 𝜌′𝜌)𝑣𝑖  and 𝜏 = 𝜎𝑣𝜌′Ω𝜂
−1/2

, which can be viewed as a correction term for 

bias. Note that 𝜔𝑖 − 𝑢𝑖 is conditionally independent from the regressors given 𝑋𝑖 and 𝑧𝑖. Hence, 

conditional on 𝑋𝑖 and 𝑧𝑖, the distribution of the composed error term in (55) is exactly the same 

as their traditional counterparts from the stochastic frontier literature. They then show that the 

joint log-likelihood function of 𝑙𝑛𝑦𝑀𝑖 and 𝑋𝑖 is given by: 

𝑙𝑛𝐿𝐹 = 𝑙𝑛𝐿𝐹𝑦|𝑋 + 𝑙𝑛𝐿𝐹𝑋    (56) 

 The first part of the log-likelihood function, 𝑙𝑛𝐿𝐹𝑦|𝑋, is almost the same as that of a 

traditional stochastic frontier model where the residual is adjusted by the +𝜏(𝑋𝑖 − 𝑧𝑖
′𝛿) factor. 

The second part, 𝑙𝑛𝐿𝐹𝑋, is just the likelihood function of the reduced form equations in (53), 

that is the likelihood function of a multivariate normal variable. The likelihood function (56) 

can be maximized to obtain consistent estimates of all parameters of the model.  However, if 

computational difficulties appear, one can use a two-step maximum likelihood estimation 

method. In the first stage, 𝑙𝑛𝐿𝐹𝑋 is maximized with respect to Ω𝜂 and 𝛿. In the second stage, 

the rest of the parameters are estimated by maximizing 𝑙𝑛𝐿𝐹𝑦|𝑋 taking the estimates of Ω𝜂 and 

𝛿  as given.23  

The abovementioned ML model does not address the potential correlation with the 

inefficiency term, and neither does it assure consistency of parameter estimates when 𝜂𝑖 is 

correlated with both 𝑣𝑖 and 𝑢𝑖. Amsler et al. (2016) is the first paper to allow endogeneity of 

the inputs with respect to statistical noise and inefficiency separately. They propose using a 

(Gaussian) copula in order to specify the joint distribution of these three random variables.24 

One obvious difficulty with this approach is the need to specify a copula. Another difficulty of 

this approach is that it may be computationally challenging. Tran and Tsionas (2015) also use 

a Gaussian copula function to directly model the dependency of the endogenous regressors and 

the composed error without using instrumental variables.  Consistent estimates can be obtained 

by maximizing the likelihood function in a two-step procedure. The first step requires, 

however, using numerical integration as in Amsler et al. (2016).25 

4.3. Unobserved heterogeneity   

Many industries worldwide are incentive regulated. The aim is to provide firms with 

incentives to improve their efficiency and to ensure that consumers benefit from the gains. As 

regulators reward or penalise firms in line with their respective (in)efficiency levels, the 

reliability of these scores is crucial for the fairness and effectiveness of the regulatory 

framework. Obtaining reliable measures of firms’ inefficiency requires controlling for the 

different environmental conditions under which each firm operates. This is particularly 

important in the case of benchmarking of electricity, gas, and water networks where the results 

of efficiency analysis have important financial implications for the firms. However, there are 

many characteristics (e.g., geography, climate or network characteristics) that affect firms’ 

production (costs) but which are unobserved or omitted variables.  

                                                 
23 However, the standard errors from this two-stage method are inconsistent because the estimates are conditional 

on the estimated error terms from the first stage. Kutlu (2010) suggests using a bootstrapping procedure in order 

to get the correct standard errors. 

24 A copula is a multivariate probability distribution for which the marginal probability distribution of each 

variable is uniform. 

25 In the abovementioned papers, there were no environmental variables determining firms’ inefficiency. Amsler 

et al (2017) provides a systematic treatment of endogeneity in stochastic frontier models and allows environmental 

variables to be endogenous because they are correlated with either the statistical noise or the basic inefficiency 

term or both. 
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Several statistical methods have been developed in the SFA literature to address this 

issue. A simple or naïve strategy is the sample separation approach. Estimation of the 

technology is carried out in two stages. First, the sample observations are classified into several 

groups. In the second stage, separate analyses are carried out for each class, conditional on the 

first-stage (maybe ad-hoc) sample separation. More sophisticated and popular approaches to 

deal with omitted variables use panel data, random coefficients, latent class models, or spatial 

econometrics. 

4.3.1. Panel data models 

For instance, the True Fixed/Random Effects models introduced by Greene (2005) 

capture the unobserved heterogeneity through a set of firm-specific intercepts 𝛼𝑖: 

𝑙𝑛𝑦𝑀𝑖𝑡 = 𝛼𝑖 + 𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡     (57) 

If we treat 𝛼𝑖 as fixed parameters which are not part of inefficiency, then the above 

model becomes the “True Fixed Effects” (TFE) panel stochastic frontier model. The model is 

labelled as “True Random Effects” model when 𝛼𝑖 is treated as a time-invariant random 

variable. Estimation of the model in (57) is not easy. When the number of firms is too large, 

the model encounters the incidental parameter problems. This problem appears when the 

number of parameters to be estimated increases with the number of cross-sectional 

observations in the data. In this situation, consistency of the parameter estimates is not 

guaranteed even if 𝑁 → ∞.   

Wang and Ho (2010) solve the problem in Greene (2005) using temporal 

transformations of (57). In order to remove time-invariant firm-specific effects , they carried 

out first-differences and within transformations of the model. Their within transformation of 

the inefficiency term (see eq. 24) is reproduced below with our notation: 

𝑢𝑖𝑡
𝑤 = 𝑢𝑖𝑡 −

1

𝑇
∑ 𝑢𝑖𝑡

𝑇
𝑡=1 = 𝑢𝑖𝑡 − 𝑢𝑖.    (58) 

As 𝑢𝑖𝑡
𝑤 is the difference of “two” one-sided error terms, the distribution of 𝑢𝑖𝑡

𝑤 is not 

known if 𝑢𝑖𝑡 is independently distributed over time. To get a closed form for the likelihood 

function, they assumed that the inefficiency term 𝑢𝑖𝑡 possesses the scaling property so that it 

can be multiplicatively decomposed into two components as follows: 

𝑢𝑖𝑡 = ℎ(𝑧𝑖𝑡, 𝛿) · 𝑢𝑖
∗ = ℎ𝑖𝑡 · 𝑢𝑖

∗     (59) 

where ℎ𝑖𝑡 ≥ 0 is a function of firm exogenous variables, and 𝑢𝑖
∗ ≥ 0 is a firm-specific and 

time-invariant inefficiency term which captures aspects such as the manager’s natural skills 

which are viewed as random. Note that this implies that the within-transformed inefficiency 

term in (58) can be rewritten as: 

𝑢𝑖𝑡
𝑤 = (ℎ𝑖𝑡 −

1

𝑇
∑ ℎ𝑖𝑡

𝑇
𝑡=1 ) · 𝑢𝑖

∗     (60) 

Note that the distribution of 𝑢𝑖
∗ is not affected by the within-transformation. This key 

aspect of their model enabled them to get a tractable likelihood function for their transformed 

model. 

Note that the TFE model and WH models capture the unobserved heterogeneity through 

a set of firm-specific intercepts 𝛼𝑖. If we use the SS method, the adjusted individual effects 

provide a measure of persistent (time-invariant) inefficiency. In order to separate persistent 

inefficiency from both time-invariant unobserved heterogeneity and transient (time-varying) 

inefficiency, Greene propose estimating a model with four error terms: 

𝑙𝑛𝑦𝑀𝑖𝑡 = 𝛽0 + 𝑋𝑖𝑡
′ 𝛽 + 𝛼𝑖 + 𝑣𝑖𝑡 − (𝑢i + 𝜏𝑖𝑡)   (61) 
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where 𝛼𝑖 captures time-invariant unobserved heterogeneity, 𝑣𝑖𝑡  is the traditional noise term that 

follows a normal distribution, 𝑢i is one-sided error term capturing persistent inefficiency, and 

𝜏𝑖𝑡 is one-sided error term capturing transient inefficiency. Estimation of the model in (61) can 

be undertaken in a single stage ML method based on the distributional assumptions on the four 

error terms (Colombi et al., 2011).26 Kumbhakar et al. (2015) consider a simpler multi-stage 

procedure on the model is rewritten as: 

𝑙𝑛𝑦𝑀𝑖𝑡 = 𝛽0
∗ + 𝑋𝑖𝑡

′ 𝛽 + 𝛼𝑖
∗ + 𝜔𝑖𝑡    (62) 

where 𝛽0
∗ = 𝛽0 − 𝐸(𝑢i) − 𝐸(𝜏𝑖𝑡), 𝛼𝑖

∗ = 𝛼𝑖 − 𝑢i + 𝐸(𝑢i)  and 𝜔𝑖𝑡 = 𝑣𝑖𝑡 − 𝜏𝑖𝑡 + 𝐸(𝜏𝑖𝑡). This 

model can be easily estimated in three stages. In the first stage, we estimate (62) using a FE or 

RE estimator and get the first-stage fixed-effects (𝛼̂𝑖
∗ ) and residuals (𝜔̂𝑖𝑡). In a second stage, 

we estimate a standard SFA model regressing 𝜔̂𝑖𝑡 on an intercept, which can be interpreted as 

an estimate of 𝐸(𝜏𝑖𝑡). Using the Jondrow et al. (1082) formula, we decompose (𝜔̂𝑖𝑡 − 𝐸̂(𝜏𝑖𝑡)) 

into  𝑣𝑖𝑡 and 𝜏̂𝑖𝑡. In the third stage, we estimate a SF model regressing 𝛼̂𝑖
∗  on an intercept, which 

can be interpreted as an estimate of 𝐸(𝑢i). Using again Jondrow et al. (1982), we next 

decompose (𝛼𝑖
∗ − 𝐸̂(𝑢i)) into  𝛼̂𝑖 and 𝑢̂𝑖.  

To conclude this subsection, it is worth mentioning that the above panel data models 

only use the temporal (i.e. within) variation contained in the data to estimate the coefficients 

of the main production drivers. This is quite problematic in many applications because many 

important determinants of firm costs (production) are persistent or slow changing variables 

(such as the energy delivered or number of customers in electricity distribution).  

4.3.2. Latent class models 

Possible differences among firms associated with their use of different technologies are 

also often addressed using latent class models. The latent class stochastic frontier (hereafter 

LCSF) models combine the stochastic frontier approach with a latent class structure (see Orea 

and Kumbhakar, 2004; Greene, 2005, for some applications). A conventional LCSF model 

assumes there is a finite number of technologies (classes) underlying the data and allocates 

probabilistically each firm in the sample to a particular technology.27   

Let us first assume that there are J different technologies, and that each firm belongs to 

one, and only one, of these technologies. Conditional on technology j (=1,…,J), the general 

specification of the LCSF model can be written as follows: 

𝑙𝑛𝑦𝑀𝑖 = 𝑋𝑖
′𝛽𝑗 + 𝑣𝑖|𝑗 + 𝑢𝑖|𝑗    (63) 

where 𝑣𝑖|𝑗~𝑁(0, 𝜎𝑣𝑗)  is a noise term that follows a normal distribution, and 𝑢𝑖|𝑗~𝑁+(0, 𝜎𝑢𝑗) 

is a one-sided error term capturing firms’ inefficiency.28 Given that the researcher lacks 

knowledge as to whether a particular firm belongs to class j or another, the class-membership 

probability should be estimated simultaneously alongside other parameters of the model. 

                                                 
26 Greene and Fillipini (2016) proposed a simulation-based procedure to circumvents many of the challenges that 

appears when estimating the model by brute force maximization.  
27 The LCSF model is similar to the stochastic frontier model with random coefficients introduced by Tsionas 

(2002), in the sense that a latent class model can be viewed as a discrete approximation to a (continuous) random 

coefficient model (see Greene, 2005, p. 287). 

28 Orea and Jamasb (2017) assumed the existence of two behavioral classes: fully efficiency and inefficient. While 

in the “inefficient” class it is assumed that 𝑢𝑖|𝑗 follows a half-normal distribution, the "fully efficient" class is 

defined by imposing that the variance of the pre-truncated normal distribution is zero, i.e. 𝜎𝑢𝑗
2 = 0. 
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Following Greene (2005), the class probabilities are parameterized as a multinomial logit 

function: 

Π𝑖𝑗(𝛾𝑗) =
𝑒𝑥𝑝(𝑞𝑖

′𝛾𝑗)

1+𝑒𝑥𝑝(𝑞𝑖
′𝛾𝑗)

 ,          𝑗 = 1, … , 𝐽 − 1   (64) 

where 𝑞𝑖 is a vector of firm-specific variables. The last probability is obtained residually taking 

into account that the sum of all probabilities should be equal to one. The unconditional 

likelihood for firm i is obtained as the weighted sum of their technology-specific likelihood 

functions, where the weights are probabilities of technology-class membership, Π𝑖𝑗. That is: 

𝐿𝐹𝑖(𝜃) = ∑ 𝐿𝐹𝑖|𝑗(𝛽𝑗, 𝜎𝑣𝑗 , 𝜎𝑢𝑗)Π𝑖𝑗(𝛾𝑗)
𝐽
𝑗=1     (65) 

where 𝜃 encompasses all parameters. The overall likelihood function can be written as: 

𝑙𝑛 𝐿𝐹 (𝜃) = ∑ 𝑙𝑛 𝐿𝐹𝑖 (𝜃)𝑁
𝑖=1 = ∑ 𝑙𝑛{∑ 𝐿𝐹𝑖|𝑗(𝛽𝑗, 𝜎𝑣𝑗 , 𝜎𝑢𝑗)Π𝑖𝑗(𝛾𝑗)

𝐽
𝑗=1 }𝑁

𝑖=1   (66) 

Maximizing the above maximum likelihood function gives asymptotically efficient 

estimates of all parameters. The estimated parameters can then be used to compute 

(unconditional) posterior class membership probabilities for each technology. The posterior 

probabilities can be used to allocate each firm to a technology-class with highest probability. 

4.3.3. Spatial frontier models 

A common feature of the above approaches is that they ignore the spatial structure of 

the data. Orea et al. (2018) advocate using a different empirical strategy to account for the 

unobserved differences in environmental conditions based on firms’ geographic location. 

Indeed, as many unobservable variables are likely to be spatially correlated (such as weather 

and geographic conditions, population structure, electricity demand patterns, input prices, etc), 

an alternative empirical strategy emerges. Their spatial-based approach can be used in panel 

data settings. Indeed, as they utilise different (spatial vs. temporal) dimensions of our data, they 

can be viewed as complementary approaches to deal with unobserved variables. 

 Orea et al. (2018) proposed a frontier model with cross-sectional correlation in the noise 

term, which can be written assuming a single input as: 

𝑙𝑛𝑦𝑀𝑖 = 𝑋𝑖
′𝛽 + 𝑣𝑖 − 𝑢𝑖 = 𝑋𝑖

′𝛽 + (𝑧𝑖 + 𝜔𝑖) − 𝑢𝑖   (67) 

𝑧𝑖 = 𝜆𝑊𝑖𝑧     (68) 

where 𝑧𝑖  represent unobserved environmental variables that are spatially correlated, and 𝜔𝑖 is 

the traditional non-spatially correlated noise term, 𝑧 is a vector of 𝑁𝑥1 unobserved 

environmental variables, 𝑊𝑖 is a known 1𝑥𝑁 spatial weight vector with elements that are equal 

to zero if a particular firm 𝑗 is not a neighbour of firm 𝑖 and equal to one if the two firms are 

neighbours – i.e. the service areas of the firms are adjacent. The term 𝜆 is a coefficient that 

measures the degree of spatial correlation between the unobserved environmental variables. 

Hence the spatial effects estimated in this model lack an economic interpretation as they are 

completely “spurious”. Equation (67) can be alternatively rewritten as follows: 

𝑙𝑛𝑦𝑀𝑖 = 𝑋𝑖
′𝛽 + 𝜆𝑊𝑖𝑙𝑛𝑦𝑀 + 𝑊𝑖𝑋

′(−𝜆𝛽) + 𝜔̃𝑖 − 𝑢̃𝑖   (69) 

where 𝜔̃𝑖 = 𝜔𝑖 − 𝜆𝑊𝑖𝜔, 𝑢̃𝑖 = 𝑢𝑖 − 𝜆𝑊𝑖𝑢, 𝑙𝑛𝑦𝑀 is a vector of 𝑁𝑥1 production levels, 𝑋 is a 

vector of 𝑁𝑥1 explanatory variables, 𝑢 is 𝑁𝑥1 vectors of the firms’ inefficiency terms, and 𝜔 

is again 𝑁𝑥1 vectors of the firms’ non-spatially correlated noise terms.  

Several comments are in order with respect to this specification. First, in contrast to 

(67), equation (69) is a model that now includes a set of spatially lagged variables, i.e. 𝑊𝑖𝑙𝑛𝑦𝑀  
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and 𝑊𝑖𝑋. Therefore, equation (69) resembles a conventional spatial econometric model. 

However, in (67), only one additional coefficient is estimated, and the coefficient of the 

spatially lagged dependent variable should not be interpreted as the effect of neighbours’ 

production on the production of a particular firm. Rather,  is measuring the spatial correlation 

between the unobserved or omitted variables in our sample. On the other hand, it is worth 

mentioning that (69) is similar to the Durbin Stochastic Frontier (SDF) model introduced 

recently by Glass et al. (2016) in which they propose estimating the following model: 

𝑙𝑛𝑦𝑀𝑖 = 𝑋𝑖
′𝛽 + 𝜆𝑊𝑖𝑙𝑛𝑦𝑀 + 𝑊𝑖𝑋

′𝜃 + 𝑣𝑖 − 𝑢𝑖   (70) 

It is easily observable that our spatial model in (69) and the SDF model in (70) differ 

in two important aspects. First, the set of parameters 𝜃 in the SDF model is not restricted to be 

equal to −𝜆𝛽. In this sense, our spatial model in (5) is nested in the SDF model. However, no 

spatially correlated omitted (random) variables are explicitly modelled in the SDF model. 

While the spatial spillovers in Glass et al. (2016) have an economic or causal interpretation, 

the spatial spillovers in our spatial model are simply associated with the omitted variables.  

Orea et al. (2018) discuss how to estimate (69) taking into account that this model 

includes two spatially correlated error terms. They propose a two-step procedure. In the first 

step, equation (69) is estimated ignoring the spatial and frontier structure of the composed error 

term. The degree of spatial correlation of omitted variables (i.e. parameter 𝜆) and other 

coefficients of the frontier model are estimated using GMM because the spatially lagged 

dependent variable is endogenous. The estimated 𝜆 parameter is then used to get a predicted 

value for 𝑧𝑖.  In the second step, they estimate (67) once the original omitted variable 𝑧𝑖 is 

replaced with its predicted counterpart. 

Orea and Álvarez (2017) develop a cross-sectional (spatial) frontier model that 

explicitly allows for cross-sectional (spatial) correlation in both noise and inefficiency terms. 

Their model can be written as: 

𝑙𝑛𝑦𝑀𝑖 = 𝑋𝑖
′𝛽 + 𝑣̃𝑖(𝜌) + 𝑢̃𝑖(𝜏)    (71) 

where both error terms are cross-sectionally correlated using spatial moving average (SMA) or 

spatial autoregressive (SAR) spatial stochastic processes. The coefficients 𝜌 and 𝜏 measure the 

degrees of cross-sectional (spatial) correlation between firms’ noise and inefficiency terms 

respectively.29 In a SMA specification of the model, the noise and inefficiency terms are 

defined as 𝑣̃𝑖 = 𝑣𝑖 + 𝜌𝑊𝑖𝑣, and 𝑢̃𝑖 = 𝑢𝑖 + 𝜏𝑊𝑖𝑢. A SAR specification for the two error terms 

can be expressed as: 𝑣̃𝑖 = 𝑣𝑖 + 𝜌𝑊𝑖𝑣̃, and 𝑢̃𝑖 = 𝑢𝑖 + 𝜏𝑊𝑖𝑢̃. 

 Note that (71) has the structure of a traditional SFA model as it includes a noise term 

(𝑣̃𝑖) and an inefficiency term (𝑢̃𝑖). However, the above model cannot be estimated using full 

maximum likelihood because the distribution of 𝑢̃𝑖 is generally not known if we assume that 

𝑢𝑖 is independently distributed across firms (see, for instance, Wang, 2003). To address this 

issue, Areal et al. (2012), Tsionas and Michaelides (2016), and Schmidt et al. (2009) proposed 

several computational algorithms based on Gibbs sampling or simulated ML. In contrast, Orea 

and Álvarez (2017) assumed that the basic inefficiency term 𝑢𝑖 possesses the scaling property, 

but we replace Wang and Ho (2010)’s firm-specific term 𝑢𝑖
∗ with an industry-specific term 𝑢∗: 

𝑢𝑖 = ℎ(𝑧𝑖, 𝛿) · 𝑢∗ = ℎ𝑖 · 𝑢∗    (72) 

                                                 
29 In a SMA specification of the model, the noise and inefficiency terms are defined as 𝑣̃𝑖 = 𝑣𝑡 + 𝜌𝑊𝑖𝑣, and 𝑢̃𝑖 =
𝑢𝑖 + 𝜏𝑊𝑖𝑢. A SAR specification for the two error terms can be expressed as: 𝑣̃𝑖 = 𝑣𝑖 + 𝜌𝑊𝑖𝑣̃, and 𝑢̃𝑖 = 𝑢𝑖 +
𝜏𝑊𝑖𝑢̃. 
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where ℎ𝑖 ≥ 0 is again function of firm exogenous variables, and 𝑢∗ ≥ 0 is an industry-specific 

inefficiency term. For simplicity, Orea and Álvarez (2017) assume that 𝑢∗~𝑁+(0, 𝜎𝑢).30 The 

above specification of 𝑢𝑖 implies that the SMA-transformed inefficiency term can be written 

as: 

𝑢̃𝑖 = 𝑢𝑖 + 𝜏𝑊𝑖𝑢 = (ℎ𝑖 + 𝜏
1

𝑛𝑖
𝛴𝑗∈𝐴𝑖

ℎ𝑗) 𝑢∗ = ℎ̃𝑖 · 𝑢∗  (73) 

or, in simpler notation:  

𝑢̃ = (𝐼𝑁 + 𝜏𝑊)𝑢 = 𝑀𝜏𝑢 = 𝑀𝜏ℎ𝑢∗ = ℎ̃ · 𝑢∗   (74) 

where ℎ = (ℎ1, … , ℎ𝑁), and ℎ̃ = (ℎ̃1, … , ℎ̃𝑁) are Nx1 vectors of idiosyncratic and generalized 

scaling functions, respectively. If the inefficiency term instead follows a SAR process, we just 

need to replace 𝑀𝜏 = 𝐼𝑁 + 𝜏𝑊  with 𝑀𝜏 = (𝐼𝑁 − 𝜏𝑊)−1. Regardless of whether SMA or SAR 

processes are assumed, the half-normal distribution of 𝑢∗ is not affected by the cross-sectional 

transformation. This is the crucial aspect of the model that enables Orea and Álvarez (2017) to 

get a tractable likelihood function that can be maximized using standard software. In this sense, 

the proposed model can be viewed as a new application of the scaling property in SFA analyses. 

Moreover, some portions of the model can also be estimated using non-linear least squares 

(NLLS).  

4.4. Dynamic efficiency 

 The empirical literature on efficiency was initially developed under a static theory of 

the firm.  However, the decision-making process followed by producers is quite often dynamic 

in nature. Rigidities derived from the nature of some inputs, regulations, transaction costs, 

information failures and other adjustment costs may prevent firms from moving instantly 

towards long-run optimal conditions. When these constraints are taken into consideration, it 

could very well result that being on the production and cost frontier constantly may not be the 

optimal long-run strategy. Moreover, in this context, firms may not only find it optimal to 

remain inefficient in the short-run, but also their inefficiency may persist from one period to 

the next. Two different approaches have been used in the literature to incorporate the dynamic 

nature of the decision-making process into efficiency analyses: reduced-form models and 

structural models.31   

4.4.1. Reduced-form models 

The reduced-form models do not define explicitly a mathematical representation of 

dynamic behaviour of the firm but recognize a persistence effect of firms’ inefficiency over 

time and specify its evolution as an autoregressive process. For instance, Tsionas (2006) 

departs from a typical stochastic production frontier of the following form: 

𝑙𝑛𝑦𝑀𝑖𝑡 = 𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡 + 𝑙𝑛𝐸𝑇𝑖𝑡    (75) 

where 𝐸𝑇𝑖𝑡 = 𝑒−𝑢𝑖𝑡 ≤ 1 is the usual technical efficiency of firm i in period t. To avoid the 

complications inherent in the specification of autoregressive processes on non-negative 

                                                 
30 As the random inefficiency component in (72) does not vary across firms, consistency of 𝜎𝑢 can be obtained if 

we use a panel data set and 𝑇 → ∞.  

31 For a more comprehensive review of this literature see Emvalomatis (2009). 
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variables, Tsionas (2006) converts the technical efficiency term into an autoregressive form 

using 𝑠𝑖𝑡 = ln (−𝑙𝑛𝐸𝑇𝑖𝑡) instead of directly 𝑙𝑛𝐸𝑇𝑖𝑡:
32  

𝑠𝑖𝑡 = 𝑧𝑖𝑡
′ 𝛿 + 𝜌𝑠𝑖𝑡−1 + 𝜉𝑖𝑡     (76) 

The distinguishing feature of (58) is that past values of efficiency determine the value 

of 𝐸𝑇𝑖𝑡. Estimating the above dynamic stochastic frontier model is far from simple. While 

Tsionas (2006) estimate the model using Bayesian techniques, Emvalomatis et al. (2011) use 

Kalman filtering techniques and proceed to estimation by maximum likelihood.  

4.4.2. Structural models 

 The structural models that make explicit assumptions regarding the objective of the 

firm. For instance, the objective of the firm is often assumed to be the maximization of the 

following intertemporal problem (see Tovar and Wall, 2016):  

𝑊(𝑦,𝐾, 𝑥, 𝑤, 𝑐) = min
𝐼,𝑥

𝐸𝑡 {∫ 𝑒−𝑟𝑡(𝑤′𝑥 + 𝑐𝐾)𝑑𝑡
∞

0

} 

𝑠. 𝑡. 𝐾̇ = 𝐼 − 𝛿𝐾

𝐷⃗⃗ (𝑦, 𝐾, 𝑥, 𝐼, −𝑔𝑥, 𝑔𝐼) ≥ 0
    (77) 

where 𝑤 is the vector of variable input prices, 𝑐 is the capital rental price, 𝐼 is gross investment, 

and 𝑟 is the discount rate. In this formulation, the objective of the firm is to minimize the 

present value of costs. The choice variables are the levels of variable inputs (x) to be employed 

and the level of investment in quasi-fixed inputs (𝐼). While the first restriction describes the 

evolution of capital through time, the second restriction is a dynamic representation of 

technology in terms of a directional distance function. Given the level of quasi-fixed inputs, 

this function describes the vectors of outputs that can be produced from a given vector of 

variable inputs and gross investment. Depending upon the orientation of the distance function, 

adjustment costs are implicit in higher variable inputs or lower output. Regardless of the 

dynamic specification, it should be noted that they all indicate that, in the presence of 

adjustment costs in quasi-fixed inputs, static measures do not correctly reflect inefficiency. 

Serra et al. (2011) and Tovar and Wall (2016) used the adjustment cost framework of 

Silva and Lansink (2013), but instead of DEA they carried out a parametric estimation 

generalizing the static input-oriented directional distance function introduced by Färe et al. 

(2005). They all use a quadratic functional form for the directional distance function because 

it is easy to impose the above translation property. Their dynamic directional distance function 

is also input oriented. Therefore, 𝐷⃗⃗ (𝑦, 𝐾, 𝑥, 𝐼, −𝑔𝑥, 𝑔𝐼) in (77) represents the maximum 

contraction of variable inputs and the maximum expansion of gross investments that keeps the 

combination of variable inputs and gross investments inside the input requirement set. Setting 
(𝑔𝑥, 𝑔𝐼) = (1,1), their dynamic input-oriented directional distance function can be written as:  

𝐷⃗⃗ (𝑦𝑖𝑡, 𝐾𝑖𝑡, 𝑥𝑖𝑡 − 𝛼𝑖𝑡, 𝐼𝑖𝑡 + 𝛼𝑖𝑡) = 𝐷⃗⃗ (𝑦𝑖𝑡, 𝐾𝑖𝑡, 𝑥𝑖𝑡, 𝐼𝑖𝑡) − 𝛼𝑖𝑡  (78) 

This simply states that if investment is expanded by 𝛼𝑖𝑡 and input contracted −𝛼𝑖𝑡, the 

value of the distance function will be reduced by 𝛼𝑖𝑡. The above papers set 𝛼𝑖𝑡 = 𝐼𝑖𝑡. Stochastic 

estimation is accomplished by maximum likelihood procedures in Tovar and Wall (2016). 

Estimating the above directional distance function only provides estimates of technical 

                                                 
32 Alternatively, Emvalomatis et al. (2011) define 𝑠𝑖𝑡 = ln (𝐸𝑇𝑖𝑡 (1 − 𝐸𝑇𝑖𝑡)⁄ ) as the latent-state variable. In this 

specification,  measures the percentage change in the efficiency to inefficiency ratio that is carried from one 

period to the next. 
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inefficiency. To get cost efficiency scores in a dynamic framework, they propose estimating 

the following (quadratic) cost frontier model: 

𝐶𝑖𝑡 = 𝑟𝑊(·) − 𝑊𝐾(·)𝐾̇𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡    (79) 

where 𝐶𝑖𝑡 is observed cost (normalized by a variable input price), 𝑊(𝑦𝑖𝑡, 𝐾𝑖𝑡, 𝑤𝑖𝑡) is optimum 

cost, 𝑊𝐾(·) is its derivative with respect to the capital stock; 𝑣𝑖𝑡 is white noise and 𝑢𝑖𝑡 is a one-

sided term measuring firms’ cost inefficiency. The dynamic directional distance function (78) 

allows estimating technical inefficiency of both variable and quasi-fixed inputs. The parametric 

dynamic cost model (79) allows estimating the dynamic cost inefficiency defined as the 

difference between the observed shadow cost of input use and the minimum shadow cost. 

Finally, an allocative inefficiency score can be obtained as the difference between dynamic 

cost inefficiency and dynamic technical inefficiency. 

4.5. Production risk. 

 Most of the literature measuring firms’ production performance lacks an explicit 

recognition that production takes place under conditions of uncertainty. Although SFA models 

are stochastic, their stochastic elements arise primarily from econometric concerns 

(measurement error, missing variables) and not as an endogenous response to the stochastic 

environment in which firms operate. Ignoring uncertainty in efficiency and productivity 

analyses may have remarkable welfare and policy implications, which serve to jeopardize our 

interpretation of the efficiency measures and also bias our representation of the stochastic 

technology. This may be a serious issue in many applications, such as agriculture, fishing or 

banking where production uncertainty is relatively high. 

Several approaches have been proposed in the applied literature to take these factors 

into account and thereby give a fuller picture of firms’ performance under production/demand 

uncertainty. For many years the standard tool for analysing firms’ performance under 

production risk has been the simple production function with heteroskedastic error terms 

representing risk (e.g., Just and Pope, 1978). Kumbhakar (2002), among others, extended this 

framework and proposed estimating the following single-output SFA model: 

𝑦𝑖 = 𝑓(𝑥𝑖, 𝛽) + 𝑔(𝑥𝑖 , 𝜆){𝑣𝑖 − 𝑢𝑖}    (80) 

where 𝑔(𝑥𝑖, 𝜆) is the output risk function. If the variance of the composed random term is 

normalized to 1, the variance of output is therefore 𝑔(𝑥𝑖, 𝜆). In this framework, an input is risk-

increasing (reducing) (neutral) according to 𝜕𝑔(𝑥𝑖, 𝜆)/𝜕𝑥𝑖 > (<)(=)0. Kumbhakar assumed 

later on that producers maximize the expected utility of anticipated profits.  Assuming a single 

input, the first-order condition of the above problem can be expressed as: 

𝜕𝑓(𝑥𝑖,𝛽)

𝜕𝑥𝑖
= 𝑤 − 𝜃(·)

𝜕𝑔(𝑥𝑖,𝛽)

𝜕𝑥𝑖
     (81) 

where 𝑤 is the input price relative to the output price, and 𝜃(·) is a risk preference function 

that measures firms risk aversion.33 This function takes values less than, equal to or higher than 

zero when producers are risk-averse, risk-neutral or risk-loving, respectively. Risk aversion 

coefficients can be estimated from this equation (or a system of equations in the case of more 

inputs) once the mean and variance marginal products are replaced by their predicted values 

from the prior SFA model. The distinctive feature of this type of model is the difficulty in 

                                                 
33 The coefficient of risk aversion in this equation can be viewed as a measure of overall risk preferences regarding 

both noise and inefficiency terms.  
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deriving an algebraic form of the risk preference function that keeps the model simple for 

estimation purposes.34  

A common feature of the previous model is that they it is developed using standard 

stochastic frontier models that are too simple to account properly for the stochastic elements 

of the producer decision environment. In this sense, O’Donnell et al. (2010) show that the 

application of standard methods of efficiency analysis to data arising from production under 

uncertainty may give rise to spurious findings of efficiency differences between firms. To deal 

with this issue, Chambers and Quiggin (2000) found it convenient to treat uncertainty as a 

discrete random variable and proposed to model uncertainty in terms of a state-contingent 

technology, where each state represents a particular uncertain event. The state-contingent 

approach recognizes that actions (input choices) can have different consequences with different 

states of nature, whereas the role that inputs play remains the same regardless of which state 

occurs in standard stochastic production models.  

Empirical application of the state contingent approach has proved difficult because 

most of the data needed to estimate these models are lost in unrealized states of nature (i.e., 

outputs are typically observed only under one of the many possible states of nature). O'Donnell 

and Griffiths (2006) show how to estimate state-contingent models using a latent class model 

approach if the technology is “output-cubical” in the terminology of Chambers and Quiggin 

(2000).35 In this case, the production technology can be described by the set of state-contingent 

production functions: 

𝑙𝑛𝑦𝑖 = 𝛼𝑠 + 𝑓(𝑥𝑖, 𝛽) + 𝑣𝑖𝑠 − 𝑢𝑖𝑠    (82) 

where 𝛼𝑠 is a state-varying intercept that allows expected log-output to vary across the states 

of nature. The standard deviation of 𝑣𝑖𝑠 is assumed state-dependent. Technically inefficiency 

will also be expected to differ across states. The above model can be viewed as a conventional 

stochastic frontier model with state-specific parameters where the underlying (latent) state of 

nature that has produced each observation is not observed. For this reason, the above authors 

nest the above model into a latent class model (LCM) structure, where both state-specific 

production functions and the probabilities for the realization of each state are estimated 

simultaneously by ML techniques.36 

4.6. Total factor productivity decomposition. 

 An estimated distance function can constitute the building block for the measurement 

of productivity change and its decomposition into its basic sources. First, let us add a t 

superscript to all variables of the output distance function (19) and a time trend to capture 

                                                 
34 Orea and Wall (2012) used the above framework in order to show that increases in productivity, measured by a 

ratio of output to inputs, and welfare changes do not necessarily follow the same path when we recognize that 

production takes place under conditions of uncertainty and firms are not risk-neutral. 

35 Chavas (2008) proposes a method that allows the researcher to test whether or not the state-contingent 

technology is ‘output-cubical’ if the states are independently distributed across observations. The main limitation 

of this method is that it focuses exclusively on the observed outputs. As such, the approach neglects the potential 

outputs that could have been obtained had nature selected different states. 

36 Note that the elasticity of expected output with respect to the input in (63) is state-invariant. This property may 

be implausible in some production contexts (e.g., irrigation in rainy and dry seasons). If we allow the slope 

coefficients in (63) to vary across states of nature, an identification (or labelling) problem arises. If there are only 

two different states of nature, which class should be labelled as a ‘bad’ or ‘good’ state? To solve the identification 

problem, O’Donnell and Griffiths (2006) suggest scaling the inputs so that 𝑥𝑖 = 0 at the sample mean. The state 

with the lowest (highest) 𝛼𝑠 will be labelled as ‘bad’ (‘good’) state. In this case, however, this labelling is local in 

the sense that it is only valid for the ‘representative’ firm. O'Donnell and Griffith (2006) rely on Bayesian 

estimation to address the identification problem and impose the labelling restriction globally. 
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technological changes over time. Taking into account that 𝑢𝑖𝑡 = −𝑙𝑛𝐷𝑖𝑡, the distance function 

in period t can be rewritten as: 

𝑙𝑛𝐷𝑖𝑡 = 𝑙𝑛𝑦𝑀𝑖𝑡 + ln𝐷 (𝑥𝑖𝑡,
𝑦𝑖𝑡

𝑦𝑀𝑖𝑡
, 𝑡, 𝛽) + 𝑣𝑖𝑡 = ln𝐷(𝑥𝑖𝑡, 𝑦𝑖𝑡, 𝑡, 𝛽) + 𝑣𝑖𝑡 (83) 

If we take first differences, we get: 

∆𝑙𝑛𝐷𝑖𝑡 = ∆ ln𝐷(𝑥𝑖𝑡, 𝑦𝑖𝑡, 𝑡, 𝛽) + ∆𝑣𝑖𝑡    (84) 

As the average change in the noise term tend to vanish over time, we hereafter ignore 

∆𝑣𝑖𝑡 for notational ease. We next assume that the above distance function has a Translog form. 

Since the Translog distance function is quadratic in logs, the change in the value of the distance 

function can be decomposed as:  

∆ ln𝐷(𝑥𝑖𝑡, 𝑦𝑖𝑡, 𝑡, 𝛽) =
1

2
∑(𝜀𝑚𝑖(𝑡) + 𝜀𝑚𝑖(𝑡 − 1))∆𝑙𝑛𝑦𝑚𝑖𝑡

𝑀

𝑚=1

 

+
1

2
∑ (𝜀𝑗𝑖(𝑡) + 𝜀𝑗𝑖(𝑡 − 1))𝐽

𝑗=1 ∆𝑙𝑛𝑥𝑗𝑖𝑡 +
1

2
(𝜀𝑡(𝑡) + 𝜀𝑡(𝑡 − 1))  (85) 

where 𝐷(𝑡) is short for 𝐷(𝑥𝑖𝑡, 𝑦𝑖𝑡, 𝑡, 𝛽), 𝜀𝑚𝑖(𝑡) =
𝜕𝑙𝑛𝐷(𝑡)

𝜕𝑙𝑛𝑦𝑚𝑖
 is the elasticity of the distance 

function with respect to 𝑦𝑚𝑖, 𝜀𝑗𝑖(𝑡) =
𝜕𝑙𝑛𝐷(𝑡)

𝜕𝑙𝑛𝑥𝑗𝑖
 is the elasticity of the distance function with 

respect to 𝑥𝑗𝑖, and 𝜀𝑡(𝑡) =
𝜕𝑙𝑛𝐷(𝑡)

𝜕𝑡
 is the rate of technical change evaluated at period t. In order 

to measure total factor productivity changes, Orea (2002) proposed the following Generalized 

Malmquist Productivity Index:  

𝑙𝑛𝐺𝑡,𝑡−1 =
1

2
∑ (

𝜀𝑚𝑖(𝑡)

∑ 𝜀𝑚𝑖(𝑡)
𝑀
𝑚=1

+
𝜀𝑚𝑖(𝑡−1)

∑ 𝜀𝑚𝑖(𝑡−1)𝑀
𝑚=1

)𝑀
𝑚=1 · ∆𝑙𝑛𝑦𝑚𝑖𝑡     

−
1

2
∑ (

𝜀𝑗𝑖(𝑡)

∑ 𝜀𝑗𝑖(𝑡)
𝐽
𝑗=1

+
𝜀𝑗𝑖(𝑡−1)

∑ 𝜀𝑗𝑖(𝑡−1)𝐽
𝑗=1

)𝐽
𝑗=1 · ∆𝑙𝑛𝑥𝑗𝑖𝑡   (86) 

Notice that in (86) we have not imposed the linear homogeneity in outputs of the 

distance function ∑ 𝜀𝑚𝑖(𝑡)
𝑀
𝑚=1 = 1 in order to show that it can also be used with input distance 

functions. Inserting (66) into (65), Orea (2002) obtained the following parametric 

decomposition of the Malmquist productivity index (67): 37 

𝑙𝑛𝐺𝑡,𝑡−1 = ∆𝑙𝑛𝐷𝑖𝑡 −
1

2
(𝜀𝑡(𝑡) + 𝜀𝑡(𝑡 − 1))        

+
1

2
∑ (

𝜀𝑗𝑖(𝑡)

∑ 𝜀𝑗𝑖(𝑡)
𝐽
𝑗=1

𝐸𝐸(𝑡) +
𝜀𝑗𝑖(𝑡−1)

∑ 𝜀𝑗𝑖(𝑡−1)𝐽
𝑗=1

𝐸𝐸(𝑡 − 1))𝐽
𝑗=1 · ∆𝑙𝑛𝑥𝑗𝑖𝑡 (87) 

where 𝐸𝐸(𝑡) = −∑ 𝜀𝑗𝑖(𝑡)
𝐽
𝑗=1 − 1 is a measure of firms’ economies of scale. Equation (87) 

provides a meaningful decomposition of a total factor productivity indicator into changes in 

technical efficiency (TE), technical change (TC) and a scale effect (SE). The first term 

measures changes in technical efficiency over time. The negative sign of the second term 

transforms technical progress (regress) into a positive (negative) value. The scale term relies 

on scale elasticity values and on changes in input quantities, and therefore it vanishes under the 

assumption of constant returns to scale or constant input quantities. 

                                                 
37 A similar decomposition can be obtained from a parametric directional distance function using a Luenberger 

productivity index (see Färe et al., 2008; p. 593). 
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It should be pointed out that the above decomposition does not individualize any output 

or input mix effect. However, an input mix effect can be easily obtained if we measure the 

scale effect with respect to the average input change, instead of the change of each input. In 

this case, the scale effect in (87) can be in turn decomposed in a pure scale effect and a term 

measuring relative changes in the input mix: 

𝑆𝐸 = {
1

2
∑(

𝜀𝑗𝑖(𝑡)

∑ 𝜀𝑗𝑖(𝑡)
𝐽
𝑗=1

𝐸𝐸(𝑡) +
𝜀𝑗𝑖(𝑡 − 1)

∑ 𝜀𝑗𝑖(𝑡 − 1)𝐽
𝑗=1

𝐸𝐸(𝑡 − 1))

𝐽

𝑗=1

} · ∆𝑙𝑛𝑥̅𝑖𝑡 

+
1

2
∑ (

𝜀𝑗𝑖(𝑡)

∑ 𝜀𝑗𝑖(𝑡)
𝐽
𝑗=1

𝐸𝐸(𝑡) +
𝜀𝑗𝑖(𝑡−1)

∑ 𝜀𝑗𝑖(𝑡−1)𝐽
𝑗=1

𝐸𝐸(𝑡 − 1))𝐽
𝑗=1 · ∆𝑙𝑛𝑥̃𝑗𝑖𝑡 (88) 

where 𝑙𝑛𝑥̅𝑖𝑡 =
1

𝐽
∑ 𝑙𝑛𝑥𝑗𝑖𝑡

𝐽
𝑗=1  and 𝑙𝑛𝑥̃𝑗𝑖𝑡 = 𝑙𝑛𝑥𝑗𝑖𝑡 − 𝑙𝑛𝑥̅𝑖𝑡. . A similar output mix effect can be 

obtained if we decompose the output growth in equation (86) taking into account the average 

change in outputs.  

5. Concluding remarks 

This paper serves as guide to efficiency evaluation from an econometric perspective. 

The analytical framework relies on the most general parametric models and up to date 

representations of the production technology through Translog and Quadratic distance 

functions. We conclude this paper emphasizing the importance of choosing a suitable analytical 

framework that is in accordance with the industry characteristics and the restrictions faced by 

the firm, most particularly the relative discretion that managers have over output production 

and input usage. This sets the stage for the economic objective of the firm that often is assumed 

to maximize profits (profitability) or minimize cost.  Once the theoretical foundation for the 

measurement of overall economic efficiency is determined, the next question that scholars face 

is the choice of methods that are available to study variability in firm performance. We discuss 

the main characteristics, pros and cons, and relevant assumptions that need to be made to 

successfully undertake a study using SFA techniques.  

The extent to which results obtained with the methods surveyed in this paper differ is a 

general matter of concern that has been addressed by several authors, who employing the same 

datasets resort to compare the similarity of the distributions of the efficiency scores (see, e.g., 

Cummins and Zi, 1998). Ultimately, what matters is the ability to provide reliable results on 

individual performance, not only for the managers of the firms operating within an industry, 

but also for stakeholders and government agencies involved in regulation, competition and 

general policy analysis. In this sense, Bauer et al. (1998) propose a set of consistency conditions 

for the efficiency estimates obtained using alternative methodologies. The consistency of 

results is related to: 1) the comparability of the estimates obtained across methods, assessed 

with respect to the efficiency levels (comparable means, standard deviations, and other 

distributional properties, rankings, and identification of best and worst firms; 2) the degree to 

which results are consistent with reality, determined in relation to their stability over time, 

accordance with the competitive conditions in the market, and finally, 3) similarity with 

standard non-frontier measures of performance. In general, the higher the consistency of 

efficiency results across all these dimensions, the more confidence regulators and competition 

authorities will have on the conclusions derived from them, and the intended effect of their 

policy decisions. 

We thus conclude emphasizing the relevance of the methods surveyed in this paper in 

unveiling the economic performance of firm in terms of technical (and allocative) efficiencies. 
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Many challenges are still ahead, but cross fertilization of ideas with other research fields will 

result in a better understanding of the ultimate causes and consequences of inefficient economic 

performance. 
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Appendix  

Assume that we have estimated the following multi-input multi-output distance 

function: 

ln 𝐷 = ln𝐷(𝑥, 𝑦, 𝛽̂)      (A.1) 

In order to examine relevant features of firms’ technology we should first notice that 

they must be computed once we assume that the observation belongs to the frontier, i.e. that 

D=1. Next, we must differentiate the distance function taking into account that 𝑑𝐷 = 0 as we 

are moving over the frontier. After some simple manipulations we get: 

0 =
𝑑𝐷

𝐷
= ∑

𝜕𝐷

𝜕𝑥𝑗
·
𝑥𝑗

𝐷
·
𝑑𝑥𝑗

𝑥𝑗
+ ∑

𝜕𝐷

𝜕𝑦𝑚
·
𝑦𝑚

𝐷
·
𝑑𝑦𝑚

𝑦𝑚

𝑀
𝑚=1

𝐽
𝑗=1    (A.2) 

or 

0 = ∑ 𝜀𝐷𝑗 · 𝑑𝑙𝑛𝑥𝑗 + ∑ 𝜀𝐷𝑚 · 𝑑𝑙𝑛𝑦𝑚
𝑀
𝑚=1

𝐽
𝑗=1    (A.3) 

where 𝜀𝐷𝑗 = 𝜕𝑙𝑛𝐷/𝜕𝑙𝑛𝑥𝑗 and 𝜀𝐷𝑚 = 𝜕𝑙𝑛𝐷/𝜕𝑙𝑛𝑦𝑚. The elasticity of output m with respect to 

input j can be computed once we assume above that 𝑑𝑙𝑛𝑥𝑘 = 0 ∀𝑘 ≠ 𝑗 and 𝑑𝑙𝑛𝑦𝑛 = 0  ∀𝑛 ≠
𝑚, that is: 

0 = 𝜀𝐷𝑗𝑑𝑙𝑛𝑥𝑗 + 𝜀𝐷𝑚𝑑𝑙𝑛𝑦𝑚    (A.4) 

This yields the following expression for this specific elasticity: 

𝜀𝑚𝑗 =
𝑑𝑙𝑛𝑦𝑚

𝑑𝑙𝑛𝑥𝑗
= −

𝜀𝐷𝑗

𝜀𝐷𝑚
     (A.5) 

Notice that the above elasticity can be computed from both input, output and directional 

distance function.  A return to scale measure (RTS) can be obtained using a similar fashion. In 

this case, we are interested in the proportional change in outputs caused by a proportional 

change in all inputs. This implies that 𝑑𝑙𝑛𝑥𝑗 = 𝑑𝑙𝑛𝑥 ∀𝑗 = 1,… , 𝐽 , and 𝑑𝑙𝑛𝑦𝑚 = 𝑑𝑙𝑛𝑦 ∀𝑚 =

1,… ,𝑀. 

0 = ∑ 𝜀𝐷𝑗𝑑𝑙𝑛𝑥 + ∑ 𝜀𝐷𝑚𝑑𝑙𝑛𝑦𝑀
𝑚=1

𝐽
𝑗=1         (A.6) 

This yields the following expression for the RTS measure: 

 𝑅𝑇𝑆 =
𝑑𝑙𝑛𝑦

𝑑𝑙𝑛𝑥
= −

∑ 𝜀𝐷𝑗
𝐽
𝑗=1

∑ 𝜀𝐷𝑚
𝑀
𝑚=1

         (A.7) 

Again, the above scale elasticity can be computed from both input, output and 

directional distance function.  However, it can be simplified if we take into account that they 

satisfy the corresponding homogeneity or transition properties. For instance, if an input 

distance function has been estimated, ∑ 𝜀𝐷𝑗
𝐽
𝑗=1 = 1, and hence the RTS in (A.7) is equal to: 

𝑅𝑇𝑆 = −(∑ 𝜀𝐷𝑚
𝑀
𝑚=1 )−1    (A.8) 

If instead an output distance function has been estimated, ∑ 𝜀𝐷𝑚
𝑀
𝑚=1 = 1, and hence 

the RTS in (A.7) collapses to: 

𝑅𝑇𝑆 = −∑ 𝜀𝐷𝑗
𝐽
𝑗=1      (A.9) 

 

 


