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Abstract 

 

In December 2013 a new electricity law was approved in Spain as part of an electricity 

market reform including a new remuneration scheme for distribution companies. This 

remuneration scheme was updated in December 2019 and the new regulatory framework 

introduced a series of relevant modifications that aim to encourage the regulated firms to reduce 

their power supply interruptions using a benchmarking approach. While some managerial 

decisions can prevent electricity power supply interruptions, other managerial decisions are 

more oriented to mitigate the consequences of these interruptions. This paper examines the 

second type of decisions using a unique dataset on the power supply interruptions of a Spanish 

distribution company network between 2013 and 2019. We focus our analysis in the effect of 

grid automatization on the restoration times, the relative efficiency of the maintenance staff, 

and the importance of its location. We combine a bottom-up spatial model and a stochastic 

frontier model to examine respectively external and internal power supply interruptions at 

municipal level. This model resembles the conventional spatial autoregressive models but 

differ from them in several important aspects.  
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Introduction 

The National Commission on Markets and Competition (CNMC), the Spanish regulator 

of the electricity sector approved last year the Circular 6/2019, which was published in the 

Official State Gazette on 5th December 2019, establishing a new methodology for calculating 

the remuneration of the electricity distribution companies for the years to come. The new 

regulatory framework introduced a series of relevant modifications to current regulation that 

aim to encourage the regulated firms to improve their performance, reducing not only 

distribution costs but also power supply interruptions. The previous regulatory framework (see 

Royal Decree 1048/2013), based on intertemporal comparisons, was not able to give the market 

the appropriate signal to achieve these targets. The new incentive scheme resembles a 

benchmarking (or yardstick) regulation as the incentives for quality of service improvements 

rely on the performance of other firms. In particular, the incentive reward/penalty will be 

computed by comparing the performance (variation) of a standard reliability indicator of each 

electricity distribution company with average sector performance in comparable urban and 

rural areas of supply. It is expected that the proposed approach will be more rewarding for the 

regulated firms if they improve the quality of service in the distribution network related to the 

interruption time of the electricity supply to their clients, so they will likely pay more attention 

to this important topic of the electricity distribution activity.  

Although a large percentage of power supply interruptions (hereafter PSI) are beyond 

the management control of utilities (e.g. due to weather conditions or external human 

manipulations), managerial decisions such as vegetation management, asset investments and 

maintenance strategies can contribute to improvements of quality of service. While some of 

these decisions are more oriented to prevent electricity PSI caused by severe environmental 

conditions (e.g. reducing the number and length of overhead lines or improving grid assets 

capabilities, etc.), other managerial decisions are more oriented to mitigate the consequences 

of these interruptions (e.g. increasing the number of maintenance crews, improving their 

location, etc.). While some of these decisions require additional capital costs, other decisions 

require increasing firm’s operation and maintenance costs. It is not clear in the literature which 

strategy is better. As pointed out by Giannakis et al. (2005) and Jamasb et al (2012), the 

electricity distribution firms might adopt different strategies to combine capital and operating 

costs to improve their quality of service. 

Other literature has shown that weather conditions influence quality of service in 

electricity distribution networks. While Coelho et al. (2003), Domijan et al. (2003) and Zhou 

et al.(2006) find a significant correlation between PSI and rain, wind and temperatures, Yu et 

al. (2009) find that such factors often do not have a significant economic and statistical effect 

on the overall performance of the UK utilities. Wang and Billington (2002) show that severe 

weather conditions do not only increase the frequency of PSI, but also the restoration time. 
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Other researchers have examined the effect of the network characteristics on quality of service. 

For instance, Kjølle et al. (2003) have found that the number and duration of interruptions are 

significantly higher in overhead networks compared to cable networks.  

From a remedy perspective, the emergence of grid digitalization, which allows faster 

and more accurate detection of damaged equipment and its location, help to restore electricity 

supply and fix faults more quickly. For a matter of time, previous literature has not studied the 

impact of such technological development on the duration of interruptions. This issue can be 

now studied as the electricity distribution firms in many countries have been installing remote 

control on transformers and switching and protection circuits in the last decade. On the other 

hand, faster restoration in most outages requires efficient and well-located maintenance crews. 

As the previous literature uses firm level data or aggregate geographical data, they do not allow 

examining the effect of the location of the maintenance crews on restoration times, as well as 

the relative efficiency of each maintenance crew. 

This paper uses a unique data set on the PSI in 91 Spanish municipalities of a Spanish 

distribution company network between 2013 and 2019 to identify the main technological and 

managerial drivers of the duration of power outages. As our dataset is very detailed, we know 

the source municipality of each PSI as well as, if any, the subsequent municipalities affected 

by the same PSI. In this sense, we are able to distinguish between “internal” PSI where the 

origin is located in the source municipality and “external” PSI caused by outages located in 

other municipalities that are physically connected through the distribution network. 

Distinguishing between the two types of supply interruptions is not a semantic issue because 

while the quick restoration of supply in an “internal” PSI requires one of the maintenance crews 

to be close and/or the existence of remote controlled switching and protection systems located 

in the source municipality, the restoration time in an “external” PSI has nothing to do with its 

own factors but with the location and network characteristics of the source municipality firstly 

affected by the outage. For this reason, we use two different approaches to examine “external” 

and “internal” PSI.  

The duration of the external PSI is modelled using a spatial non-frontier econometric 

model. A spatial non-frontier model is used here because the external PSI only appear if there 

are PSI in neighboring and connected municipalities. As we know the sequence of the 

individual PSI across municipalities, we can develop a spatial model from scratch, i.e. using 

the engineering or physical information of the PSI that occurred in each municipality. 

Therefore, our model can be viewed as a bottom-up (BoU) spatial model. A frontier 

specification is not used here because the managerial decisions aiming to restore the electricity 

supply in these municipalities fix network faults located in other municipalities (i.e. in the 

municipality firstly affected by the outages). For this reason, inefficient performance is only 

examined using internal PSI. The duration of the internal PSI is modelled using a standard non-

spatial frontier model. It does not make sense to use here a spatial specification because the 

faults that have triggered these PSI took place within the municipality.  

The paper is structured as follows. Section 2 develops several spatial and frontier 

models that aim to identify the main technological and managerial drivers of the restoration 

times of internal and external PSI. The bottom-up nature of our models is not only apparent in 

that we can distinguish between internal and external PSI, but also in that we aggregate our 

engineering-based (outage) data on monthly and municipality basis in order to mimic the 

traditional spatial econometric models. Section 3 discusses the data used in the empirical 

analysis and its sources. Section 4 provides the parameter estimates and discuss the main 

results. Finally, Section 5 presents the conclusions. 

 

https://energyeducation.ca/encyclopedia/Circuit
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2. Methodology 

2.1. Preliminaries 

Let us first explain briefly how we use the individual information of each outage to 

define our dependent variable(s) and, in particular, to compute an engineering-based spatially 

lagged dependent variable, which differs from the one often used in the standard spatial 

econometric models.   

As customary in the Spanish electricity distribution system, we use the so-called TIEPI 

as a reliability indicator to measure (lack of) quality of service. This indicator, which is defined 

further in Section 3, is a power-adjusted measure of the restoration times as it considers the 

active power loss due to the outage, relative to the whole system power. As we are interested 

in the duration and not the frequency of PSI, our final sample does not include months with 

zero outages.1 The duration of all power outages occurred in a municipality 𝑚 = 1, … , 𝑀 

during month 𝑡 = 1, … , 𝑇 will be expressed as 𝑌𝑚𝑡. 

In a standard spatial autoregressive model (SAR), it is assumed that the dependent 

variable 𝑌𝑚𝑡 is spatially correlated, and this correlation is modelled as follows: 

𝑌𝑚𝑡 = 𝜆𝑊𝑌𝑚𝑡 + 𝜀𝑚𝑡     (1) 

where 𝜀𝑚𝑡 is an error term, 𝑊𝑌𝑚𝑡 = 𝑊𝑚𝑌𝑡 = ∑ 𝑊𝑚𝑛𝑌𝑛𝑡
𝑀
𝑛=1  stands for the endogenous spatial 

lag of the dependent variable, 𝑌𝑡 = (𝑌1𝑡 , 𝑌2𝑡 , … , 𝑌𝑀𝑡) is an 𝑀𝑥1 vector of the dependent 

variables, and 𝑊𝑚 = (𝑊𝑚1, 𝑊𝑚2, … , 𝑊𝑚𝑀) is a spatial weight vector where the weights (𝑊𝑚𝑛) 

equal one for adjacent units and zero for non-bordering units. Finally, the 𝜆 parameter is the 

spatial autoregressive coefficient that measures the degree of spatial correlation between units.  

Notice that 𝑊𝑌𝑚𝑡 can be viewed as a weighted measure of the duration of all PSI that 

occurred in adjacent municipalities to the municipality 𝑚 in period 𝑡, even if the outages in 

neighboring municipalities have nothing to do with the PSI in municipality 𝑚. In some cases, 

𝑊𝑌𝑚𝑡 include common PSI. However, as this spatially lagged dependent variable ignores the 

true sequence of the PSI across municipalities, it surely includes the duration of PSI of 

subsequent municipalities affected by the same outage. If so, equation (1) would wrongly 

suggest that the outage in a preceding municipality is caused by the outage of a subsequent 

municipality. In other words, the traditional spatially lagged dependent variable will provide 

biased results because it ignores the true physical propagation (i.e. true causality) of PSI in a 

real electricity distribution network.  

Like in a dyadic-type data setting where it is clearly possible to distinguish an origin 

unit from a destination unit (see e.g. Neumayer and Plümper, 2010), we know the source 

municipality of each PSI as well as, if any, the subsequent municipalities affected by the same 

outage. Therefore, our dataset allows us to model properly contagion, diffusion or spillover 

effects across municipalities that are physically connected through the distribution network. To 

achieve this objective, let us decompose the total duration of the PSI (𝑌𝑚𝑡) into two sets: 

internal and external PSI. That is: 

𝑌𝑚𝑡 = 𝑌𝐼𝑚𝑡 + 𝑌𝐸𝑚𝑡 = ∑ 𝑖𝑖𝑚𝑡
𝐼𝑚𝑡
𝑖=1 + ∑ 𝑒𝑗𝑚𝑡

𝐽𝑚𝑡
𝑗=1    (2) 

                                                             
1 Analysing the frequency of PSI is also more challenging as we should cope with an excessive number of zero 

values in our data. The development and estimation of zero-inflated econometric models in non-frontier settings 

have become widespread. See Yang et al. (2017) for a comparison of methods. Our models, however, allow 

examining whether the number of outages matters when estimating the coefficients we are interested in.  
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where 𝑖 = 1, … , 𝐼𝑚𝑡 stands for outages started in municipality 𝑚 in period 𝑡, and 𝑗 = 1, … , 𝐽𝑚𝑡  

stands for PSI in municipality 𝑚 in period 𝑡 caused by outages that have started before in other 

municipalities physically connected through the distribution network.2 𝑖𝑖𝑚𝑡 and 𝑒𝑗𝑚𝑡 are 

respectively the duration of the internal and external PSI from the perspective of the 

municipality 𝑚. Therefore, while 𝑌𝐼𝑚𝑡 measures the duration of all internal PSI occurred in 

municipality 𝑚 in period 𝑡, 𝑌𝐸𝑚𝑡 measures the duration of all external PSI that affect 

municipality 𝑚 in period 𝑡 but that have been ‘imported’ from other municipalities. In other 

words, our dataset allows us to know the true outcome (i.e. 𝑌𝐸𝑚𝑡) of the spatial spillovers we 

are able to capture using a spatial econometric model. In a standard spatial application, only 

the aggregate effect of both internal and external PSI (i.e. 𝑌𝑚𝑡) is observed by the 

econometrician. Thus, we have a kind of quasi-natural experiment to test what spatial spillovers 

are being captured by the most common spatial econometric models. 

On the other hand, as we have perfect information about the characteristics of the 

electricity distribution network and all connections across municipalities, we know the true W 

matrix. This matrix should be computed in our application considering the number of 

connections between two municipalities and the capacity of these connections. Otherwise, our 

spatial specification of a physical phenomenon such as the propagation of PSI would not make 

sense. Moreover, unlike most spatial models in regional economics, contiguity in our case is a 

necessary but not sufficient condition to be affected by other municipality. It also requires being 

connected with the preceding municipalities.3 Another attractive feature of our engineering-

based W matrix is that its elements can be treated as exogenous spatial weights when estimating 

the model due to the physical nature of the network connections. This is very useful from an 

econometric view because it avoids the need to address challenging endogeneity issues 

associated with W.  

2.2. Modelling external PSI 

As aforementioned, explaining 𝑌𝐼𝑚𝑡 and 𝑌𝐸𝑚𝑡 requires a different model because while 

𝑌𝐼𝑚𝑡 emanates from municipality 𝑚 and the network equipment that should be fixed is located 

in this municipality, 𝑌𝐸𝑚𝑡 emanates from other municipalities and thus there is nothing to fix 

in municipality 𝑚. In other words, 𝑌𝐸𝑚𝑡 is a pure spatial spillover or contagion effect that 

disappears if municipality 𝑚 in period 𝑡 is not involved in multi-municipality PSI that had 

previously started in another municipality. For this reason, we propose using the following 

SAR specification to explain the duration of each external interruption: 

𝑒𝑗𝑚𝑡 = γ𝑚Ω𝑗𝑚𝑌𝑗 = γ𝑚 ∑ Ω𝑗𝑚𝑛𝑌𝑗𝑛
𝑁𝑗

𝑛=1     (3) 

where 𝑁𝑗 is the number of municipalities involved in outage 𝑗,  𝑌𝑗 = (𝑌𝑗1, 𝑌𝑗2, … , 𝑌𝑗𝑁𝑗
) is the 

𝑁𝑗𝑥1 vector of PSI durations involved in outage 𝑗, and Ω𝑗𝑚 = (Ω𝑗𝑚1, Ω𝑗𝑚2, … , Ω𝑗𝑚𝑁𝑗
) is a 𝑁𝑗𝑥1 

spatial weight vector where the weights equal one for first-order preceding municipalities that 

are connected through the electricity distribution network and have been affected immediately 

before than municipality 𝑚 in outage 𝑗. Otherwise, the elements in Ω𝑗𝑚 are equal to zero. 

Finally, the γ𝑚 parameter is the spatial autoregressive coefficient that measures the contagion 

                                                             
2 The time lag between outages cannot be perceived by humans as it usually lasts milliseconds. 

3 In this sense, our model looks like a multilevel or hierarchical SAR model, which is becoming increasingly 

popular in social sciences. See Corrado and Fingleton (2016) for a summary of these models. It is assumed in this 

models that there exist a number of well-defined groups organized within a hierarchical structure, such as class 

within schools. Much of the multilevel literature assumes that inter-individual interaction is restricted to within 

group boundaries. From a spatial perspective, this implies that the inter-individual interactions are restricted 

spatially in a similar fashion that our bottom-up spatial model.  
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degree of municipality 𝑚 from preceding municipalities. We expect that this degree depends 

on the number of connections of municipality 𝑚 with other municipalities, as well as the 

capacity of these connections.   

If we next plug (3) into 𝑌𝐸𝑚𝑡 = ∑ 𝑒𝑗𝑚𝑡
𝐽𝑚𝑡
𝑗=1 , and add the traditional noise term, we get 

the following bottom-up SAR model:4   

𝑌𝐸𝑚𝑡 = γ𝑚Ω𝑌𝑚𝑡 + 𝜔𝑚𝑡    (4) 

where Ω𝑌𝑚𝑡 = ∑ ∑ Ω𝑗𝑚𝑛𝑌𝑗𝑛
𝑁𝑗

𝑛=1

𝐽𝑚𝑡

𝑗=1
, and 𝜔𝑚𝑡 is a symmetric and normally distributed noise 

term. One might be tempted to extend this model with municipality-specific factors, i.e. adding 

the traditional 𝛽𝑋𝑚𝑡  term in a conventional Spatial Autoregressive (SAR) model. However, 

this might yield the unsound result that municipality 𝑚 has been affected by outages emanated 

in other municipalities even when municipality 𝑚 was not involved in common outages, i.e. 

when either Ω𝑗𝑚𝑛 = 0 or 𝑌𝑗𝑛 = 0. 

Equation (4) can be estimated using a simple Ordinary Least Squares (OLS) estimator5 

given that Ω𝑌𝑚𝑡 is by definition an exogenous variable because it has been computed using 

past values although our notation in equation (4) does not explicitly indicate this recursive 

nature of Ω𝑌𝑚𝑡. Therefore, equation (4) can be viewed as a time-space recursive model where 

the dependent variable is lagged in both space and time dimensions (see e.g. Elhorst, 2010).6  

Instead of using variables in levels, it is also possible to estimate a SAR model in per 

outage terms. That is, we can replace respectively𝑌𝐸𝑚𝑡 and Ω𝑌𝑚𝑡 with 𝑌𝐸𝑚𝑡 /𝐽𝑚𝑡 and Ω𝑌𝑚𝑡/𝐽𝑚𝑡 

in (4). Compare to a model in levels, the per outage specification reduces heteroskedasticity 

issues and improves goodness-of-fit.7 As it is customary in both spatial and frontier literatures, 

the SAR model can also be estimated using variables in natural logarithms. The logarithm 

specification allows us to prevent the existence of extreme values for the heteroskedastic 

autoregressive parameter in our spatial models. In addition, using logs allows us to reduce 

convergence issues when estimating our frontier models.  

The γ𝑚 parameter that measures the contagion degree of municipality 𝑚 from 

preceding municipalities likely depends on the number of connections of municipality 𝑚 with 

other municipalities, as well as the average capacity of these connections. Indeed, we expect 

larger spatial spillovers when the number and capacity of the connections with preceding 

                                                             
4 Notice that equation (4) cannot be estimated in a conventional spatial econometric application because only, say, 

the whole GDP in one region is observed, and not the portion of such GDP that actually depends on the GDP of 

neighbouring regions. 

5 Equation (4) can also be estimated using maximum likelihood (ML) techniques if we assume that 𝜔𝑚𝑡  follows 

a normal distribution, i.e. 𝜔𝑚𝑡 ~𝑁(0, 𝜎𝜔 = 𝑒𝜏0). 

6 In this sense, Skevas (2019) shows that the endogeneity issues that exist in conventional SAR models such as 

𝑌𝑡 = γΩ𝑌𝑡 + 𝜔𝑡   are caused by the fact that the dependent variable of any individual appears both on left and the 

right-hand side of the spatial autoregressive model, after replacing 𝑌𝑡  on the right-hand side of the above equation 

with 𝑌𝑡 = γΩ𝑌𝑡 + 𝜔𝑡 . A time-space recursive model such as 𝑌𝑡 = γΩ𝑌𝑡−1 + 𝜔𝑡  overcomes such a bias because 

for a particular observation, while 𝑌𝑡  appears on the left-hand-side, the right-hand-side contains 𝑌𝑡−2 after 

replacing 𝑌𝑡−1with 𝑌𝑡−1 = γΩ𝑌𝑡−2 + 𝜔𝑡−1, and the endogeneity issue is wiped out. 

7 Notice that the total duration of external PSI in (4) can decomposed into the number of external PSI that affect 

municipality 𝑚 in period 𝑡 (𝐽𝑚𝑡) and the average duration of these interruptions (𝑒̅𝑚𝑡 = ∑ 𝑒𝑗𝑚𝑡
𝐽𝑚𝑡
𝑗=1 /𝐽𝑚𝑡). That is,  

𝑌𝐸𝑚𝑡 = 𝐽𝑚𝑡 · 𝑒̅𝑚𝑡. This decomposition suggests that using a per outage specification of (4) allows us to focus on 

outages’ duration (i.e. on 𝑒̅𝑚𝑡) and not on the number of such outages (i.e. on 𝐽𝑚𝑡). 
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municipalities (i.e. involved in common outages) increases. However, the abovementioned 

spatial spillovers are likely attenuated if municipality 𝑚 has other connections.  

As it does not make sense to obtain negative PSI from an engineering point of view, we 

will use non-linear specifications for the SAR model in (4). In order to prevent negative 

γ𝑚values, we will parameterize γ𝑚 using an exponential function, that is γ𝑚 = exp(𝜆𝑞𝑚) 

where 𝑞𝑚  measure municipality 𝑚’s connectivity. 

 

2.3. Modelling internal PSI 

The duration of the internal PSI is modelled as a standard non-spatial frontier (SF) 

model because the managerial decisions aiming to restore power supply in any outage should 

focus on fixing network faults located in the source municipality, i.e. in the municipality first 

affected by the outage. Accordingly, we propose modelling 𝑌𝐼𝑚𝑡 as follows: 

𝑌𝐼𝑚𝑡 = β𝑋𝑚𝑡 + 𝑣𝑚𝑡 − 𝑢𝑚𝑡(𝑧𝑚𝑡)     (5) 

where 𝑋𝑚𝑡 is a vector of technological and environmental variables that might determine the 

length of the PSI. For instance, it might include the length of the network, and the relative 

importance of aerial and underground lines, as in Kjølle et al. (2003). Another network 

characteristic that might affect quality of service are the degree of digitalization of the network 

and the proportion of outdoor transformers. Restoration times might also depend on the 

distance to the nearest maintenance crew, in particular if the outage is located in the 

countryside. Wang and Billington (2002) show that severe weather conditions also increase 

restoration times. For this reason, other good candidates to be included in 𝑋𝑚𝑡 are the weather 

conditions. In addition to including seasonal dummy variables we also include the percentage 

of outages caused by weather-related issues.  

Equation (6) also includes two error terms, 𝑣𝑚𝑡 and 𝑢𝑚𝑡. While the former term is a 

symmetric error term measuring pure random shocks, the latter term is a non-negative error 

term either measuring managerial inefficiencies associated to restoration times, or extremely 

large restoration times that cannot be attributed to random shocks. 𝑧𝑚𝑡 is a vector of exogenous 

variables that might determine the relative performance of the maintenance crews restoring 

power supply in municipality 𝑚 or the frequency of difficult-to-restore PSI. As we do not have 

information on the maintenance staff characteristics and we have found convergence problems 

when we included crew-specific dummy variables, we only include seasonal variables aiming 

to measure within-year variations in 𝑢𝑚𝑡 and a set of time trends in order to capture changes in 

𝑢𝑚𝑡 over time.  

As for the external interruptions, the above frontier model can be estimated in levels, in 

per outage terms and in logs. Again a per outage specification of (5) allows us to focus on 

outages’ duration (i.e. on 𝑖𝑚̅𝑡 = ∑ 𝑖𝑗𝑚𝑡
𝐼𝑚𝑡
𝑗=1 /𝐼𝑚𝑡) and not on the number of internal outages (i.e. 

on 𝐼𝑚𝑡). The use of natural logarithms has permitted to get parameter estimates when estimating 

the model using maximum likelihood (ML) techniques.  

The above frontier model can be estimated by ML once we have assumed specific 

distributions for the noise and inefficiency terms. Hereafter we will assume that 

𝑣𝑚𝑡~𝑁(0, 𝜎𝑣 = 𝑒𝛿0) and that the variable representing inefficiency is the truncation (at zero) 

of a normally-distributed random variable with mean zero and standard deviation 𝜎𝑢𝑚𝑡 =
𝑒𝜃0+𝜃𝑍𝑚𝑡 . As is customary in the SFA literature, the error term in any of our spatial stochastic 

frontier models includes a noise term (𝑣𝑚𝑡) and an inefficiency term (𝑢𝑚𝑡). Jondrow et al. 

(1982) use the conditional distribution of 𝑢𝑚𝑡 given the composed error term (i.e. 𝑣𝑚𝑡 − 𝑢𝑚𝑡), 
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to estimate the asymmetric random term 𝑢𝑚𝑡. We use the conditional expectation 

𝐸(𝑢𝑚𝑡|𝑣𝑚𝑡 − 𝑢𝑚𝑡) as a point estimate of 𝑢𝑚𝑡. 

 It is convenient to point out that model (5) is estimated using a different set of 

observations than model (4). Indeed, while the SAR model in (4) is estimated using the monthly 

observations with non-zero external PSI (i.e. when 𝑌𝐸𝑚𝑡 > 0), the estimation of the frontier 

model in (5) requires instead using the monthly observations with non-zero internal PSI (i.e. 

when 𝑌𝐼𝑚𝑡 > 0). As most municipal interruptions emanate from themselves in our application, 

the number of observations to estimate (5) is much larger than that to estimate (4). Notice in 

this sense that the total number of observations in our application (hereafter 𝑁) can be split into 

three non-overlapped subsets: i) observations with positive internal PSI but with no external 

PSI (hereafter 𝑁𝐼); ii) observations with positive external PSI but with no internal PSI (hereafter 

𝑁𝐸); and iii) observations with both positive external and internal PSI (hereafter 𝑁𝐼+𝐸). 

Therefore, while model (4) is estimated using 𝑁𝐸
∗ = 𝑁𝐸 + 𝑁𝐼+𝐸 observations, model (5) is 

estimated using 𝑁𝐼
∗ = 𝑁𝐼 + 𝑁𝐼+𝐸 observations. Typically, 𝑁𝐼 > 𝑁𝐸. Thus, 𝑁𝐼

∗ is much larger 

than 𝑁𝐸
∗ in our application.  

To conclude this section, it is germane to point out that both models, although estimated 

separately, can be viewed as a unique but more comprehensive BoU spatial frontier models. 

Indeed, notice that if we model the sum of internal and external PSI and combine appropriately 

equations (4) and (5), we get the following spatial frontier model: 

𝑌𝑚𝑡 = γ𝑚Ω𝑌𝑚𝑡
∗ + β𝑋𝑚𝑡

∗ + 𝑣𝑚𝑡
∗ − 𝑢𝑚𝑡

∗      (6) 

where Ω𝑌𝑚𝑡
∗ = Ω𝑌𝑚𝑡𝐷𝐸>0, 𝑋𝑚𝑡

∗ = 𝑋𝑚𝑡𝐷𝐼>0, 𝑣𝑚𝑡
∗ = 𝑣𝑚𝑡𝐷𝐼>0 + 𝜔𝑚𝑡𝐷𝐸>0, and 𝑢𝑚𝑡

∗ =
𝑢𝑚𝑡(𝑧𝑚𝑡)𝐷𝐼>0. 𝐷𝐸>0 and 𝐷𝐼>0 are two dummy variables identifying the observations with 

respectively non-zero external and internal interruptions. Notice that this model should de 

estimated using  𝑁 = 𝑁𝐸 + 𝑁𝐼 + 𝑁𝐼+𝐸 observations, i.e. with less observations than the sum of 

observations in (4) and (5). On the other hand, it is worth mentioning that the above spatial 

frontier model is similar to other spatial and frontier models proposed in the literature. For 

instance, the inefficiency term 𝑢𝑚𝑡
∗  resembles the inefficiency term of the Zero-Inefficiency 

Stochastic Frontier (ZISF) model introduced by Kumbhakar et al. (2013) but with perfect 

information about the allocation of the observations between the so-called fully-efficient group 

(observations with 𝐷𝐼>0 = 0) and inefficiency group (observations with 𝐷𝐼>0 = 1). The above 

model also resembles the Generalized Spatial Autoregressive Frontier (GSARF) model 

introduced by Gude et al. (2018) that also allows the degree of spatial interaction to be 

observation specific. However, while the spatial lagged dependent variable in this paper is 

endogenous, Ω𝑌𝑚𝑡
∗  above is exogenous due to its (implicit) recursive nature. 

 

3. Sample and data  

We apply our SAR and SF models to unique data set on the PSI in 91 Spanish 

municipalities of a Spanish distribution company network between 2013 and 2019. The data 

used in this study is confidential as it was obtained directly from this private utility. The 

variables used in our empirical application have been constructed considering the geographical 

structure of the electricity distribution network of such company. This allows us to know the 

real propagation effects of the outages from one municipality to the next.  

Our dependent variables are computed using the standard reliability indicator (TIEPI) 

used in Spain to measure (lack of) quality of service. The TIEPI reliability indicator is the 

equivalent PSI time found in medium voltage (1 kV to 36 kV) of the installed capacity affected 

by the outage. This index has the following expression  
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𝑇𝐼𝐸𝑃𝐼 =  
∑ (𝑃𝐼𝑖∗𝐻𝑖)𝑘

𝑖=1

∑ 𝑃𝐼
     (7) 

where 𝑃𝐼𝑖 is the sum of the capacity of the transformers (kVA) installed in the substations 

located in the distribution grid and affected by the outage 𝑖, 𝐻𝑖 is the supply interruption time 

affecting the capacity 𝑃𝑖, 𝐾 is the total number of interruptions during the considered lapse 

time, and ∑ 𝑃𝐼 is the sum of the capacity of the transformers (kVA) installed in the substations 

located in the distribution grid. Equivalent measures in other countries are the well-known 

SAIDI and CAIDI indicators, which measure the duration of the interruptions in per consumer 

terms. 

The data set that is being used in the study come from the Distributed Control System 

(DCS) of the network of the Spanish distribution company. The time resolution of the DCS 

allows us to know which is the first event that triggers the outage and, therefore, to know which 

is the “source” municipality where the outage takes place. The data set considers 168.705 

events (distribution stations or step-down transformers affected during an outage) and 23.816 

outages that took place between 2013 and 2019. The complete outage dataset obtained from 

the DCS gives information about all the grid components (distribution stations and step-down 

transformers) that are affected on each outage: the outage number of each outage, the exact 

outage and restored times, the substations or step-down transformers that are affected during 

the outage, the capacity of each one of the substations or step-down transformers that are 

affected during the outage, the so-called event category which gives information about the 

cause of the incident (weather related, not foreseen, scheduled outage or third-party grid 

origin), and name of the municipality where is placed each one of the grid components affected 

during the outage. 

Other different data sources allow us to improve the data quality giving information 

about the urban vs. rural nature of the municipalities affected by the outages,8 the dates when 

a remote-control system was installed in a distribution station or step-down transformer, the 

neighboring municipalities (identified following both a geographical and electrical approach), 

the municipality cross border grid segments,9 the distribution stations and step-down 

transformers characteristics,10  the length of the network,11 and finally the location of each 

operational and maintenance (O&M) crew. 

The above detailed information has allowed us to compute the municipality-level 

variables finally used in our empirical application. For each municipality and month, we know 

the number and TIEPI of outages that affected it, the number and TIEPI of outages that were 

triggered by it, the number and TIEPI of outages that progress to neighboring municipalities, 

and the number and TIEPI of outages that come from neighboring municipalities. These 

                                                             
8 The regulator distinguishes between urban areas (municipalities with more than 20,000 supplies, including 

provincial capitals, even if they do not reach the previous figure), semi-urban areas (municipalities with a number 

of supplies between 2,000 and 20,000, excluding provincial capital), rural areas (municipalities with less than 

2,000 suppliers). 

9  More than 3 thousand grid segments that cross the border between two geographically adjacent municipalities 

have been identified. We identified the municipalities involved in each interconnection, the number of 

connections, capacities (kVA), sections (mm2), voltage (kV), location (overhead / underground) of all of them. 

10 For each one of them, we have identified the name, identification code, municipality name where is installed, 

municipality identification code, UMTS (latitudinal and longitudinal location), rated capacity (kVA), and outdoor, 

indoor or underground location. 

11 We have identified more than 400 thousand grid segments. For all of them number (#), capacity (kVA), section 

(mm2), voltage (kV) and location (overhead / underground) of the interconnection have been identified. 
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variables allow us to compute the duration of internal and external PSI used as dependent 

variables in our BoU spatial and SF models. 

We also know the number and name of geographical neighboring municipalities, the 

number and name of electrical neighboring municipalities, and the number, capacity and 

voltage level of electrical connections between electrical neighboring municipalities. We have 

used this information to compute a set of determinants of the autoregressive parameter that 

appears in our (heteroskedastic) BoU spatial models. In this model we use the number of 

connections with preceding municipalities involved in common outages (𝑃𝑁𝑈) and the 

average capacity of these connections (𝑃𝐶𝐴), as well as the total number of connections of 

municipality 𝑚 with other municipalities (𝑁𝑈) and their average capacity (𝐶𝐴). 

 We have also computed for each municipality the following information: the 

distribution grid length (Km’s of medium voltage grid), the proportion of overhead and 

underground lines, the proportion of outdoor, indoor and underground step-down transformers, 

the proportion of remote controlled distribution station or step-down transformer on monthly 

basis, the average geographical position of all the distribution stations and step-down 

transformers that are placed in each municipality, and the minimum geographical distance 

between each municipality and the closest one with operation and maintenance crews located 

on it.  

The above information has been used to compute the technological and environmental 

drivers included in our SF models. As in previous literature, we include a set of network 

characteristics to explain restoration times. We first include the logarithm of the length of the 

network (𝑙𝑛𝑁𝐿) as it might capture accessibility problems to outages. We have also included 

the natural logarithm of installed capacity (𝑙𝑛𝐶𝐴𝑃) to control for differences in power 

capacities between municipalities. This variable is highly correlated with the number of 

transformers and it can also be interpreted as a measure of network complexity. We also 

consider the proportion of distribution stations or step-down transformers fitted with a remote-

control system (𝐷𝐼𝐺𝑇) because they help to restore supply more quickly. This variable is used 

here to measure the effect of grid automatization on the restoration times. The proportion of 

underground (𝑈𝑇) and outdoor transformers (𝑂𝑇), and the proportion of overhead lines (𝑂𝐿) 

are also included as explanatory variables due to differences in accessibility to the damaged 

equipment or broken lines. For instance, access physically to outdoor transformers or overhead 

lines is easier than in the case of underground transformers and cables.  

The restoration times in some cases might be larger than originally expected because 

all firm’s maintenance crews are far from the outages, in particular if the outage is located in 

the countryside. To capture this location effect, we first include a dummy variable (𝑅𝑈𝑅𝐴𝐿) 

indicating the rural nature of the municipality. We next have added the logarithm of the distance 

to the nearest maintenance crews (𝑙𝑛𝐷𝐼𝑆) as explanatory variable. This variable is iterated with 

the previous 𝑅𝑈𝑅𝐴𝐿  dummy variable as well as its urban counterpart (𝑈𝑅𝐵𝐴𝑁) to capture 

differences between rural and urban distances.  

Finally, we have included the proportion of outages caused by weather-related issues 

(𝑊𝐸𝐴𝑇𝐻𝐸𝑅) in order to see if weather conditions not only might increase the frequency of 

outages (as shown in previous literature) but also increase restoration times. To capture 

seasonal variations in weather conditions we include a set of dummy variables identifying the 

𝑊𝐼𝑁𝑇𝐸𝑅, 𝑆𝑃𝑅𝐼𝑁𝐺 and 𝑆𝑈𝑀𝑀𝐸𝑅 seasons of the year. We ultimately include a set of regional 

dummy variables in our SF models to control for unobserved differences in the electricity 

distribution network between Spanish provinces (i.e. 𝐴𝑆𝑇𝑈𝑅𝐼𝐴𝑆, 𝐻𝑈𝐸𝑆𝐶𝐴, 𝑍𝐴𝑅𝐴𝐺𝑂𝑍𝐴, 

𝐴𝐿𝐼𝐶𝐴𝑁𝑇𝐸, 𝑉𝐴𝐿𝐸𝑁𝐶𝐼𝐴 and 𝑀𝐴𝐷𝑅𝐼𝐷).  
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Regarding the inefficiency term, we only include the above set of regional variables to 

capture seasonal variations in the relative performance of each maintenance crew. Such 

differences can likely be attributed to a concentration of extremely difficult-to-manage outages 

in specific seasons, for instance due to extremely bad weather conditions or faults located in 

very difficult-to-access places. The previous set of variables captures within-year changes in 

maintenance crews’ inefficiency. In order to capture general trends in maintenance inefficiency 

over time (i.e. between-year changes), we have also included a third-order polynomial function 

of monthly time trends. 

Tables 1 and 2 provide the descriptive statistics of the variables used in our BoU spatial 

and SF models, respectively. 

[Insert Table 1 here] 

[Insert Table 2 here] 

 

4. Empirical specifications and results 

4.1. BoU and standard SAR models 

As aforementioned, we try to explain the duration of the external PSI using spatial 

autoregressive models. For comparison grounds, we estimate several specifications of our 

bottom-up spatial model. The first BoU spatial model uses exactly the specification that 

appears in (4). In this model, all variables are in levels. In the second model we estimate (4) 

but in per outage terms. In this case, our dependent variable is 𝑒𝑚̅𝑡 = ∑ 𝑒𝑗𝑚𝑡
𝐽𝑚𝑡
𝑗=1 /𝐽𝑚𝑡 and 

Ω𝑌𝑚𝑡/𝐽𝑚𝑡 is used as spatial lagged variable. In the third BoU spatial model, we again use the 

original restoration times, but now in logs. In this model, the dependent variable is 𝑙𝑛𝑌𝐸𝑚𝑡 and 

the spatially lagged variable is 𝑙𝑛Ω𝑌𝑚𝑡. Our final BoU spatial model uses the log of the per 

outage variables, i.e. 𝑙𝑛(𝑌𝐸𝑚𝑡/𝐽𝑚𝑡) and 𝑙𝑛(Ω𝑌𝑚𝑡/𝐽𝑚𝑡). 

It is germane to recall here that the above spatially lagged variables do not coincide 

with the spatially lagged variable used in a standard SAR specification. While the lagged 

variable in a standard SAR is the spatial lag of the dependent variable (e.g. if the dependent 

variable is 𝑌𝐸𝑚𝑡, the spatially lagged variable is 𝑊𝑌𝐸𝑚𝑡), in our BoU spatial model the 

spatially lagged variables is computed using both neighboring external and internal PSI (i.e. 

we use Ω𝑌𝑚𝑡 and not  Ω𝑌𝐸𝑚𝑡). A second difference has to do with the spatial matrix. While 

the 𝑊 matrix in a standard SAR model aggregates the duration of all PSI occurred in adjacent 

municipalities to the municipality 𝑚 in period 𝑡, the Ω matrix takes into account the true 

sequence of the PSI across municipalities, and thus it only includes common PSI. Moreover, 

the Ω matrix only includes preceding municipalities involved in common outages, in contrast 

to the standard SAR model were the spatially lagged variable is computed using 

contemporaneous values.  

As the standard SAR model ignores the true physical propagation of PSI in a real 

electricity distribution network, it likely provides biased results. To examine how severe this 

this issue is, we also compare our BoU results with those obtained using standard SAR model. 

This robustness analysis is carried out using a simple homoscedastic (linear) specification for 

the autoregressive parameter as it is customary in the spatial literature.  

Table 3 summarizes the main results. Regarding the BoU spatial models, we find clear 

improvements in goodness-of-fit either using logs or per-outage values. In this sense, as 

expected, the best specification is the model that uses the log of the per outage variables. The 

estimated autoregressive parameters in all BoU models are sound as they are positive, and quite 
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large (between 0.74 and 1.02). This is an expected result given that we have assumed that the 

restoration times of preceding municipalities involved in common outages are the main factor 

explaining external PSI. On the other hand, it is worth remarking on the poor goodness-of-fit 

of all standard SAR models, especially if the variables are not expressed in natural logarithms. 

The low values of the estimated autoregressive parameters in all standard SAR models are also 

worth mentioning, in particular in the specifications where the variables are not expressed in 

natural logarithms. Although they are statistically significant, they are close to zero. As the 

external interruptions only appear if Ω𝑌𝑚𝑡 > 0, we do not expect significant intercept values. 

This happens in all BoU models, whether we use levels, per outage values or logs. In all 

standard SAR models, the estimated intercept is statistically significant, and even negative. All 

these results can be taken as evidence of the biases caused by using ad-hoc specifications of 

the spatial weight matrix. 12 

[Insert Table 3 here] 

In Table 4 we show the results of two heteroskedastic specifications of our BoU spatial 

model. As the best goodness-of-fit were found using logged variables, we only show the results 

using variables in logs and per-outage variables in logs. Table 3 shows that the heteroskedastic 

specification in both models improves the R-squared statistics and that most of the determinants 

of the autoregressive parameter or function have a significant effect on γ𝑚. The average value 

of the autoregressive parameter is slightly less than the estimated valued using its 

homoskedastic counterpart in Table 3. However, the autoregressive parameter does vary across 

municipalities.   

[Insert Table 4 here] 

The remarkable variation in γ𝑚 can be clearly appreciated in Figure 1 that presents the 

kernel density of the autoregressive parameter estimates. Both kernel densities are similar, 

indicating that our results are robust to using or not per-outage variables. This figure also shows 

that the autoregressive parameter estimates range from 0.46 and 0.93. Note, however, that the 

modal value is close to 0.55 in both specifications. This means that if there were 100% increases 

in restoration times in preceding municipalities, the restoration times in a subsequent 

municipality will increase by 55% if the preceding outages have the same nature. As all 

autoregressive parameter estimates are less than unity in Figure 1, there are not one-to-one 

contagion effects in most municipalities if restoration time (changes) is measured in logs 

(growth rates). We have found values much larger than unity when logs are not used to estimate 

model (4). This is also a sound result because the power-adjusted restoration time in one 

municipality might be larger than in the preceding municipality simply due to the installed 

capacity in the subsequent municipality being larger than in the preceding municipality.13   

[Insert Figure 1 here] 

Table 4 also shows the parameter estimates of the autoregressive function γ𝑚 =
exp(𝜆𝑞𝑚). As mentioned in Section 2, we expect that the contagion degree of municipality 𝑚 

from preceding municipalities depends on its connectivity with not only these municipalities, 

but also with other municipalities that might attenuate the lack of supply from the preceding 

municipalities. Conditional on the number of connections with preceding municipalities 

involved in common outages (𝑙𝑛𝑃𝑁𝑈) and their  average capacity (𝑙𝑛𝑃𝐶𝐴), the coefficients of 

                                                             
12 In both cases we have used spatial lags of 𝑌𝑚𝑡 . Larger biases are expected if the standard SAR models are 

estimated using 𝑌𝐸𝑚𝑡 , i.e. using a wrong spatially dependent variable. 

13 Therefore, the use of logged variables reduces the importance of the differences in capacity between preceding 

and subsequent municipalities when estimating spatial spillovers. 
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the number of connections of municipality 𝑚 with other municipalities (𝑙𝑛𝑁𝑈) and their 

average capacity (𝑙𝑛𝐶𝐴) capture the effect of municipality 𝑚’s connectivity with non-

preceding municipalities, i.e. subsequent municipalities involved in common outages plus 

municipalities that are connected with municipality 𝑚 but not involved in common outages. 

The parameter estimates in Table 4 confirm our expectations. The contagion degree increases 

with the average capacity of the connections with preceding municipalities, as expected. The 

relationship with the number of connections with preceding municipalities is not statistically 

significant. We also find the expected result that  γ𝑚 decreases with 𝑙𝑛𝑁𝑈 and 𝑙𝑛𝐶𝐴 because 

other sources of supply tend to attenuate the impact of PSI imported from preceding 

municipalities.  

 

4.2. Frontier models 

The duration of the internal PSI is modelled using standard non-spatial stochastic 

frontier (SF) models, where the dependent variable is now the duration of all internal PSI 

occurred in municipality 𝑚 in period 𝑡. As we have found convergence problems when the 

dependent variable is not logged, we discuss the frontier results using 𝑙𝑛𝑌𝐼𝑚𝑡 and 

 𝑙𝑛(𝑌𝐼𝑚𝑡/𝐼𝑚𝑡).  

Table 5 shows the parameter estimates of our two SF models. In general, both 

specifications of equation (5) yield very similar results, except for 𝑙𝑛𝑁𝐿. The coefficient of this 

variable is positive and statistically significant when restoration times are in logs, but not when 

they are expressed in per-outage terms. Both results together seem to suggest that the monthly 

interruptions increase with both network length. On the other hand, the fact that we do not find 

a significant effect on per-outage restoration times indicates that, in general, the differences in 

accessibility between municipalities do not matter to restoring power supply.14 The coefficient 

of 𝑙𝑛𝐶𝐴𝑃 is positive in both specifications of the SF model. This is an expected result because 

our dependent variable is a power-adjusted measure of the restoration times in each 

municipality and the installed capacity varies notably across municipalities. However, the 

positive effect found in both specifications might also indicate that the severity of the PSI 

increases with the number of transformers of the network.  

[Insert Table 5 here] 

The percentage of distribution stations or step-down transformers fitted with a remote-

control system (𝐷𝐼𝐺𝑇) allows us to measure the effect of grid automatization on the restoration 

times. We find a negative and statistically significant effect on restoration times in both 

specifications. Therefore, grid automatization does reduce the duration of all PSI and the 

restoration times of each outage. If the percentage of digital transformers increases in 10% 

points, the restoration times will be reduced about 8%. On the other hand, we do not find a 

significant effect of underground transformers (𝑈𝑇) on restoration times. This is an expected 

result because the reference transformers are located indoor, and there are no differences in 

restoration times with the underground transformers from an engineering point of view.  

The proportion of outdoor transformers (𝑂𝑇) has a negative and significant effect on 

restoration times when the restoration times are not measured in per-outage terms. We 

originally expected a positive effect because firm’ engineers believe that fixing an outdoor 

transformer normally requires more time than an indoor or underground transformer. 

Therefore, the negative coefficient is likely to do with the fact that most of the outdoor 

                                                             
14 If the lack of accessibility has been extraordinarily relevant in occasional outages, its effect should be captured 

by the corresponding inefficiency score. 



 

15 
 

transformers are located in rural areas where the installed capacity tends to be small. In this 

way, the percentage of outdoor transformers might have a negative effect on a power-adjusted 

measure of restoration times.  Similar comments can be made for the negative coefficient found 

for the proportion of overhead lines (𝑂𝐿). The overhead lines are mainly located in rural areas. 

Therefore, the overhead lines tend to supply power to a smaller number of customers per 

network kilometer. However, the coefficient of the 𝑅𝑈𝑅𝐴𝐿 dummy variable is positive and 

statistically significant in both specifications. As the proportion of overhead lines in rural 

municipalities (85%) is higher than in more urban municipalities (78%), this dummy variable 

thus might be capturing part of the effect of 𝑂𝐿 on restoration times.  

The two variables included in the model to measure the effect of the distance to the 

nearest maintenance crews (𝑙𝑛𝐷𝐼𝑆) on outage durations have positive coefficients and in 

general are statistically significant. This result seems to confirm that the location of 

maintenance crews is a relevant factor to managing PSI, especially if the municipality affected 

for the outage is more urbanized. The larger effect for urban municipalities has likely to do 

with the fact that the installed capacity in these municipalities tend to be larger than in urban 

areas. In addition, we do not find an increasingly effect of the distance on restoration times 

given the lack of significance of the coefficient of the quadratic distance term. 

We have tried to capture the effect of weather conditions on restoration times through 

the 𝑊𝐸𝐴𝑇𝐻𝐸𝑅 variable, that measures the proportion of outages caused by weather-related 

issues, plus a set of seasonal dummy variables. The larger the proportion of outages caused by 

weather-related issues, the larger the restoration times are in both specifications. The estimated 

coefficient is however much smaller when we use a per-outage measure for the duration of the 

PSI. This result therefore seems to indicate that the weather conditions not only increase 

restoration time of each outage, but also the frequency of outages, as found in previous 

literature. Unlike the 𝑊𝐸𝐴𝑇𝐻𝐸𝑅 variable, the three seasonal dummy variables included as 

frontier determinants do not provide additional information about the severity of the PSI.  

Finally, and regarding the set of regional dummy variables, we have found highly 

significant coefficients, indicating that the above set of variables were not able to control for 

all differences in the electricity distribution network between Spanish provinces. It is worth 

highlighting the large values of the coefficients of 𝐻𝑈𝐸𝑆𝐶𝐴 and 𝑍𝐴𝑅𝐴𝐺𝑂𝑍𝐴, i.e. the two 

provinces of Aragón region. However, both coefficients are quite different because the network 

of both provinces differ notably.15 Similar comments apply to the two coefficients estimated 

for Alicante and Valencia provinces.  

Figure 2 shows the average efficiency scores by provinces. They have been computed 

using the per-outage specification of our model because the goodness-of-fit is much better in 

this model, and in addition because the estimated efficiency scores do not depend on the 

number of power interruption, which is far from the control of the maintenance crews. Our 

results show a relatively good performance of the maintenance crews located in each province 

because the average value in all of them is larger than 92%. This figure also provides a very 

interesting result regarding the performance of the maintenance crews. The distribution of the 

inefficiency scores in Asturias and Huesca provinces are much more skewed than in other 

provinces. This is again a somewhat expected outcome because the municipalities of these two 

provinces are more rural than in other provinces and their population is widely scattered in 

                                                             
15 For instance, while 95% of the network in Huesca province is made up with overhead lines and its population 

is widely scattered in a wide area, the overhead lines in Zaragoza province only represents a 35% in Zaragoza 

province due it is a much more urbanized area.  
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wider areas. The large number of extremely low values for the efficiency scores in Asturias 

and Huesca reveals the existence of frequent difficult-to-restore PSI in these two provinces.  

[Insert Figure 2 here] 

We depict the annual evolution of the efficiency scores in Figure 3. Our SF model yields 

much lower efficiency scores in 2019 than in previous years. This is something that the 

distribution company must examine using the outage-level information. The Spanish regulator 

(CNMC) justifies the new regulatory framework on the poor quality of services performance 

of many Spanish electricity distribution utilities. The observed deterioration in quality of 

service seems thus corroborate such decision.  

[Insert Figure 3 here] 

 

4. Conclusions and final remarks  

This paper uses a unique dataset to identify the main technological and managerial 

drivers of the duration of power outages. Unlike previous literature we focus our analysis on 

two issues: the emergence of grid digitalization and the location (and inefficiency) of 

maintenance staff. As we know the sequence of the individual PSI across municipalities, we 

use two different approaches to examine external and internal PSI. In a standard spatial 

application, only the aggregate effect of both PSI is observed by the econometrician. 

The duration of the external PSI is modelled using a bottom-up SAR model that is 

developed using the engineering information of the PSI occurred in each municipality. Unlike 

the standard SAR model, our bottom-up model can be estimated using a simple OLS estimator 

because of the recursive nature of the spatially lagged variable. We show that the standard SAR 

model is seriously biased because it ignores the true sequence of the PSI across municipalities. 

In contrast, the duration of the internal PSI is modelled using a standard frontier model because 

the equipment that must be fixed is in the municipality initially affected by the outages. For 

this reason, the inefficient performance of the maintenance crews is only examined using 

internal PSI. 

The estimated standard SAR models provide very poor goodness-of-fit as well as 

unsound autoregressive parameters. The logged specifications of our heteroskedastic BoU 

spatial models show that there are not one-to-one contagion effects in most municipalities, and 

that the degree of municipality contagion increases with the number of connections, and their 

average capacity, with preceding municipalities involved in common outages. However, the 

analysis also confirms that radial grid areas with few alternative routes to supply energy to end 

customers, often located in rural municipalities, are more affected by external outages than 

more interconnected areas, often in urban municipalities.  

Regarding the internal PSI, our SF models show that both the weather conditions and 

the network characteristics influence quality of service in electricity distribution networks, as 

in previous literature. Unlike previous papers, we find a negative effect of transformers fitted 

with a remote-control system on restoration times in both specifications. Therefore, grid 

automatization does reduce the duration of all PSI and the restoration times of each outage.  

We finally find that the performance of the maintenance crews is quite good because 

their average efficiency is larger than 92%. However, our efficiency analysis also reveals that 

there are numerous difficult-to-restore PSI in Asturias and Huesca provinces, an outcome that 

the firm might examine in detail in order to improve its quality performance in these two 

Spanish provinces. Another result that the firm should pay attention to is the observed 

deterioration in the estimated efficiency scores in 2019.  
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From a distribution company point of view, the analyzes carried out in this paper are 

useful to reinforce the idea that grid digitalization or remote control of grid assets is a must in 

order to reduce the impact of outages in terms of active power loss. Our results seem to confirm 

that the location of maintenance crews is also a relevant factor to managing PSI. Whether 

increasing capital expenditure by installing remote control systems in distribution stations or 

step-down transformers is more efficient than increasing operational costs in maintenance 

crews is an issue that we will try to explore in the future. We will also examine in the future 

whether the installation of a second line to increase the supply capacity to a neighborhood or a 

new commercial area is better than reinforcing the capacity of the existing line, or it is 

preferable to install underground assets. 
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Table 1. Descriptive statistics. SAR models 

Variable Definition Units Obs. Mean Std. Dev. Min Max 

YE Restoration times of external PSI seconds 1516 62.876 487.467 0.001 10252 

J Number of internal PSI  number 1516 6.658 8.463 1 77 

WY Restoration times of preceding municipalities seconds 1516 69.711 420.295 0.001 10570 

WY Restoration times of connected municipalities seconds 1516 1025.473 9953.262 0.001 215927 

UN Number of connections with neighboring municipalities number 1516 21.090 20.138 1 88 

CA Capacity of connections with neighboring municipalities KW 1516 931.677 1092.167 2 3962 

PNU Number of connections with preceding municipalities number 1516 6.660 7.879 1 41 

PCA Capacity of connections with preceding municipalities KW 1516 269.725 463.876 2 2530 
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Table 2. Descriptive statistics. SF models 

Variable Definition Units Obs. Mean Std. Dev. Min Max 

YI Restoration times of internal PSI seconds 3739 217.349 3958.901 0 215154 

I Number of internal PSI number 3739 6.126 7.880 1 82 

NL Network length Km 3739 395 431 2 2125 

OL Proportion of overhead lines proportion 3739 0.807 0.259 0 1.00 

DIGT Proportion of digital transformers proportion 3739 0.073 0.082 0 0.50 

UT Proportion of underground transformers proportion 3739 0.025 0.095 0 0.79 

OT Proportion of outdoor transformers proportion 3739 0.562 0.296 0 1.00 

WEATHER Proportion of outages caused by weather issues proportion 3739 0.013 0.092 0 1.00 

DIS Distance to the nearest maintenance crew Km 3739 13.902 10.895 0 51 

RURAL Rural municipality dummy 3739 0.362 0.481 0 1 

URBAN Urban municipality dummy 3739 0.638 0.481 0 1 

AUTUMN Season of the year dummy 3739 0.252 0.434 0 1 

WINTER Season of the year dummy 3739 0.244 0.430 0 1 

SPRING Season of the year dummy 3739 0.249 0.432 0 1 

SUMMER Season of the year dummy 3739 0.255 0.436 0 1 

ASTURIAS Spanish province dummy 3739 0.857 0.350 0 1 

HUESCA Spanish province dummy 3739 0.059 0.236 0 1 

ZARAGOZA Spanish province dummy 3739 0.010 0.100 0 1 

ALICANTE Spanish province dummy 3739 0.014 0.116 0 1 

PALENCIA Spanish province dummy 3739 0.043 0.203 0 1 

MADRID Spanish province dummy 3739 0.017 0.128 0 1 

2013 Year dummy 3739 0.145 0.352 0 1 

2014 Year dummy 3739 0.148 0.355 0 1 

2015 Year dummy 3739 0.153 0.360 0 1 

2016 Year dummy 3739 0.144 0.351 0 1 

2017 Year dummy 3739 0.146 0.353 0 1 

2018 Year dummy 3739 0.136 0.343 0 1 

2019 Year dummy 3739 0.128 0.334 0 1 
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Table 3. Linear homoscedastic SAR models 

  BoU Standard 

In levels Coef.   t-ratio Coef.   t-ratio 

Intercept 8.995   0.95 58.885 *** 4.69 

Autoregressive parameter () 0.773 *** 34.78 0.004 *** 3.10 

R-squared 0.444     0.006     

Per outage Coef.   t-ratio Coef.   t-ratio 

Intercept -4.578   -0.89 24.678 *** 3.17 

Autoregressive parameter () 1.029 *** 44.73 0.003 *** 2.73 

R-squared 0.569     0.005     

In logs Coef.   t-ratio Coef.   t-ratio 

Intercept 0.037   0.89 -0.680 *** -7.24 

Autoregressive parameter () 0.724 *** 43.08 0.462 *** 23.59 

R-squared 0.551     0.269     

Per outage in logs Coef.   t-ratio Coef.   t-ratio 

Intercept 0.003   0.10 -0.511 *** -9.21 

Autoregressive parameter () 0.745 *** 49.98 0.437 *** 29.46 

R-squared 0.623     0.364     

Obs. 1516     1516     

 

 

 

 

Table 4. BoU heteroscedastic SAR models 

 In logs Per outage in logs 

 Coef.  s.e. t-ratio Coef.  s.e. t-ratio 

𝛼 0.149  *** 0.043 3.51 0.055  * 0.029 1.88 

𝜆0 -0.483  *** 0.034 -14.37 -0.453  *** 0.036 -12.76 

𝑙𝑛𝑁𝑈 (𝜆1) -0.125  *** 0.031 -4.05 -0.066  ** 0.031 -2.17 

𝑙𝑛𝐶𝐴 (𝜆2) -0.108  *** 0.035 -3.07 -0.114  *** 0.036 -3.17 

𝑙𝑛𝑃𝑁𝑈 (𝜆3) 0.013   0.037 0.34 -0.059    0.038 -1.56 

𝑙𝑛𝑃𝐶𝐴 (𝜆4) 0.050  * 0.028 1.76 0.077  *** 0.029 2.68 

R-squared 0.582 0.640 

Average SAR parameter  0.626 0.643 

Obs. 1516 1516 
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Table 5. Parameter estimates of the SF models 

    In logs Per outage in logs 

    Coef.   s.e. t-ratio Coef.   s.e. t-ratio 

Frontier                 

  Intercept 1.472  *** 0.065  22.79 0.856    0.058  14.87 

  lnNL 0.262  *** 0.067  3.89 -0.092  * 0.048  -1.91 

  lnCAP 0.374  *** 0.062  6.00 0.229  *** 0.044  5.15 

  DIGT -0.809  * 0.483  -1.68 -0.750  ** 0.345  -2.17 

  UT -0.149    0.519  -0.29 0.457    0.369  1.24 

  OT -0.710  *** 0.246  -2.89 -0.282    0.175  -1.61 

  OL -1.905  *** 0.482  -3.95 -1.086  *** 0.343  -3.17 

  RURAL 0.455  *** 0.085  5.34 0.153  ** 0.061  2.53 

  lnDIS·RURAL 0.175  *** 0.040  4.40 0.032    0.028  1.11 

  lnDIS·URBAN 0.195  *** 0.058  3.39 0.100  ** 0.041  2.45 

  1/2lnDIS 2 0.022    0.038  0.56 -0.010    0.027  -0.36 

 WEATHER 1.954  *** 0.234  8.34 0.832  *** 0.166  5.00 

  WINTER -0.110  * 0.064  -1.74 -0.061    0.054  -1.13 

  SPRING -0.097    0.062  -1.55 -0.038    0.069  -0.56 

  SUMMER -0.094    0.062  -1.52 -0.087    0.058  -1.49 

  HUESCA 5.461  *** 0.196  27.89 4.218  *** 0.139  30.25 

  ZARAGOZA 3.706  *** 0.303  12.25 3.570  *** 0.216  16.56 

  ALICANTE 1.913  *** 0.318  6.02 2.647  *** 0.226  11.72 

  VALENCIA 0.623  * 0.324  1.92 1.257  *** 0.230  5.46 

  MADRID 1.272  *** 0.336  3.78 1.921  *** 0.239  8.03 

Noise term                 

  Intercept 0.506  *** 0.023  21.75 -0.173  *** 0.023  -7.42 

Inefficiency term                 

  Intercept -10.227    7.955  -1.29 0.494    0.305  1.62 

  t 0.531  * 0.315  1.69 -0.028  * 0.015  -1.80 

  1/2·t2 -0.005  * 0.003  -1.82 0.000  * 0.000  1.92 

  1/3·t3 1.229    1.659  0.74 -0.001    1.367  0.00 

  WINTER -1.121    0.979  -1.15 2.176    1.728  1.26 

  SPRING -1.561  ** 0.788  -1.98 1.174    1.393  0.84 

  SUMMER -10.871    147.2  -0.07 -10.591  ** 4.804  -2.20 

  Obs 3739       3739       

  Log likelihood -6260.1        -4988.9        

 

.  
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Figure 1. Kernel densities of spatial autoregressive values. 

 

 

Figure 2. Average efficiency scores by provinces. 
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Figure 3. Average efficiency scores over time. 
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