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Abstract 

The literature examining the propagation of COVID-19 has mainly used pure epidemiological 

models focused on estimating reproductive numbers, mortality and other epidemiological 

features. In this paper we use a stochastic frontier analysis (SFA) approach to model the 

propagation of the epidemic across geographical areas, which complements existing 

epidemiological models. Our work bridges the SFA and epidemiological literatures and shows 

that the translation from epidemiological models to SFA implies strong assumptions and 

introduces measurement errors. We propose two different specifications of the stochastic 

frontier model: first, a stochastic frontier based on an epidemiological SIR model specification; 

and second, an approximation to this SIR-based frontier based on functions of the length of 

time since the outbreak of the virus began. These models permit reported and undocumented 

cases to be estimated. The appeal of these models lies in the fact that they can be estimated 

using only epidemic-type data and yet are flexible enough to permit these reporting rates to 

vary across geographical cross-section units of observation and to allow other covariates 

affecting reported and undocumented rates to be incorporated. We provide an empirical 

application of our models to Spanish data corresponding to the initial months of the original 

outbreak of the virus in early 2019 where we introduce a series of series of extensions to base 

model and specification robustness checks. 
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1. Introduction 

The COVID-19 pandemic, which began in China in December 2019, spread worldwide in a 

short time. Faced with the threat of their public health systems being overwhelmed, several 

countries, with Italy and Spain at the forefront as they were the most-affected at the initial stage 

of the pandemic, saw themselves forced to implement national lockdowns of the population. 

In the specific case of Spain, this gave rise to heated debates, which would be repeated in other 

countries (notably the UK), over the timing and duration of the lockdown. There was fierce 

criticism from some opposition parties over the Spanish national government’s handling of the 

first wave of the pandemic, and it is noteworthy that the institutional response in Spain to the 

second wave which began during the autumn of 2020 has been delegated to regional 

governments which are charged with implementing measures at local or regional level. A 

consequence of the regional nature of the new institutional response, however, is that much 

less attention may be paid to the propagation of the coronavirus across the Spanish provinces 

and regions. 

The propagation of the COVID-19 epidemic and the effectiveness of institutional responses 

has given rise to a rapidly-evolving literature. Most of this literature (see Millimet and 

Parmeter, 2020 for a survey) has focused on estimating reproductive numbers, mortality and 

other epidemiological features. One of the first studies that aimed to examine the effectiveness 

of the control measures implemented in several European countries was carried out by Flaxman 

et al. (2020). They find that the Spanish lockdown averted about 67% of potential deaths by 

the 31st of March. Regarding the Chinese COVID-19 epidemic, Leung et al. (2020) find that a 

relaxation of the control measures in force in China would increase the cumulative number of 

coronavirus cases, bringing forward a possible second wave. These authors conclude that it is 

necessary to monitor the increase in new cases due to the effects of relaxing control measures 

in order for policy makers to be able readjust their decisions.  

Examinations of the effectiveness of institutional control measures while controlling for spatial 

propagation effects has been treated only marginally in the literature. A notable exception is 

Gross et al. (2020), who study the spatio-temporal propagation of COVID-19 in China and 

compares it to other countries. They conclude that early action may attenuate the disease, given 

the strong relation between population migration and the spreading of disease. Giuliani et al. 

(2020) also use data disaggregated by provinces to implement an epidemiological model 

explaining the propagation of COVID-19 across the Italian provinces. The origin of this spatial 

dimension of propagation is the high inter-provincial mobility of people. They conclude that 

the control measures were more successful in those provinces with more effective enforcement.  

Aside from spatial propagation effects, another important issue that has often been overlooked 

or not controlled for in this literature is the number of undocumented coronavirus cases. The 

relevance of this lies in the fact that the proportion of coronavirus infections not detected by 

the health system during the first wave of contagion of COVID-19 was likely much larger than 

the proportion of laboratory-confirmed coronavirus cases (see Flaxman et al., 2020), with the 

result that the official number of coronavirus cases likely falls short of the true number of cases, 

perhaps significantly so. As Korolev (2021) points out, if we do not take underreporting into 

account and estimate models from data on confirmed cases under the assumption that all cases 

are reported, our estimates might be seriously biased. In addition, underreporting may dampen 

public and political support for more stringent measures such as investments in medical 

equipment, mandatory masks or mandatory lockdowns. 
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To account simultaneously for geographical propagation of the virus, the prevalence of 

undocumented cases and the effectiveness of institutional control measures, in this paper we 

propose a stochastic frontier analysis (SFA) approach to estimating epidemic curves. The SFA 

approach can be used to control for the existence of undocumented coronavirus cases because 

these cases are not observed by the econometrician and the reported cases are always lower 

than the total number of COVID-19 infections. Therefore, the unobserved cases can be proxied 

using a one-sided random term in the same fashion as firms’ inefficiency in production 

economics. The model we propose can be seen as an extension to a frontier setting of previous 

work by Orea and Álvarez (2020), which examined the propagation of COVID-19 across the 

Spanish provinces and assessed the effectiveness of the first Spanish population lockdown of 

population. Although they only estimated the epidemic curve of reported COVID-19 cases, 

Orea and Álvarez (2020) introduced a simple but novel empirical strategy to capture the typical 

S-shaped temporal pattern of the virus epidemic. 

The added value of our paper is combining the stochastic frontier analysis and the classical 

Susceptible-Infected-Removed (SIR) epidemiological model. In our attempt to bridge the 

epidemiological modelling and stochastic frontier literatures, we provide two different 

specifications of the epidemic stochastic frontier analysis model (ESFA). The first is a 

stochastic frontier inspired by the non-frontier econometric SIR model proposed by Chudik et 

al. (2020), which we denote as the SIR-based model. The second is an approximation to this 

SIR-based frontier that replaces the time-varying epidemiological regressors with functions of 

the length of time since the outbreak of the virus began, an approach used by Orea and Álvarez 

(2020) to capture the shape of the epidemic curves. We label this the epidemic-time model.  

The simple model specifications we propose have a number of appealing features. The first of 

these is that the models rely on relatively little information, in that both the epidemic-time and 

SIR-based specifications of the stochastic frontier model can be estimated using epidemic-type 

data only, i.e., the rates of growth of coronavirus cases depend in our models on own and 

neighbours’ epidemic times, lagged cases of COVID-19, date of implementation of control 

measures, and so on. However, the model is flexible enough to include other covariates if 

deemed appropriate. Another advantage of our model is that it permits reporting rates to be 

estimated rather than assumed and is flexible enough to permit these reporting rates to vary 

across geographical cross-section units of observation. As such, our ESFA models can be 

thought of as complementary to existing epidemiological models, such as Chudik et al. (2020), 

which often assume common reporting rates across areas.1  

As the volatility of the rates of growth of reported cases are typically much larger at the 

beginning of the epidemic than when the epidemic has advanced, our ESFA model must be 

estimated using time-varying heteroskedastic noise terms. To capture this feature, we propose 

a stochastic frontier specification which can be interpreted as a heteroskedastic version of the 

model introduced by Wang and Ho (2010) whose aim was to control for individual effects in a 

production economics setting. Therefore, our paper has also a methodological contribution for 

practitioners aiming to estimate firms’ efficiency using the Wang and Ho (2010) approach. 

 
1 For example, Chudik et al. (2020) use the data from the Diamond Princess cruise ship reported by Moriarty et 

al. (2020) to calibrate the proportion of the population exposed to COVID-19, and assume an average reporting 

rate in all Chines provinces of 50%. They find large variations in exposure rates across Chinese provinces, ranging 

from 9% to 87%. The fact that their econometric model ignores systematic variations in reporting rates across 

provinces may well be causing this wide variety of exposure rates. 
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Estimating an epidemic stochastic frontier analysis model mimicking all features of a SIR 

model presents important methodological challenges because the standard stochastic frontier 

estimators in production economics do not capture the complexities of the SIR model. When 

trying to specify a tractable ESFA model, we find that some simplifying assumptions need to 

be made. To test the implications of this, we carry out a simulation analysis where we check 

the performance of the epidemic-time and SIR-based specifications of the stochastic frontier 

model, finding that the epidemic-time specification performs better. In our empirical 

application using panel data from the Spanish provinces observed over the initial period of the 

COVID-19 outbreak in Spain, we corroborate that the epidemic-time model provides more 

realistic estimates of reporting rates than the SIR-based frontier specification.  

As our epidemic-time model can be extended to include other covariates, in our empirical 

application we take advantage of this feature to incorporate a series of socio-economic and 

environmental variables to test their influence of the evolution of total and under-reported 

cases. We also carry out a series of robustness checks on our epidemic-time stochastic frontier 

model, including an analysis of the effects of changes to the distributional assumptions and the 

effects of changing the actual panel data set used to check the effect of dropping observations 

with zeroes in the variables.   

Overall, the empirical strategy used in this paper can be said to rely several different but related 

assumptions, which are supported by previous literature: i) the propagation of the virus across 

areas (Spanish provinces in our application) depends on people’s mobility (Giuliani et al., 

2020); ii) this mobility can be modelled using spatial econometrics techniques (Eliasson et al., 

2003; Orea and Álvarez, 2020); iii) the undocumented cases represent a large proportion of 

total cases of infection (Flaxman et al., 2020); iv) the proportion of undocumented cases 

through the epidemic development varies over time (Li et al., 2020); and v) the unobserved 

cases can be proxied using a one-sided random term (Millimet and Parmeter, 2020).2  

The paper proceeds as follows. Section 2 defines the three epidemic curves we use, namely the 

total epidemic curve, the reported cases epidemic curve, and the undocumented cases epidemic 

curve. In Section 3 we present the stochastic frontier representation of the epidemic curves. 

Distributional assumptions about the error terms and the maximum likelihood procedure for 

the general specification of the model are discussed. This section concludes with a presentation 

of alternative specific specifications of the frontier model, namely a SIR-based frontier model 

and its epidemic-time approximation. The performances of these two specifications are 

compared through a simulation exercise. Section 4 presents our empirical application to 

Spanish provinces at the outset of the COVID-19 epidemic in the spring of 2020. We first 

estimate a basic version of our preferred frontier model, namely the epidemic-time model, with 

a spatial lag specification. We compare our results to those from a similar SIR-based 

specification and then discuss a series of extensions and robustness checks. Section 5 

concludes.  

 

 
2  In current unpublished work, Millimet and Parmeter (2020) propose a stochastic frontier model also based on 

the classical SIR model. Our approaches are quite different, however. For example, their SFA model focuses on 

new coronavirus cases, whereas we focus our model on cumulative cases. While they also examine measurement 

issues with the number of deaths, their model does not have an autoregressive structure and does not account for 

spatial propagation.  
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2. Total and partial epidemic curves. 

In this section we define three epidemic curves that resemble the popular reproduction-based 

models used in the epidemiological literature, which often ignore the existence of 

undocumented coronavirus cases. 

Consider a panel of 𝑖 = 1,… ,𝑁 provinces observed on 𝑡 = 1,… , 𝑇 days. 𝑡 is the calendar time. 

Let 𝐸𝑖 denote the onset date of the epidemic, namely the date on which province 𝑖 reports its 

first coronavirus case. We then analyse the development of the epidemic in each province, i.e., 

the temporal evolution of coronavirus cases once each province reports its first coronavirus 

case. A key variable to carry out this analysis is the epidemic time, 𝐾𝑖𝑡 = 𝑡 − 𝐸𝑖, which denotes 

the number of days since the onset date. Next, let 𝑌𝑖𝑡
∗  denote the accumulated number of both 

laboratory-confirmed (𝑌𝑖𝑡) and undocumented (𝑈𝑖𝑡) coronavirus cases until day 𝑡 in province 

𝑖. Thus: 

𝑌𝑖𝑡
∗ = 𝑌𝑖𝑡 + 𝑈𝑖𝑡    (1) 

In Orea and Álvarez (2020), the epidemic curve of reported cases (𝑌𝑖𝑡) is represented by an 

autoregressive relationship:3 

𝑌𝑖𝑡 = 𝛽𝑖𝑡𝑌𝑖𝑡−1      (2) 

where 𝛽𝑖𝑡 can be interpreted as an autoregressive parameter (function) that depends on a set of 

covariates. We label this the epidemic curve. The key aim of coronavirus control measures is 

to reduce 𝛽𝑖𝑡. If 𝛽𝑖𝑡 is close to 1, the number of new infections is relatively small and the 

epidemic has therefore been controlled. If 𝛽𝑖𝑡 is much greater than 1, then a lot of new 

infections have been reported and the coronavirus epidemic is still spreading among the 

population despite the efforts to prevent the propagation of the virus. The 𝛽𝑖𝑡 parameter 

(function) thus plays the same role as the so-called reproductive number of the infection (𝑅0), 

a fundamental quantity used in the epidemiological literature to represent the average number 

of infections per infected person over the course of their infection. 

In order to get a simple empirical specification of (2), we take natural logarithms and first-

differentiate the model.4 This yields the following expression: 

∆𝑙𝑛𝑌𝑖𝑡 = 𝑙𝑛𝑌𝑖𝑡 − 𝑙𝑛𝑌𝑖𝑡−1 = 𝑙𝑛𝛽𝑖𝑡    (3) 

where 𝑙𝑛𝛽𝑖𝑡 simply measures the daily rate of growth of reported cases. We expect rates of 

growth of coronavirus cases to vary with the epidemic time, 𝐾𝑖𝑡, because the traditional 

epidemic curve has a S-shaped form. If this is indeed the case, the epidemic curve 𝛽𝑖𝑡 can be 

modelled empirically as a third-order function of the (logged) epidemic time variable, 

conditional on other control variables.5 

 
3 The model that describes the expected number of infections at time (day) 𝑡 in Giuliani et al. (2020) is also 

allowed to depend on the number of infections reported at time 𝑡 − 1. 
4 We have found in our application that 𝑌𝑖𝑡  is not a stationary variable. Estimating (2) might thus give spurious 

results. This issue vanishes if we use rates of growth of reported coronavirus cases. 
5 Figure 3, which shows the box plots of the rates of growth of reported cases by epidemic time, clearly reveals 

that the rates of growth of reported cases are much larger at the beginning of the epidemic than when the epidemic 
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Similar autoregressive expressions can be written for undocumented and total coronavirus 

cases. That is, each variable measuring coronavirus cases has its own epidemic curve. While 

the epidemic of reported cases is given by (3), the epidemic curves of undocumented and total 

coronavirus cases can be written as follows:  

𝑈𝑖𝑡 = 𝜃𝑖𝑡𝑈𝑖𝑡−1      (4) 

𝑌𝑖𝑡
∗ = 𝛽𝑖𝑡

∗ 𝑌𝑖𝑡−1
∗       (5) 

Figure 1 illustrates our three hypothetical epidemic curves. By construction, we have assumed 

in this figure that 𝑌𝑖𝑡
∗  is the sum of 𝑌𝑖𝑡 and 𝑈𝑖𝑡 for each epidemic time 𝐾𝑖𝑡. Note that while the 

epidemic curve of reported cases has the traditional S-shaped form, the epidemic curve of 

undocumented cases is depicted using a log form from the beginning of the epidemic onwards. 

This allows the proportion of undocumented cases to decrease over time as in Li et al. (2020). 

The shape of the total epidemic curve is thus a combination of the shapes of the two partial 

epidemic curves.  

 

Figure 1: Epidemic curve of total, reported and undocumented cases 

 

We now examine this feature analytically. Taking into account (1), the autoregressive 

parameter 𝛽𝑖𝑡
∗  can be decomposed as follows: 

𝛽𝑖𝑡
∗ = 𝛽𝑖𝑡 + (𝜃𝑖𝑡 − 𝛽𝑖𝑡)𝑈𝑖𝑡−1/𝑌𝑖𝑡−1

∗     (6) 

This equation shows that the overall epidemic curve coincides with the epidemic curve of 

reported cases if both reported and undocumented cases have the same temporal patterns (i.e., 

𝜃𝑖𝑡 = 𝛽𝑖𝑡). In order to link both epidemic curves, let 𝑢𝑖𝑡 denote the log difference between total 

and reported coronavirus cases:  

𝑢𝑖𝑡 = 𝑙𝑛𝑌𝑖𝑡
∗ − 𝑙𝑛𝑌𝑖𝑡    (7) 

Given the above definition, the proportion of undocumented cases can be expressed as a 

increasing function of 𝑢𝑖𝑡 because 𝑈𝑖𝑡/𝑌𝑖𝑡
∗ = 1 − 𝑒−𝑢𝑖𝑡. 𝑢𝑖𝑡 can therefore be viewed as a relative 

measure of the undocumented cases in an epidemic outbreak: loosely speaking, we can 

 
has advanced. That is, 𝑙𝑛𝛽𝑖𝑡 tends to decrease rapidly in the early stages of the epidemic. This figure also shows 

a flattening in mid-stages of the epidemic and very small rates of growth in the later stages of the epidemic. 
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interpret 𝑢𝑖𝑡 as the “proportion of undocumented cases”. Equation (7) also allows us to link the 

reported and undocumented cases as follows: 

𝑈𝑖𝑡 = 𝑌𝑖𝑡(𝑒
𝑢𝑖𝑡 − 1)     (8) 

If we plug (8) into (4) in both consecutive periods and use (2), we get: 

𝛽𝑖𝑡 = 𝜃𝑖𝑡 · (𝑒
𝑢𝑖𝑡−1 − 1)/(𝑒𝑢𝑖𝑡 − 1)    (9) 

This equation states that 𝛽𝑖𝑡 = 𝜃𝑖𝑡 if, and only if, the log difference between total and reported 

coronavirus cases (𝑢𝑖𝑡) is time invariant, that is when ∆𝑢𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖𝑡−1 = 0. Using (2) and 

(5) and the definition of 𝑢𝑖𝑡 in (7), the previous decomposition in (6) collapses to: 

𝛽𝑖𝑡 = 𝛽𝑖𝑡
∗ 𝑒−∆𝑢𝑖𝑡     (10) 

This equation shows that the total epidemic curve coincides with the epidemic curve of reported 

cases when the proportion of undocumented cases does not change over time, i.e., when ∆𝑢𝑖𝑡 =
0. On the other hand, equation (10) suggests that the epidemic curve of reported cases (i.e. 𝛽𝑖𝑡) 
can be estimated using two approaches: i) from an econometric specification of equation (2) 

that does not provide any information about the relative importance of undocumented cases, as 

in Orea and Álvarez (2020);6 or ii) from a stochastic frontier specification of (10) that is able 

to estimate both the total epidemic curve (𝛽𝑖𝑡
∗ ) and the temporal changes in the proportion of 

undocumented cases (∆𝑢𝑖𝑡). The latter empirical strategy is developed in detail in the next 

section. In a nutshell, this strategy implies estimating the epidemic curve of total cases using a 

stochastic frontier specification of the model where the undocumented cases are proxied using 

a one-sided random term in the same fashion as firms’ inefficiency in production economics. 

The two partial epidemic curves (i.e., the epidemic curves of reported and undocumented cases) 

can be obtained once the epidemic curve of total cases has been appropriately adjusted using 

the estimated proportions of undocumented cases that appear in (9) and (10). 

 

3. Frontier specification of our epidemic curves 

 

3.1. Frontier specification 

This section discusses estimation of the epidemic curve of reported case using a stochastic 

frontier model, an econometric specification widely used in production economics to measure 

firms’ efficiency. The stochastic frontier analysis approach can be used to control for the 

existence of undocumented coronavirus cases because these cases are not observed by the 

econometrician and the reported cases are always lower than the total number of COVID-19 

infections. This is illustrated in Figure 2, where we have simplified our previous figure by 

dropping the two partial epidemic curves. This figure shows that the total epidemic curve can 

be viewed as a function that envelops the observed number of coronavirus cases from above. 

The gap between 𝑌∗ and 𝑌 is the number of undocumented cases, which never takes negative 

values. The stochastic frontier analysis approach uses one-sided random terms to control for 

 
6 This simple empirical strategy might provide biased results as it ignores the potential correlation with the 

undocumented cases, which constitute an omitted variable in this analysis. 
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non-negative (or non-positive) unobserved variables, such as firm inefficiency in production 

economics. 

 

Figure 2:  Overall epidemic curve and undocumented cases 

 

As 𝑙𝑛𝛽𝑖𝑡 = ∆𝑙𝑛𝑌𝑖𝑡 by definition, the stochastic frontier model that is finally estimated can be 

obtained once we take natural logarithms in (10) and add a traditional noise term:  

∆𝑙𝑛𝑌𝑖𝑡 = 𝑙𝑛𝛽𝑖𝑡
∗ (·) + 𝑣𝑖𝑡 − ∆𝑢𝑖𝑡 = 𝑙𝑛𝛽𝑖𝑡

∗ (·) + 𝜀𝑖𝑡   (11) 

where 𝑙𝑛𝛽𝑖𝑡
∗ (·) is a function of a set of covariates determining the temporal evolution of total 

coronavirus cases. The idiosyncratic feature of our frontier specification of the model is the 

existence of two random terms. The first one is the traditional noise term (𝑣𝑖𝑡) capturing random 

shocks, measurement or specification errors and other unobservable variables not correlated 

with the set of explanatory variables determining the rate of growth of coronavirus cases. The 

second random term is the difference of two one-sided random terms and captures changes 

over time in the proportion of undocumented cases (∆𝑢𝑖𝑡).  

Our empirical strategy thus relies on three assumptions: i) the epidemic nature of this disease 

can be best represented by a total epidemic curve, regardless of whether researchers observe 

all COVID-19 cases or not; ii) the unobserved cases can be proxied using a one-sided random 

term in the same fashion as firm inefficiency in production economics; and iii) the proportion 

of undocumented cases varies over time during the evolution of the epidemic. 

Our epidemic frontier model in (11) looks similar to a (panel) stochastic production frontier 

model. It is common in this literature to estimate the following model in levels: 

𝑙𝑛𝑌𝑖𝑡 = 𝛼𝑖 + 𝑓(𝑋𝑖𝑡, 𝛽) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡    (12) 

where the subscript i stands for firm, 𝑋𝑖𝑡 is a vector of exogenous production drivers, 𝛽 is a 

vector of technological parameters, 𝑣𝑖𝑡 is a noise term capturing production shocks, and 𝑢𝑖𝑡 is 

a non-negative random term capturing firm inefficiency. 𝛼𝑖 is a firm-specific intercept aiming 

to capture characteristics that affect firms’ production but that are unobserved or omitted 

variables. Estimation of the model in (12) using the so-called True Fixed Effects (TFE) model 
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introduced by Greene (2005)7 is not easy due to the incidental parameter problem.8 Wang and 

Ho (2010) solve this problem using temporal transformations of (12). If we take first 

differences in equation (12) to remove the time-invariant firm-specific effects, we get: 

∆𝑙𝑛𝑌𝑖𝑡 = ∆𝑓(𝑋𝑖𝑡, 𝛽) + 𝑣𝑖𝑡
∗ − ∆𝑢𝑖𝑡    (13) 

where 𝑣𝑖𝑡
∗ = ∆𝑣𝑖𝑡 follows a (multivariate) normal distribution. The production frontier model 

in (13) is similar to our epidemic frontier model in (11). There are, however, two main 

differences. First, while ∆𝑓(𝑋𝑖𝑡, 𝛽) can be negative in a production economics setting, we need 

to impose the theoretical restriction 𝑙𝑛𝛽𝑖𝑡
∗ ≥ 0 due to the cumulative nature of 𝑌𝑖𝑡. Second, 

while the production frontier function represents a “technology” (i.e. an unknown combination 

of production processes), our frontier represents an underlying epidemic process that involves 

both confirmed and undocumented cases. 

In order to estimate the above model using ML, we are forced to choose a distribution for both 

the noise term (𝑣𝑖𝑡) and the one-sided random term capturing the proportion of undocumented 

cases (𝑢𝑖𝑡). In what follows, we discuss the distribution of 𝑣𝑖𝑡, the distribution of 𝑢𝑖𝑡, and the 

likelihood function.  

 

3.2. Distribution of the noise term 

We have added a noise term (𝑣𝑖𝑡) in equation (11) in order to directly capture measurement 

errors in the rate of growth of coronavirus cases. As is customary in the stochastic frontier 

literature, we assume that the 𝑣𝑖𝑡’s are independent of the 𝑢𝑖’s. If we next assume that 𝑣𝑖𝑡 is 

independently distributed over time and follows a normal distribution with zero mean, the noise 

vector 𝑣𝑖 = (𝑣𝑖1, … , 𝑣𝑖𝑇) will follow a multivariate normal distribution with a diagonal 

covariance matrix. Using the notation from Wang and Ho (2010), the density function of the 

vector 𝑣𝑖 is: 

𝑔(𝑣𝑖) = (2𝜋)
−
𝑇

2|Π|−1/2𝑒𝑥𝑝 {−
1

2
𝑣𝑖′Π

−1𝑣𝑖}      (14) 

where Π is the variance-covariance matrix of 𝑣𝑖. We then assume that the noise vector 𝑣𝑖 =
(𝑣𝑖1, … , 𝑣𝑖𝑇) follows a multivariate normal distribution with a diagonal but heteroskedastic 

variance-covariance matrix because the volatility of the rates of growth of reported cases 

decreases throughout the epidemic development: 

Π =

(

 

𝜎𝑣1
2 0 0 0

0 𝜎𝑣2
2 0 0

0
0

0
0

⋱ 0
0 𝜎𝑣𝑇

2 )

      (15) 

This specification of the variance-covariance matrix of 𝑣𝑖 differs from that used in Wang and 

Ho (2010) in two important aspects. On one hand, our noise term is heteroskedastic, whereas 

it follows a homoskedastic distribution in Wang and Ho (2010). On the other, while we 

assumed that 𝑣𝑖𝑡 is not autocorrelated over time, the first-differences and within 

 
7 This estimator treats 𝛼𝑖 as fixed parameters. If they are treated instead as time-invariant random variables, we 

get the so-called True Random Effects (TRE) panel stochastic frontier model. 
8 This problem appears when the number of parameters to be estimated increases with the number of cross-

sectional observations in the data. In this situation, consistency of the parameter estimates is not guaranteed even 

if 𝑁 → ∞. 
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transformations carried out by Wang and Ho (2010) to remove time-invariant firm-specific 

effects introduce negative correlations between two consecutive (transformed) noise terms.  

An autocorrelated specification can be obtained if we introduce the noise terms before 

computing the rates of growth of coronavirus cases, in the spirit of Chudik et al. (2020) and 

Millimet and Parmeter (2020). Let us rewrite (7) as follows: 

𝑙𝑛𝑌𝑖𝑡
∗ = 𝑙𝑛𝑌𝑖𝑡 + 𝑢𝑖𝑡 − 𝑣𝑖𝑡     (16) 

where 𝑣𝑖𝑡 is a two-sided error term that now captures non-systematic variations in total 

coronavirus cases (Millimet and Parmeter, 2020). If we next take natural logarithms in (5) and 

replace 𝑙𝑛𝑌𝑖𝑡
∗  and 𝑙𝑛𝑌𝑖𝑡−1

∗  with (16) evaluated at 𝑡 and −1 , we get: 

∆𝑙𝑛𝑌𝑖𝑡 = 𝑙𝑛𝛽𝑖𝑡
∗ + 𝑣̃𝑖𝑡 − ∆𝑢𝑖𝑡     (17) 

where 𝑣̃𝑖𝑡 = ∆𝑣𝑖𝑡. The new noise term is no longer independently distributed over time. If we 

assume that 𝑣𝑖𝑡 follows a heteroskedastic normal distribution, the noise vector 𝑣̃𝑖 =
(𝑣̃𝑖1, … , 𝑣̃𝑖𝑇) follows a multivariate normal distribution with the following variance-covariance 

matrix: 

Π =

(

 
 
 
 

𝜎𝑣1
2 + 𝜎𝑣0

2

−𝜎𝑣1
2

0
⋮
⋮
0

−𝜎𝑣1
2

𝜎𝑣2
2 + 𝜎𝑣1

2

−𝜎𝑣2
2

⋮
⋮
0

0 … 0
−𝜎𝑣2

2 … 0

𝜎𝑣3
2 + 𝜎𝑣2

2

⋮
⋮
0

…
…
⋱

−𝜎𝑣(𝑇−1)
2

0
⋮

−𝜎𝑣(𝑇−1)
2

𝜎𝑣𝑇
2 + 𝜎𝑣(𝑇−1)

2
)

 
 
 
 

  (18) 

If 𝑣𝑖𝑡 is homoskedastic as in Wang and Ho (2010), we get the variance-covariance matrix of 

their first-differences transformed noise term (see their equation 12). It is an empirical question 

whether specification (15) or (18) of the noise term is better. However, it should be mentioned 

that estimation of a frontier epidemic model using (18) is more problematic if the panel dataset 

is not continuous and there are missing observations between 𝑡 = 1 and 𝑡 = 𝑇. This happens, 

for instance, if we drop the observations with zero rates of growth of coronavirus cases that led 

to convergence problems9 when maximizing the likelihood functions in most of our estimated 

models.10  

 

3.3. Distribution of 𝑢𝑖𝑡. 

We now turn to the part of the likelihood function related to the proportion of undocumented 

cases. Estimating (11) is far from straightforward because the distribution of ∆𝑢𝑖𝑡 is generally 

not known if we assume that 𝑢𝑖𝑡 is independently distributed across provinces and over time 

(see, for instance, Wang, 2003, and Orea and Álvarez, 2019). To deal with this issue, we follow 

Wang and Ho (2010) and assume that 𝑢𝑖𝑡 possesses the so-called scaling property so that it can 

be multiplicatively decomposed into two components as follows: 

𝑢𝑖𝑡 = ℎ(𝑧𝑖𝑡,τ) · 𝑢𝑖     (19) 

 
9 Their inclusion makes the rates of growth of coronavirus cases extremely volatile, especially at the beginning of 

the epidemic outbreaks. This extremely high volatility is difficult to capture using the standard distributions for 

both the noise term (𝑣𝑖𝑡) and the one-sided random term capturing the proportion of undocumented cases (𝑢𝑖𝑡). 
10 The number of zero rates of growth decreases notably if we use more recent temporal windows (i.e. not centred 

around the start of the lockdown) to carry out our empirical analysis. For this reason, we will try to deal with this 

issue in our empirical application by using a temporal window that begins one week later, at the expense of a fall 

in the number of pre-lockdown observations. 
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where ℎ𝑖𝑡 = ℎ(𝑧𝑖𝑡,τ) ≥ 0 is a deterministic (scaling) function, 𝑧𝑖𝑡 is a set of undocumented-

cases determinants (often labelled as contextual or z-variables), and 𝑢𝑖 is a homoskedastic one-

sided random variable. For notational ease, we assume hereafter that the panel dataset is 

balanced in the sense that we have not dropped observations along the epidemic development. 

The preceding implies that the first temporal difference of 𝑢𝑖𝑡 in (11) can be rewritten as: 

∆𝑢𝑖𝑡 = (ℎ𝑖𝑡 − ℎ𝑖𝑡−1) · 𝑢𝑖 = ∆ℎ𝑖𝑡𝑢𝑖    (20) 

Note that the distribution of 𝑢𝑖 is not affected by the first-differences transformation. This key 

aspect of their model enabled Wang and Ho (2010) to get a tractable likelihood function for 

their transformed model. The same applies to our stochastic frontier epidemic model. 

Consequently, as the density function of 𝜀𝑖𝑡 = (𝜀𝑖1, … , 𝜀𝑖𝑇) has a closed-form, equation (11) 

can be estimated by Maximum Likelihood (ML), provided that the scaling function ℎ𝑖𝑡 is not 

constant. As Wang and Ho (2010) point out, this condition requires that 𝑧𝑖𝑡 contains at least 

one variable which changes values over time. Obviously, this happens if we include the 

epidemic time 𝐾𝑖𝑡 = 𝑡 − 𝐸𝑖 as determinant of the proportion of undocumented cases.  

Our frontier model in (20) essentially mimics the one proposed by Wang and Ho (2010) to get 

a tractable likelihood function for their transformed model. It also looks like the specification 

introduced by Kumbhakar (1990) and Battese and Coelli (1992) except for the first-

differencing transformation of the scaling function. In this sense, we have basically replaced 

𝜂𝑖𝑡 = 𝑒
−𝜂(𝑡−𝑇) in Battese and Coelli (1992, eq. 2) with 𝜂𝑖𝑡 = ∆ℎ𝑖𝑡 = 𝑒

τ𝑧𝑖𝑡 − 𝑒τ𝑧𝑖𝑡−1 where 𝑧𝑖𝑡 
is a set of undocumented-cases determinants that include a time-trend variable (e.g. 𝑡 or 𝐾𝑖𝑡).  

 

3.4. Likelihood function. 

For simplicity, we will assume that 𝑢𝑖~𝑁
+(0, 𝜎𝑢). We recall that the half-normal distribution 

of 𝑢𝑖 is not affected by the first-differencing transformation of the idiosyncratic one-sided error 

term, so that ∆𝑢𝑖𝑡 = ∆ℎ𝑖𝑡𝑢𝑖 is distributed as a heteroscedastic half-normal. Wang and Ho 

(2010) showed that the aforementioned assumptions on 𝑣𝑖𝑡 and 𝑢𝑖𝑡 yield the following log-

likelihood function for province 𝑖:  

𝑙𝑛𝐿𝑖 = −
𝑁

2
𝑙𝑛(2𝜋) −

1

2
𝑙𝑛|Π| −

1

2
𝜀𝑖′Π

−1𝜀𝑖 

+
1

2
(
𝜇∗
2

𝜎∗
2 −

𝜇2

𝜎𝑢
2) + 𝑙𝑛 [𝜎∗Φ (

𝜇∗

𝜎∗
)] − 𝑙𝑛 [𝜎𝑢Φ (

𝜇

𝜎𝑢
)]           (21) 

where Φ is the standard normal cumulative distribution function, 𝜀𝑖 = (𝜀𝑖1, … , 𝜀𝑖𝑇), 𝜀𝑖𝑡 =
∆𝑙𝑛𝑌𝑖𝑡 − 𝑙𝑛𝛽𝑖𝑡

∗ (·), and 

𝜇∗ =
𝜇 𝜎𝑢

2⁄ −𝜀𝑖′Π
−1∆ℎ𝑖

∆ℎ𝑖′Π
−1∆ℎ𝑖+1/𝜎𝑢

2     (22) 

𝜎∗
2 =

1

∆ℎ𝑖′Π
−1∆ℎ𝑖+1/𝜎𝑢

2     (23) 

where ∆ℎ𝑖 = (∆ℎ𝑖1, … , ∆ℎ𝑖𝑇). Consistent parameters estimates can be obtained by numerically 

maximizing 𝑙𝑛𝐿 = ∑ 𝑙𝑛𝐿𝑡
𝑁
𝑖=1 .  

 

3.5. Frontier specifications of epidemiological models: SIR and epidemic-time frontiers 

The frontier model introduced above provides a general specification of the models to be 

estimated in our empirical section. In order to empirically implement these models, we draw 

on existing epidemiological models to get a better idea of the variables to be included in the 
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empirical specification and its possible functional form. In particular, we draw on the 

Susceptible-Infected-Recovered (SIR) specification of Chudik et al. (2020) and discuss how it 

can be expressed in a frontier setting.  

Chudik et al (2020) derive the following second-order non-linear difference equation 

specification of the SIR model (see their equation 11): 

𝑌̃𝑖𝑡 = 𝑌̃𝑖𝑡−1
2 /𝑌̃𝑖𝑡−2 + 𝜃[𝑌̃𝑖𝑡−1𝑌̃𝑖𝑡−2(1 − 𝛾) − 𝑌̃𝑖𝑡−1

2 ]   (24) 

where 𝑌̃𝑖𝑡 denotes the true number of infected in province 𝑖 at time 𝑡, 𝜃 is the effective 

transmission rate, and 𝛾 is the rate of recovery.11 If we divide both sides of (24) by 𝑌̃𝑖𝑡−1 and 

take logs, we get: 

∆𝑙𝑛𝑌̃𝑖𝑡 = 𝑙𝑛 [𝑌̃𝑖𝑡−1/𝑌̃𝑖𝑡−2 + 𝜃[𝑌̃𝑖𝑡−2(1 − 𝛾) − 𝑌̃𝑖𝑡−1]]  (25) 

As can be seen, the true rate of growth of coronavirus cases depends on first- and second-order 

lagged values and their interaction. Ignoring other random errors, Chudik et al. (2020) assume 

that the ratio of confirmed to true cases at time 𝑡 can be written as: 

𝑌𝑖𝑡

𝑌̃𝑖𝑡
= 𝜋𝑖𝑡 = 𝑒

−𝑢𝑖𝑡 , 𝑢𝑖𝑡 ≥ 0      (26) 

so that 

𝑌𝑖𝑡𝑒
𝑢𝑖𝑡 = 𝑌̃𝑖𝑡, 𝑢𝑖𝑡 ≥ 0       (27) 

where the one-sided term 𝑢𝑖𝑡 in (27) simply measures the gap between the true and confirmed 

number of cases, such that: 

𝑙𝑛𝑌̃𝑖𝑡 = 𝑙𝑛𝑌𝑖𝑡 + 𝑢𝑖𝑡       (28) 

If we use (28) to replace the true number of cases on the left-hand side of (25) with their 

“observed” counterparts, we get:  

∆𝑙𝑛𝑌𝑖𝑡 = 𝑙𝑛𝑓(𝑞𝑖𝑡, 𝛽) − ∆𝑢𝑖𝑡      (29) 

where 

𝑓(𝑞𝑖𝑡, 𝛽) = [𝑌̃𝑖𝑡−1/𝑌̃𝑖𝑡−2 + 𝜃[𝑌̃𝑖𝑡−2(1 − 𝛾) − 𝑌̃𝑖𝑡−1]]    

Note that 𝑓(𝑞𝑖𝑡, 𝛽) is a function of a set of covariates determining the temporal evolution of 

total coronavirus cases. It depends on the true, but unobserved, number of cases in periods 𝑡 −
1 and 𝑡 − 2. In order to estimate (29), we can follow Chudik et al (2020) and replace them with 

their “observed” counterparts. In this case, equation (27) becomes: 

∆𝑙𝑛𝑌𝑖𝑡 = 𝑙𝑛 [
𝑌𝑖𝑡−1

𝑌𝑖𝑡−2
· 𝑒∆𝑢𝑖𝑡−1 + 𝜃[𝑌𝑖𝑡−2𝑒

𝑢𝑖𝑡−2(1 − 𝛾) − 𝑌𝑖𝑡−1𝑒
𝑢𝑖𝑡−1]] − ∆𝑢𝑖𝑡  (30) 

If we assume that the one-sided random term 𝑢𝑡 is i.i.d. and follows, say, a half-normal 

distribution, the distribution of (30) in not known and cannot be estimated using the standard 

stochastic frontier (SF) estimators.  

In order to estimate the SIR-based frontier (30) using standard SF techniques, we need to make 

some simplifying assumptions. Concretely, we assume that the 𝑢-terms inside the brackets 

 
11 It should be pointed out that we use a wider definition of coronavirus cases than Chudik et al (2020) in equation 

(24). Our coronavirus cases in time 𝑡 not only include current infected individuals in time 𝑡 but also previously 

infected people that had already recovered or deceased at that time. Although a similar expression can be obtained 

using our definition of coronavirus cases, we use (24) to facilitate the points set out below.  
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balance each other out and, as is customary in the production economics literature, we can 

assume that 𝑙𝑛𝑓(𝑞𝑖𝑡, 𝛽) is a linear function of 𝑙𝑛𝑌𝑖𝑡−1, 𝑙𝑛𝑌𝑖𝑡−2 and 𝑙𝑛𝑌𝑖𝑡−1𝑙𝑛𝑌𝑖𝑡−2.12 Whether 

such an approximation is valid is an empirical question.13  

The theoretical SIR model suggests that 𝑌̃𝑖𝑡−1, 𝑌̃𝑖𝑡−2 and their natural logarithm can be 

accurately approximated using a third-order function of 𝑙𝑛𝐾𝑖𝑡. Therefore, another empirical 

strategy that does not require using sophisticated econometric techniques is to estimate (29) 

under the assumption that 𝑓(𝑞𝑖𝑡, 𝛽) is a function of 𝑙𝑛𝐾𝑖𝑡, 𝑙𝑛𝐾𝑖𝑡
2  and 𝑙𝑛𝐾𝑖𝑡

3 . If the measurement 

errors associated to replacing 𝑙𝑛𝑌̃𝑖𝑡−1 and 𝑙𝑛𝑌̃𝑖𝑡−2 with the abovementioned three variables do 

not disturb the distribution of the (composed) error term, this version of the model can also be 

estimated using simple SF techniques. 

 

3.6. Simulation exercises 

To check the performance of the frontier logged specification of the SIR model (using temporal 

lags of 𝑙𝑛𝑌𝑖𝑡) and the approximation of the SIR model (using functions of 𝑙𝑛𝐾𝑖𝑡), which we 

label the epidemic-time specification, we carry out a simulation exercise where we vary both 

the panel structure of the data (modifying the cross-sectional and time dimensions) and the 

parameters of the error terms.  

We first generate the true evolution of total coronavirus cases in a representative cross-section 

unit (province) using the discrete-time SIR model developed by Chudik et al. (2020). Following 

these authors, we assume in our simulations that the number of days to recovery or death (𝑑) 

is equal to 14, and that the basic reproduction number (𝑅0) is equal to 3.14 The number of 

individuals (as a fraction of population) that have not yet contracted the disease, have recovered 

or died, or are still infected in day 𝑡 are simulated respectively using their equations 5, 7, and 

11, assuming no social distancing interventions.15 Unit-specific values are then obtained by 

adjusting the theoretical values with simulated values for both the noise term (𝑣𝑖𝑡) and the one-

sided random term (𝑢𝑖) capturing the proportion of undocumented cases. While the values of 

the noise term are simulated using a normal distribution, the simulated values for the one-sided 

random term are obtained using a half-normal distribution. 

In the most general form of the model, the random error terms have a heteroskedastic 

specification where they depend on the epidemic time of each cross-sectional unit (province). 

This general model can be expressed as follows: 

∆𝑙𝑛𝑌𝑖𝑡 = 𝑓(𝑞𝑖𝑡, 𝛽) + 𝑣𝑖𝑡 − (𝑒
𝜂𝑢𝐾𝑖𝑡 − 𝑒𝜂𝑢𝐾𝑖𝑡−1)𝑢𝑖    (31) 

𝑣𝑖𝑡~𝑁(0, 𝑒
𝑙𝑛𝜎𝑣+𝜂𝑣𝐾𝑖𝑡)      (32) 

𝑢𝑖~𝑁
+(0, 𝑒𝑙𝑛𝜎𝑢)      (33) 

where the 𝑓(𝑞𝑖𝑡, 𝛽) in (31) is either the SIR specification or its epidemic-time approximation 

using first and higher-order terms of 𝑙𝑛𝐾𝑖𝑡. The noise term is specified as a function of the 

 
12 Squares of both 𝑙𝑛𝑌𝑡−1 and 𝑙𝑛𝑌𝑡−2 can also be included if a Translog specification is preferred. 
13 The model may be biased not only because we are ignoring 𝑢-terms but also because the lagged values of 

reported cases might be correlated with the time-invariant part of the error term capturing the proportion of 

undocumented cases (𝑢𝑖). This could occur if undocumented (asymptomatic) cases facilitate the dissemination of 

COVID-19 and thereby increase the reporting rates. This is a hotly-debated issue in the epidemiological literature 

and is yet to be resolved.  
14 That is, we assume that the recovery rate (𝛾 = 1/𝑑) is equal to 1/14 and that the rate of transmission (𝛽 = 𝛾𝑅0) 

is equal to 3/14. 
15 Total number of individuals are obtained assuming a population size equal to 1,000 inhabitants. 
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epidemic time where the parameter 𝜂𝑣 can be assigned negative values to reflect decreasing 

volatility of rates of growth of reported cases over time. The undocumented cases, captured by 

the one-sided error time, 𝑢𝑖𝑡, are modeled as a function of the epidemic time through the scaling 

function, while the parameter 𝜂𝑢 can be assigned negative values to capture reductions over 

time in the proportion of undocumented cases.  

The simulations are carried in all cases with a total of 1,000 observations but with two different 

panel data structures where 𝑁 (number of cross-section units) and 𝑇 (number of time periods) 

are varied. The panel structures are (i) (𝑁 = 20; 𝑡 = 50) and (ii) (𝑁 = 40; 𝑇 = 25) and the 

simulation results are presented in separate tables for each structure (Tables 1 and 2). In each 

table, Model 1 refers to the epidemic-time model where 𝑞𝑡 = (𝑙𝑛𝐾𝑖𝑡, 𝑙𝑛𝐾𝑖𝑡
2  and 𝑙𝑛𝐾𝑖𝑡

3) and 

Model 2 corresponds to the SIR specification where 𝑞𝑡 = (𝑙𝑛𝑌𝑖𝑡−1, 𝑙𝑛𝑌𝑖𝑡−2, 𝑙𝑛𝑌𝑖𝑡−1𝑙𝑛𝑌𝑖𝑡−2). 

[Insert Table 1 here] 

[Insert Table 2 here] 

The first block of columns in each table shows the parameter settings of the random error terms 

used to generate the data and the corresponding true average multiplication factors (MF). 

Changes are introduced to the parameter settings used to generate the data by modifying the 

settings of 𝑙𝑛𝜎𝑣, 𝑙𝑛𝜎𝑢, 𝜂𝑢 and 𝜂𝑣. The remaining columns contain the results from the epidemic-

time and SIR specifications where the models are estimated in every case with the parameter 

specifications 𝑙𝑛𝜎𝑣 = −3 and 𝜂𝑣 = 0. We compare the parameter estimates of these models 

with the true parameters used to generate the data, paying special attention to the accuracy of 

the estimate of the distribution of the parameter underlying the multiplication factor, 𝑙𝑛𝜎𝑢.  

We begin by noting that the first two columns in the blocks of results compare the performances 

of the non-frontier (𝑢 = 0) and frontier (𝑢 ≥ 0) specifications of each model based on their 

𝑅2 statistics, and it can be seen that in all cases the frontier specification performs better. 

Consequently, in the discussion of results that follows, the frontier specification is used. It 

should also be noted that the 𝑅2 of the SIR models are higher in all cases, both for non-frontier 

and non-frontier specifications. This is an expected results because the cross-sectional 

information contained in 𝑙𝑛𝑌𝑖𝑡 is much richer than contained in 𝑙𝑛𝐾𝑖𝑡. 

For each panel data structure and for each estimated model, four sets of simulations are 

presented, each set containing two different specifications of 𝑙𝑛𝜎𝑢 in the data generating 

process: simulations 1a, 2a 3a and 4a set 𝑙𝑛𝜎𝑢 = 1 whereas simulations 1b, 2b, 3b and 4b set 

𝑙𝑛𝜎𝑢 = 0.5.  

We start with Table 1, where the panel structure is 𝑁 = 20 and 𝑇 = 50 and focus first on the 

results from Model 1. The first set of simulations (1a and 1b) show that the model performs 

well, with the estimated values of 𝑙𝑛𝜎𝑢 close to their true values and very high correlations (> 

0.99) between the estimated and true 𝑢. Similarly, the estimated mean squared error (MSE) 

between the estimated and true 𝑢 is small (0.001 and 0.002).  

The second set of simulations (2a and 2b) illustrate what happens when heteroskedasticity is 

introduced into the symmetric error term (𝜂𝑣 = −0.1) in the data generating process and this 

is not accounted for by the estimated model which, we recall, is estimated assuming that the 

symmetric error term is homoskedastic (𝜂𝑣 = 0). In this case it is clear that the model performs 

very poorly, with estimated values of 𝑙𝑛𝜎𝑢 substantially higher than the true values. This is 

reflected in much larger MSEs and smaller correlations between the true and estimated 𝑢 than 

the previous set of simulations. Thus, if we suspect that the symmetric error term is 

heteroskedastic then we should make sure to model this.  
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In simulations 3a and 3b, the temporal decay of the one-sided error term, 𝑢, is reduced 

compared to simulations 1a and 1b as reflected by the change in 𝜂𝑢 to -0.1. In the final set of 

simulations we check what happens when the true variance of the symmetric error term is 

increased, this time by increasing the value of 𝑙𝑛𝜎𝑣. Note that in these final two sets of 

simulations the true symmetric error term is homoskedastic (𝜂𝑣 = 0). As can be seen, the 

estimated models perform relatively poorly, substantially underestimating the true 𝑙𝑛𝜎𝑢 in all 

cases and with large MSEs. The model performs particularly poorly when the symmetric error 

variance is large. 

Regarding the performance of Model 2 (SIR specification) for this panel data structure, a 

comparison with Model 1 shows that Model 2 generally provides a better goodness-of-fit, with 

higher values of 𝑅2 in every case.  It can be seen that whereas Model 1 tended to 

underestimate 𝑙𝑛𝜎𝑢 (the exceptions being simulations 2a and 2b), Model 2 tends to 

overestimate it (with the exception of simulations 4a and 4b), thereby overestimating the 

unconfirmed cases. As with Model 1, this overestimation is particularly pronounced when the 

data are generated with heteroskedasticity in the symmetric error tem (simulations 2a and 2b). 

It can also be noted that Model 2 also performs much worse at predicting the parameter 𝜂̂𝑢. 

Turning to Table 2, where the panel structure is 𝑁 = 40 and 𝑇 = 25, we see that Model 1 again 

underestimates 𝑙𝑛𝜎𝑢, this time in all cases, including that when the data are generated with 

heteroskedasticity in the symmetric error term. In this particular case, the model performs much 

better than under the previous panel structure, implying that the greater heterogeneity in the 

cross section counteracts to a certain extent the effect of the unmodelled heteroskedasticity in 

the symmetric error term. As for the SIR specification, 𝑙𝑛𝜎𝑢 is underestimated in two sets of 

simulations (1a and 1b, and 4a and 4b) and overestimated in the other two. With 

heteroskedasticity in the symmetric error term in the data generating process, the model 

performs much better than in the previous panel structure, as happens with Model 1. Note that 

the MSEs and correlations between the true and estimated 𝑢 values are relatively less reliable 

in Model 2 than Model 1.  

Overall, the simulation exercise throws up some interesting results which serve as a guide 

towards designing an appropriate empirical specification of our frontier model. Generally, the 

SIR specification provides a better goodness of fit than the epidemic-time specification because 

𝑙𝑛𝑌𝑖𝑡 exhibits greater cross-sectional heterogeneity than 𝑙𝑛𝐾𝑖𝑡. However, the SIR specifications 

tend to overestimate the 𝑙𝑛𝜎𝑢 parameter and also tends to provide poorer estimates of the 

parameter 𝜂𝑢, leading to it overestimating the (proportion of) unreported cases. The epidemic-

time specification, on the other hand, tends to slightly underestimate the proportion of 

unreported cases but provides relatively more accurate estimates of 𝑙𝑛𝜎𝑢 and 𝜂𝑢. Finally, in 

the panel structure with the smaller cross-section, both models perform particularly poorly 

when they do not take into account heteroskedasticity in the symmetric error term. When the 

cross-section dimension is increased the estimates are much more accurate. In any case, these 

point to the appropriateness of a modelling the symmetric error term as heteroskedastic.  
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4. Empirical illustration 

 

4.1. Sample and data 

We have used several sources to construct a dataset of coronavirus cases across Spain. As most 

control measures began on the days of March 13th and 14th, 2020, we analyse data on 

coronavirus cases two weeks before and two weeks after those dates. In particular, our data set 

covers the period between the onset of the epidemic in each province and the 4th of April.  

The daily evolution of laboratory-confirmed COVID-19 cases in the Spanish mainland 

provinces was collected manually by the authors from the official press releases of the Spanish 

regional governments, the Ministry of Health and Wikipedia. These information sources had 

to be consulted to extend backwards the provincial data published by Datadista in GitHub, 

under a free license. GitHub extracts their data from a variety of documents published by the 

Ministry of Health but only published data from March 13th on.16 For the 28th of March onwards 

we collected the data directly using RTVE Flourish.17 We used the regional online data released 

by the Ministry of Health18 and the province-level dada released by the Spanish regional 

governments to correct typos and lack of information on coronavirus cases in some provinces.  

We do not show the temporal evolution of reported coronavirus cases in each province for 

reasons of space but they can be found in Orea and Álvarez (2020). Instead, in Figure 3 we 

show the onset epidemic dates of each province, which determines the values of the epidemic 

times. A feature worth highlighting is the relatively large dispersion of onset dates across 

provinces. This feature is crucial for the estimation of the epidemic-time version of (26) 

because we need observations with both small and large epidemic times to appropriately 

estimate the parametric function of 𝑙𝑛𝐾𝑖𝑡, especially before the lockdown implementation date. 

  

Figure 3: Epidemic onset dates 

 

Rather than trying to directly explain (predict) the number of reported cases, we use the rates 

of growth of reported coronavirus cases to estimate (11) as we have found that this variable is 

 
16 See https://github.com/datadista/datasets/tree/master/COVID%2019. 

17 See https://app.flourish.studio/visualisation/1451263/. 
18 See https://covid19.isciii.es/. 
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stationary.19 Figure 4 shows the boxplots of the rates of growth of reported cases by epidemic 

time. Two features are evident from this figure. First, the rates of growth of reported cases are 

much larger at the beginning of the epidemic than when the epidemic has advanced. That is, 

our dependent variable tends to decrease over the epidemic time. Second, the volatility is much 

larger when 𝐾𝑖𝑡 is small, and declines as 𝐾𝑖𝑡 increases. This calls for a time-varying 

heteroskedastic specification of our symmetric error term.  

  

Figure 4: Rates of growth of reported cases 

 

It should be mentioned here that zero rates of growth often appear at the beginning of outbreaks, 

where our dependent variable looks like a count variable with the observations taking a small 

range of non-negative integer values. Once the slope of the epidemic curve increases, our 

dependent variable no longer has this feature. Allowing for zero rates of growth tended to 

produce convergence problems when maximizing the likelihood functions. For this reason, we 

estimate our epidemic models dropping the observations with zero rates of growth.20  

 

4.2. Parameter estimates 

Table 3 shows the parameter estimates of several epidemic-time specifications of equation (11). 

That is, the four specifications in this table use a third-order function of 𝑙𝑛𝐾𝑖𝑡 to capture the 

true temporal pattern of the virus epidemic. As the likelihood function of these models has a 

closed form, they have all been estimated by ML. The first two specifications assume that the 

epidemic curve of total coronavirus cases (i.e., 𝑙𝑛𝛽𝑖𝑡
∗ ) is a linear function of a set of covariates, 

whereas the last two specifications assume that 𝑙𝑛𝛽𝑖𝑡
∗  is an exponential function in order to 

impose the theoretical restriction 𝛽𝑖𝑡
∗ ≥ 1. The non-frontier models assume that ∆𝑢𝑖𝑡 = 0, 

thereby ignoring the one-sided random term that appears in equation (11), which is equivalent 

to assuming that the proportion of undocumented cases does not change over time. These non-

frontier models therefore impose the strong assumption that the epidemic curves of both total 

 
19 A Harris-Tzavalis (1999) unit-root test allows us to reject that ∆𝑙𝑛𝑌𝑖𝑡  contains unit roots. The value of the 

statistic is 0.0338 with a p-value equal to zero. 
20 We often achieved convergence when estimating non-frontier specifications of the model. We found in these 

cases that only the initial temporal patterns tended to be biased upwards. We will return to the issue of dropping 

zero-growth in our frontier specifications of the model in the robustness analyses section.    
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and reported coronavirus cases coincide (see equation 10). The frontier models relax this 

assumption by adding the first difference of a one-sided error term that can be multiplicatively 

decomposed into an exponential scaling function (that is, we assume that the scaling function 

that appears in equation (12) is ℎ𝑖𝑡 = 𝑒
𝑧𝑖𝑡′τ) and a homoskedastic half-normal random 

variable.  

[Insert Table 3 here] 

All models include a day-of-the-week effect (not reported) that aims to capture reporting lags 

by regional and national governments. They also all include a dummy variable 𝐷𝑡 that takes 

the value 1 from the 14th of March, 2020, the day marking the imposition of most of the 

coronavirus control measures by the Spanish government. The coefficient of this dummy 

variable allows us to test whether the Spanish lockdown and other public control measures 

implemented around the 14th of March were able to attenuate the spread of the virus within 

each province.21 Notice that our model specification looks like a Difference-in-Difference 

model where we compare an outcome variable before and after treatment (a policy measure). 

Although the lockdown of the population in Spain was implemented on March 14th in all 

provinces, there were substantial differences in the evolution of the epidemic in each province 

on that date. Therefore, our identification strategy is based on the relatively large dispersion of 

epidemic onset dates across provinces and the onset dates being orthogonal to the lockdown 

implementation date. 

Following the scant epidemiology literature that controls for spatial spillover effects, we use a 

spatial lag of X specification (SLX) to measure the propagation effect of mobility of people 

across provinces. In particular, we include 𝑊𝑖𝑙𝑛𝐾𝑡 as an epidemic frontier driver, where 𝑙𝑛𝐾𝑡 
is a 𝑁𝑥1 vector of epidemic times of the Spanish provinces, and 𝑊𝑖 is a 1𝑥𝑁 spatial weight 

vector where the weights measure the degree of mobility (connectivity) between provinces. We 

follow Giuliani et al. (2020) and Gross et al. (2020) and use a contiguity or binary 𝑊𝑖 vector, 

where the weights equal one for adjacent units and zero for non-bordering units.22 Therefore, 

we assume that 𝑙𝑛𝛽𝑖𝑡
∗  depends on the epidemic time of neighbouring provinces. We have 

selected the epidemic time to capture the potential propagation effects between provinces for 

two reasons. First, this variable is exogenous by construction. Second, Vega and Elhorst (2015, 

p. 342) suggest taking the SLX model as the point of departure because this specification is not 

only the simplest specifications but also more flexible in modelling spatial spillover effects 

than other specifications.23 

The specification of both random terms is also common to all models. On the one hand, all 

models have been estimated using a heteroskedastic specification of the noise term because the 

volatility of rates of growth of reported cases decreases throughout the evolution of the 

epidemic. In particular, we assume hereafter that the logarithm of the standard deviation of 𝑣𝑖𝑡 
depends on the logarithm of 𝐾𝑖𝑡. On the other hand, we recall that our empirical strategy relies 

 
21 It is worth mentioning that the third-order function of 𝑙𝑛𝐾𝑖𝑡  captures the temporal pattern of the virus epidemic, 

conditional on 𝐷𝑡 . In other words, the epidemic curve associated to this function can be interpreted as our as if 

scenario with no control measures. 
22 Other spatial specifications based on students' regions of origin, high-speed railway connectivity, and the tourist 

habits of city-residents and their regions of origin were used in Orea and Álvarez (2020). We find very similar 

results using alternative spatial specifications. 
23 Our spatial SLX specification does not distinguish between reported and undocumented propagation across 

provinces. A SAR specification with 𝑊𝑖𝑙𝑛𝑌𝑡 and 𝑊𝑖𝑢𝑡 allows us to deal with this issue. However, estimating this 

model is far from simple because the distribution of 𝑊𝑖𝑢𝑡 is generally not known if 𝑢𝑖𝑡 is independently distributed 

across provinces, as assumed above. As estimating this model presents important methodological challenges, we 

leave an examination of this issue for future research. 



20 
 

on a time-varying proportion of undocumented cases during th evolution of the epidemic (see 

Li et al., 2020). In order to capture temporal changes in 𝑢𝑖𝑡, we assume that the scaling function 

depends on two time-varying contextual variables: i) the epidemic time of each province (𝐾𝑖𝑡), 
in the same fashion as Battese and Coelli (1992); and ii) the logged epidemic time of 

neighbouring provinces (𝑊𝑖𝑙𝑛𝐾𝑡), because we believe that the mobility of people across 

provinces might also have a significant effect on the proportion of undocumented cases. 

Finally, we also interact our lockdown dummy variable 𝐷𝑡 with both 𝐾𝑖𝑡 and 𝑊𝑖𝑙𝑛𝐾𝑡 in order 

to examine whether the Spanish lockdown and other control measures (such as an increase in 

testing) have also reduced the proportion of undocumented cases.  

Table 3 presents the results of the epidemic-time version of the models that use a third-order 

function of 𝑙𝑛𝐾𝑖𝑡 to capture the temporal evolution of coronavirus cases. The intercepts 

estimated in the linear models are close to unity, indicating that the initial rates of growth of 

coronavirus cases are relatively large. The exponential models yield much larger initial growth 

rates, a result that might explain why all the coefficients of the third-order function of 𝑙𝑛𝐾𝑖𝑡 are 

statistically significant using this specification. In contrast, we do not find significant 𝑙𝑛𝐾𝑖𝑡 
coefficients using the linear specification, a result that seems to (incorrectly) suggest that the 

rates of growth of coronavirus cases do not change during the epidemic. Figure 4 suggests, 

however, that these rates of growth decrease rapidly in the early stages of the epidemic.24 This 

feature is better captured by the exponential model as the negative large coefficient of 𝑙𝑛𝐾𝑖𝑡 
found using this specification indicates that these growth rates rapidly decreased a short time 

after the beginning of the epidemic. Moreover, the previous result, together with the positive 

and negative coefficients found respectively for 𝑙𝑛𝐾𝑖𝑡
2  and 𝑙𝑛𝐾𝑖𝑡

3 , is consistent with the 

traditional S-shaped epidemic curves. For all these reasons, the exponential specifications of 

our epidemic curve are the preferred ones.  

Another key result of our empirical exercise is the positive and statistically coefficient found 

for the spatially-lagged variable, 𝑊𝑖𝑙𝑛𝐾𝑡. This indicates that the rate of growth of COVID-19 

cases in one province depends on the development of the epidemic in other provinces. In other 

words, two provinces with similar epidemic histories would evolve differently if one is close 

to one of the epicentres of the coronavirus in Spain and the other is far from these epicentres.25 

Notice that we have interacted 𝐷𝑡 with 𝑊𝑖𝑙𝑛𝐾𝑡. This implies that the coefficient of 𝑊𝑖𝑙𝑛𝐾𝑡 
actually measures propagation effects before the implementation of the Spanish lockdown. The 

positive value found for this coefficient therefore provides evidence supporting the belief that 

the exodus of city residents and students living in the epicentres of the Spanish coronavirus 

crisis that left cities to spend their confinement in their family and vacation homes -  located in 

provinces that still did not have coronavirus cases or that were in the early stages of 

development of their coronavirus epidemics - encouraged spread the virus across the country.  

On the other hand, the coefficient of 𝑊𝑖𝑙𝑛𝐾𝑡 · 𝐷𝑡 is negative and statistically significant, 

indicating that the lockdown has been quite effective in preventing the propagation of the 

coronavirus between provinces. This result seems to confirm the huge reduction in people’s 

mobility found by Google (2020) in its report for Spain. Mobility trends for workplaces and 

public transport hubs (such as subway, bus and train stations) decreased by 63% and 84% 

respectively from the 29th of February to the 11th of April.26  

 
24 This figure also shows a flattening in mid-stages of the epidemic, and very small rates in later stages of the 

epidemic. In other words, Figure 2 indicates that the epidemic curve has the traditional S-shaped form. 
25 Gross et al. (2020) find a strong correlation between the number of infected individuals in each province and 

the population migration from Hubei, the main epicentre of the Chinese epidemic, to each province. 
26 Interestingly, mobility trends for places of residence increased by 26% in the same period. 
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Another issue is whether the lockdown has been effective in reducing the propagation of the 

virus within each province. This within-province impact of the Spanish lockdown can be 

examined using the estimated coefficient of 𝐷𝑡. As 𝑊𝑖𝑙𝑛𝐾𝑡 is measured in deviations with 

respect to the post-lockdown sample mean, the coefficient of 𝐷𝑡 can be interpreted as an 

average effect. We find a negative and statistically significant effect of the Spanish lockdown 

on the rates of growth of coronavirus cases, regardless of whether we use linear or exponential 

specifications for the epidemic curve.27 The estimated effect of the Spanish lockdown on the 

rates of growth of coronavirus cases is likely to be biased upwards if we use a linear 

specification because, using this specification, the set of epidemic time variables is not able to 

capture the observed decline in the rates of growth of coronavirus cases. This does not occur if 

we use an exponential specification, which is able to produce the traditional S-shaped epidemic 

curve. Indeed, while the average effect that is estimated using the linear frontier model is quite 

large (13.7%), the exponential frontier model produces lower effects of the lockdown on the 

rates of growth of coronavirus cases (6.8% on average). In summary, these results allow us to 

conclude that the lockdown has been effective in both preventing the propagation of the 

coronavirus between provinces and in attenuating the propagation of the virus within each 

province. In other words, we find that the Spanish lockdown, together with other control 

measures, has flattened the epidemic curves of all provinces.  

We now focus our discussion on the distribution of both random terms. As expected, we find 

that the standard deviation of the noise term decreases with the logarithm of 𝐾𝑖𝑡. Regarding the 

one-sided random term, we find that the coefficients of the scaling function are negative and 

most of them are statistically significant. This suggests, again as expected, that the proportion 

of undocumented cases decreases over time. Moreover, we find that the decline in 𝑢𝑖𝑡 is even 

larger after the lockdown, a result that is in line with Li et al. (2020). Also worth noting are the 

estimates of the standard deviation of 𝑢𝑖 in both the linear and exponential specifications. This 

is a critical parameter because it conditions the estimated proportion of coronavirus cases that 

have not been detected by the regional health systems in all Spanish provinces. Despite the 

relatively modest (logged) standard deviation of 𝑢𝑖 that appears in Table 1, we find very 

different under-reporting rates across the Spanish provinces. The large temporal and cross-

sectional heterogeneity in (under-)reporting rates found in our empirical application is one of 

the contributions of the paper as the previous epidemiological literature often relies on common 

rates.  

The aforementioned heterogeneity will be examined in more detail later, after we discuss the 

average rates of both reported and undocumented cases and multiplication factors found using 

our preferred model. We find that the average under-reporting rates (𝑈𝑅 = 𝑈/𝑌∗) using the 

exponential frontier model is 57.8%, implying that the average reporting rate (𝑅𝑅 = 𝑌/𝑌∗) is 

42.2%28. The latter percentage lies between the two reporting rates provided by Li et al. (2020) 

in their study of the Chinese coronavirus epidemic. If we use our estimated average to compute 

multiplication factors (𝑀𝐹 = 𝑌∗/𝑌), we find that the total number of cases that our frontier 

exponential model predicts is on average more than twice the observed number of cases (i.e. 

𝑀𝐹 = 2.38). As such, our average multiplication factor is slightly larger than that obtained by 

Millimet and Parmeter (2020) for a sample of 63 countries using a non-spatial and non-

autoregressive frontier approach. Our findings are close the assumption made by Chudik et al. 

 
27 One might argue that this effect can only be identified one or two weeks after the implementation of the national 

lockdown. This is likely true, but we should keep in mind that the social distancing measures, local lockdowns, 

and closures of schools and universities were implemented before the national lockdown. 
28 Much larger under-reporting rates are obtained if we estimate the model partially using NLLS (discussed in the 

next section). For this reason, the above average values can be viewed as a lower bound of the true values. 
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(2020) who specifically account for underreporting using a multiplication factor of two, which 

they derive from data on the number of asymptomatic individuals aboard the Diamond Princess 

cruise ship. 

Regarding the temporal path of reporting rates, Figure 5 shows the province-specific reporting 

rates by epidemic time computed using our preferred exponential frontier model. Several 

comments are in order regarding this figure. First, we observe that all rates tend to increase 

throughout the evolution of the epidemic because we have found before that 𝑢𝑖𝑡 tends to decline 

over time. Second, the sample mean varies from 25.3% to 52.5%. These averages reveal that 

the multiplication factor is on average close to 4 at the beginning of the epidemic and close to 

2 at later stages.29 Third, the minimum RR values suggest that there are (many) provinces with 

very low reporting rates, and hence extremely large multiplication factors, especially at the 

very beginning of their epidemic episodes. In this sense, our estimated reporting rates are in 

line with Li et al. (2020), who also find very low reporting rates (14%) before the 

implementation of the Chinese travel restrictions.30  

  

 Figure 5: Temporal evolution of reporting rates 

 

Figure 5 shows the large variety of reporting rates in Spain but not the geographical distribution 

of reporting rates across the Spanish provinces. This is shown in Figure 6. As the reporting 

rates vary over time, we have depicted this map using the provincial reporting rates evaluated 

at the epidemic time 20. Figure 6 seems to suggest the existence of two groups of provinces, 

one with relatively large reporting rates and the other with relatively low reporting rates. Figure 

6 shows that most, but not all, of the provinces with small reporting rates are located in the 

regions of Castilla-León, Extremadura, and Valencia, and the two main epicentres in Spain 

(Madrid and Barcelona). The multiplication factors in these provinces (not shown) are on 

average close to 8. The largest reporting rates are found in coastal Andalucía and several 

provinces located in the Iberian and Pyrenees mountain ranges. Consequently, their 

 
29 If we use individual reporting rates to compute individual multiplication factors, we get values on the order of 

two or three digits, with a mean value of 8, which are consistent with the large attack rates (i.e. proportions of 

infected people) found for Spain by Flaxman et al. (2020) in their study using 11 European countries. 
30 The fraction of all infections that were documented after the travel restrictions was estimated to be 65%, a 

slightly larger reporting rate than that found in our paper after the implementation of the Spanish lockdown. 
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multiplication factors are much smaller than those computed for the previously-mentioned 

provinces (close to 1.7 on average).  

 

Figure 6: Geographical distribution of reporting rates 

 

4.3. Robustness analyses 

In this section we provide some extensions to the base model and robustness checks. First, we 

compare our previous results with those obtained using a specification inspired in the SIR 

theoretical epidemic model, presented in Section 3.3, where we replace the third-order function 

of 𝑙𝑛𝐾𝑖𝑡 with the first and second-order lagged values of 𝑙𝑛𝑌𝑖𝑡 and their interaction. Second, 

we extend our model by introducing additional variables. An appealing feature of both 

epidemic-time (𝑙𝑛𝐾𝑖𝑡) and SIR-based specifications is that they can be estimated using 

epidemic-type data only, i.e., the rates of growth of coronavirus cases depend in our models on 

own and neighbours’ epidemic times, lagged cases of COVID-19, date of implementation of 

control measures, etc. However, this does not preclude adding other covariates. We take 

advantage of this to explore the influence of a series of socio-economic and environmental 

variables on both the epidemic frontier and (through the scaling function) the proportion of 

under-reported cases. Our third analysis of robustness has to do with the distributional 

assumptions made to obtain ML estimates. A common criticism levelled against the use of 

stochastic frontier models is that they rely heavily on distributional assumptions. As an 

alternative, we use a non-linear least squares (NLLS) estimator which does not rely so heavily 

on distributional assumptions and compare it to our models estimated by ML. A fourth analysis 

aims to examine the effect of different temporal “windows” when estimating our 

epidemiological frontier model. A final robustness analysis has to do with the specification of 

the variance-covariance matrix of our noise term. We assume here that the noise term capturing 

measurement errors in the rate of growth of coronavirus cases is autocorrelated over time, in 

the same fashion as Wang and Ho (2010). 

 

4.3.1. Alternative specifications: SIR-based models 



24 
 

We compare the results obtained using the SIR-based specification presented in Section 3.3 

with those of our epidemic-time (𝑙𝑛𝐾𝑖𝑡) model. The results from the different specifications of 

the SIR-based model are presented in Table 4.  

[Insert Table 4 here] 

As in the simulation exercise presented in Section 3.3., we find that the SIR-based 

specifications provide a better goodness-of-fit in all cases than the epidemic-time models based 

on 𝑙𝑛𝐾𝑖𝑡. There are two plausible explanations for this. The first is that the number of reported 

cases is a cumulative and non-stationary variable, so that the lagged values of 𝑙𝑛𝑌𝑖𝑡 are highly 

correlated with the rate of growth of reported cases. The other, and more compelling reason, 

however, has to do with the large cross-sectional heterogeneity of 𝑙𝑛𝑌𝑖𝑡 compared to 𝑙𝑛𝐾𝑖𝑡, 
which implies that the cross-sectional differences in 𝑙𝑛𝑌𝑖𝑡 are more informative than the cross-

sectional differences in 𝑙𝑛𝐾𝑖𝑡. 

As with the epidemic-time models, we find a positive and statistically coefficient for 𝑊𝑖𝑙𝑛𝐾𝑡 
in all the SIR-specification models, indicating that the mobility of the people across provinces 

did clearly spread the virus across the country. We find a negative and statistically significant 

coefficient for the interaction of 𝑊𝑖𝑙𝑛𝐾𝑡 with the lockdown dummy variable, 𝐷𝑡, in line again 

with the epidemic-time specification. Interestingly, the estimated values are larger in absolute 

terms than those obtained in the corresponding epidemic-time models in Table 3. This seems 

to suggest that the lockdown has been even more effective in preventing the propagation of the 

coronavirus between provinces using the SIR specification. In contrast, the within-province 

impact of the Spanish lockdown captured by the estimated coefficient of 𝐷𝑡 is smaller than in 

the epidemic-time models. Overall, both the epidemic-time and SIR-based specifications 

suggest the existence of significant spatial spillovers and provide evidence that the Spanish 

lockdown and control measures implemented around the 14th of March were effective in 

reducing the propagation of COVID-19 within and between provinces.  

Regarding the two random terms, in the SIR-based models we find a decreasing standard 

deviation for the noise term, as occurred with the epidemic-time models. The parameter 

estimates of the scaling function, on the other hand, differ notably from those obtained in the 

epidemic-time models. For the linear SIR-based model we find no statistically significant 

coefficients for the time-varying variables of the scaling function, implying that this 

specification poorly estimates the parameter measuring the standard deviation of 𝑢𝑖. A 

comparison with the corresponding linear model using the epidemic-time specification is 

instructive: whereas 65.1% of total cases were found to have been under-reported on average 

using the linear epidemic-time specification, this rises to 96.6% using the linear SIR-based 

specification. The flip-side of this that the linear SIR-based model provides extremely low 

reporting rates (close to 3%). This is not plausible as it is equivalent to an average 

multiplication factor close to 30. The linear epidemic-time model, in contrast, provides more 

reasonable rates for reported coronavirus cases (close to 35%). This result seems to confirm 

the findings from our simulation exercise, where we found that the SIR-based models tend to 

overestimate the standard deviation of the one-sided random term, and thereby the proportion 

of undocumented cases. 

Whereas the linear SIR-based and epidemic-time models provide very different average 

reporting rates, the exponential specification of the SIR-based model provides quite similar 

average reporting rates to its epidemic-time equivalent (40.6% and 42.2%, respectively). The 

exponential form of the SIR-based frontier epidemic curve therefore tends to attenuate the bias 

in the estimation of the one-sided error term. This suggests that exponential rather than linear 
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epidemic specification should be used when estimating a frontier SIR-based model, despite our 

finding that they provide slightly worse goodness-of-fit than the linear specifications. 

 

4.3.2. Additional variables: socio-economic determinants 

Stojkoski et al. (2020) point out that a multitude of social, demographic and economic criteria, 

aside from the biological and epidemiological factors, influence the extent of the spread of the 

coronavirus disease through the population, as evidenced during this first wave of the 

pandemic.31 To examine this issue, we have estimated our preferred model, namely the 

exponential epidemic-time specification, by adding, one at a time, a series of socio-economic 

variables. The introduction of crucial socio-economic determinants not only provides an 

estimate of their potential impact but may also offer guidance for future policies aimed at 

preventing the emergence of epidemics.32 These are introduced firstly as determinants of the 

one-sided error term (𝑢) measuring the proportion of under-reporting cases, and secondly as 

drivers of the frontier epidemic curve that captures the overall evolution of the pandemic. Table 

5 provides the parameter estimates of the new variables once they have been introduced into 

the model one at a time.33  

[Insert Table 5 here] 

The socio-economic environment is measured through three variables: the provincial GDP per 

capita and the shares of the services and agricultural sectors in total provincial employment. 

The demographic structure is measured using the following variables: population size (in logs), 

population density (people per squared km, in logs), and three population age variables 

(percentage of population aged 15-24, percentage of population aged 25-65, and percentage of 

population aged over 65). As there is an active debate regarding the influence of the natural 

environment, we have also included two weather variables (temperature and rainfall) that were 

available at provincial level.  

Looking first at the results for the scaling function, which show the influence of these variables 

on the proportion of under-reporting cases, it can be seen that none of them has a significant 

effect. While the lack of significance suggests that under-reporting rates are unaffected by these 

variables, an alternative explanation may lie in the fact that the random 𝑢-term we are 

modelling here is time-invariant. Although their coefficients are not statistically significant, 

some of the estimated signs are worth mentioning, especially the positive coefficients of youth 

and middle-age population, and the negative sign of elderly people.  

Turning to their effect on the overall epidemic curve, most of the demographic and weather 

variables do not also have a significant frontier effect. We do find, however, that the most-

populated provinces have had more intensive coronavirus epidemics, most likely due to 

agglomeration of individuals and the fact that the use of public transport is more prevalent in 

these provinces. We also find that the COVID-19 epidemic is more intense in provinces with 

 
31 These authors identify a total of 30 potential socio-economic factors, including healthcare infrastructure, 

societal characteristics, economic performance, demographic structure etc. However, they find that only a few 

determinants are relevant, and that the extent to which each determinant is able to provide a credible explanation 

varies across countries due to the heterogeneity of their socio-economic characteristics. 

32 This information can also be very useful for policy makers and health authorities to plan the relaxation of any 

future national lockdown. 
33 Other coefficients are not shown for space limitations - the complete set of coefficients is available from the 

authors upon request. 
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a relatively large share of workers in the service sector. In contrast, the epidemic is weaker in 

provinces with a relatively large share of workers in the agriculture sector. The risk of 

contagion in the service sector is likely much larger than in the agricultural sector because 

whereas as many service jobs are indoor, tasks in the agricultural sector are mainly outdoor.  

 

4.3.3. Relaxing distributional assumptions: NLLS results 

The estimation of our frontier epidemic model comprises the parameters of the frontier 

epidemic curve, the parameters of the scaling function, and the structure of the two error 

components (i.e., the variance of 𝑣𝑖𝑡 and 𝑢𝑖). These parameters have been estimated 

simultaneously in a single stage by ML once a set of (perhaps strong) distributional 

assumptions on both random terms have been made.  

Given that our model possesses the scaling property, distributional assumptions can be relaxed 

somewhat. In particular, Simar et al. (1994) show that some parts of a model possessing the 

scaling property can be estimated using a method-of-moments (MM) approach without making 

distributional assumptions. Following the MM approach introduced by these authors, the 

parameters of both the frontier epidemic curve and the scaling function can be estimated in a 

first stage using a non-linear least squares (NLLS) estimator. This stage is independent of 

distributional assumptions with respect to the composed error component, except for it having 

a zero mean. Distributional assumptions are only invoked in the second stage, in which we 

obtain ML estimates of the parameter(s) describing the variance of 𝑣𝑖𝑡, conditional on the 

parameters estimated in the first stage. To see this, note that once we assume (12), our 

regression model can be rewritten as ∆𝑙𝑛𝑌𝑖𝑡 = 𝑙𝑛𝛽𝑖𝑡
∗ (·) − ∆ℎ𝑖𝑡𝜇 + 𝜀𝑖̃𝑡, where 𝜀𝑖̃𝑡 = 𝑣𝑖𝑡 − ∆ℎ𝑖𝑡 ·

(𝑢𝑖 − 𝜇), and 𝜇 = 𝐸(𝑢𝑖) ≥ 0. As 𝐸(𝜀𝑖̃𝑡) = 0, this equation can be estimated by NLLS. Given 

that we have already assumed that 𝑢𝑖~𝑁
+(0, 𝜎𝑢), this implies that we immediately have an 

estimate of 𝜎𝑢 using the first-stage estimate of 𝜇 from the expression 𝜎̂𝑢 = 𝜇̂√𝜋 2⁄ . Thus, only 

the parameter(s) describing the variance of 𝑣𝑖𝑡 should be estimated in the second-stage of the 

procedure. 

The NLLS parameter estimates of our linear and exponential epidemic-time and SIR-based 

models are provided in Tables 6 and 7 respectively. As with our previous models estimated by 

ML, most of our NLLS-estimated models provide evidence that the mobility of the people 

across provinces did clearly spread the virus across the country. The results also suggest that 

the lockdown has been effective in preventing the propagation of the coronavirus between 

provinces. Regarding the two random terms, we again find a decreasing standard deviation for 

the noise term. The parameter estimates of the scaling function vary notably, although we 

always find a significant coefficient for at least one of the time-varying variables of the scaling 

function. 

[Insert Table 6 here] 

[Insert Table 7 here] 

The most important differences between MLE and NLLS-estimated models are found when 

we compute the rates of (under)reporting of coronavirus cases. These rates heavily depend on 

the parameter measuring the standard deviation of 𝑢𝑖. While this parameter is often close to 1 

when using our MLE-estimated models, it rises to 2 or higher when we use NLLS techniques. 

We also find smaller estimates for the standard deviation of 𝑣𝑖𝑡. Consequently, the NLLS-

estimated models provide extremely low reporting rates that range on average from 0% to 7%, 

and the multiplication factors obtained using NLLS techniques therefore seem to be seriously 
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upwardly-biased. Apart from differences in size, the coefficient of correlation between 

reporting rates from MLE and NLLS-estimated models is relatively low (close to 60%) when 

we use the epidemic-time specification for the epidemic curve. Interestingly, the coefficient of 

correlation rises to 87% when we use the SIR-based specification. This seems to suggest that 

the alleged bias decreases when we use a frontier specification based on a theoretical 

epidemiological model.   

Whether this is a data-driven result or has to do with the NLLS technique itself is an empirical 

issue. To examine this, we carried out the same simulation exercises that were discussed in 

Section 3, but now using a NLLS estimator.34 These simulations clearly indicated that the 

NLLS estimator tends to produce larger standard deviations of 𝑢𝑖 than the MLE estimator when 

we use an epidemic-time specification for the epidemic curve. Moreover, NLLS tends to 

overestimate the true standard deviation of 𝑢𝑖, thereby seriously underestimating the true 

reporting rates. The performance of the NLLS estimator was even poorer when we used a SIR-

based specification of the model. We find extremely poor estimates of the true proportions of 

undocumented cases, likely caused by lack of variations in our estimates of 𝑢𝑖𝑡.  

 

4.3.4. Temporal windows 

We also examine the effect of different temporal windows when estimating our 

epidemiological frontier model. As most control measures began on the days of March 13th and 

14th, the data used in our empirical analysis on coronavirus cases corresponded to a temporal 

window defined between the onset of the epidemic in each province and the 4th of April (i.e., 

about three weeks before and three weeks after mid-March). The sample epidemic time ranges 

from 𝐾𝑖𝑡 = 3 to 𝐾𝑖𝑡 = 40 in this window, labelled hereafter as W0340. The first two days of 

the epidemic of each province are not used because we need two temporal lags to estimate the 

SIR-based models. 

As mentioned above, zero rates of growth of coronavirus cases often appear at the beginning 

of outbreaks. We estimated our epidemic models dropping these observations, for two reasons. 

First, we found convergence problems when estimating the frontier specifications of our 

epidemic curves. Second, when using non-frontier econometric techniques we found that only 

the initial temporal patterns were biased once we dropped observations with zero rates of 

growth of coronavirus cases (we use a third-order function of 𝑙𝑛𝐾𝑖𝑡).  

In order to partially address this issue of dropping observations, we re-estimate our models 

using two additional alternative temporal windows. The epidemic time ranges from 𝐾𝑖𝑡 = 7 to 

𝐾𝑖𝑡 = 44 in the first window (W0744 hereafter) and ranges from 𝐾𝑖𝑡 = 10 to 𝐾𝑖𝑡 = 47 in the 

second window (W1047 hereafter). As we move from the first through to the third window, 

there is a fall in the number of zero rates of growth dropped from the sample. Whereas in the 

first (original) window we dropped 134 observations with zero rates of growth of coronavirus 

cases, this figure falls by half in the second window (67 observations were dropped in W0744), 

and falls by half again in the third and final window (only 30 observations were dropped in 

W1047). 

While the panel datasets for each window are highly unbalanced due to the widely-differing 

epidemic onset dates across provinces, the second and third windows use more complete panel 

 
34 These simulations were not included in Section 3 because our focus there was on the specification of the frontier 

epidemic curve and not with the approach selected to estimate the model. The simulations are available from the 

authors upon request.  
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datasets. They do, however, reduce the number of pre-lockdown observations, which is 

problematic in that these are needed not only to measure the effectiveness of the Spanish 

lockdown to battle the COVID-19 pandemic but also to estimate spatial propagation effects 

across the Spanish provinces. As such, there are advantages and disadvantages to using 

windows that begin at later dates. To assess these trade-offs, we present the parameter estimates 

of the exponential epidemic-time specification for the three different temporal windows 

(W0340, W0744, W1047). The parameter estimates are presented in Table 8. 

[Insert Table 8 here] 

As the volatility of the rates of growth of reported cases is much larger in the earlier stages of 

the epidemic, the goodness-of-fit increases notably in the second and third windows. We find 

similar provincial reporting rates, with correlation coefficients close to 90% in all cases. The 

temporal patterns of these reporting rates are also similar, although the reporting rates are larger 

in the later windows. On the other hand, we do not find significant spatial propagation effects 

across provinces when we use the second and third windows because they include much fewer 

pre-lockdown observations, a result that is to be expected. As the national lockdown of the 

population basically halted the mobility of people across provinces, this effect can only be 

measured if there is a relatively large dispersion of epidemic developments across provinces 

before the implementation of the Spanish lockdown. Using the final window (W1047), we do 

not find a significant effect of the lockdown on the rates of growth of coronavirus cases. Again, 

this is to be expected because W1047 includes fewer of the pre-lockdown observations that are 

needed to identify a differential temporal pattern before and after the policy measure.  

 

4.3.5. Variance-covariance matrix specification 

As a traditional two-sided error term was simply added in order to capture measurement errors 

in the rate of growth of coronavirus cases, our noise term in equation (11) is not autocorrelated 

over time. This term is no longer independently distributed over time if we introduce the noise 

term before computing the rates of growth of coronavirus cases, in the spirit of Chudik et al. 

(2020) and Millimet and Parmeter (2020). We now assume that the noise term capturing 

measurement errors in the rate of growth of coronavirus cases is autocorrelated over time, in 

the same fashion as Wang and Ho (2010). 

When varying the temporal windows above, we found that the number of zero rates of growth 

dropped from the sample decreases when we used more recent temporal windows. Moreover, 

we did not find severe convergence issues when we estimated W1047 using all observations 

because this window only includes 30 observations with zero rates of growth of coronavirus 

cases. In what follows, we use this temporal window to compare the parameter estimates of 

two models that uses the same specification of the epidemic curve (i.e., the exponential 

epidemic-time specification) but two different specifications for the variance-covariance 

matrix of our noise term. The panel datasets used in both cases do not have missing 

observations in between 𝑡 = 1 and 𝑡 = 𝑇. As the rates of growth in this window vary less than 

in the earlier temporal windows, we only use a second-order function of 𝑙𝑛𝐾𝑖𝑡 to depict the 

epidemic curve. The results are presented in Table 9. 

[Insert Table 9 here] 

Generally speaking, we find that our results based on a diagonal definition of the variance-

covariance matrix of the noise term are quite robust. Moreover, this specification outperforms 

the alternative specification as the goodness-of-fit of the model using (31) is larger than the 

goodness-of-fit of the model using (34). We find that the coefficients of 𝑙𝑛𝐾𝑖𝑡 and 𝑙𝑛𝐾𝑖𝑡
2  are 
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statistically significant in both models. Again, we do not find significant spatial propagation 

effects across provinces; nor do we find significant effects of the lockdown on the rates of 

growth of coronavirus cases, due to lack of pre-lockdown observations in this window. The 

frontier coefficients are thus robust to different specifications of the variance-covariance matrix 

of the noise term. On the other hand, regardless of whether we use (31) or (34) to model the 

variance-covariance matrix of the noise term, we find that its standard deviation decreases with 

𝑙𝑛𝐾𝑖𝑡. This feature of the noise term is thus robust to the specification of the noise term as 

autoregressive. Finally, we find that most of the coefficients of the scaling function are negative 

using both specifications, indicating again that the proportion of undocumented (reported) 

cases decreases (increases) over time. We only get a larger increase of reported cases using the 

autoregressive variance-covariance matrix (34).  

 

4.4. Discussion 

Despite the relatively modest (logged) standard deviations of 𝑢𝑖 found in all estimated models, 

we find very different reporting rates across the Spanish provinces. The large cross-sectional 

heterogeneity in reporting rates found in our empirical application is one of the contributions 

of the paper, as previous epidemiological literature often relies on common rates. For instance, 

the strength of the government mitigation policy is modelled in Chudik et al. (2020) in terms 

of the proportion of population that is exposed to COVID-19. To estimate this proportion, they 

need to make an assumption regarding the reporting rate. In particular, they use the data from 

the Diamond Princess cruise ship reported by Moriarty et al. (2020) to calibrate this rate and 

assume that the average reporting rate is equal to 50% in all Chinese provinces. They find a 

very large exposure rate in Hubei province (the epicentre of the epidemic), where reducing this 

exposure required time due to the novelty of the virus. The estimated exposure rates in other 

provinces range between 9% and 87%, indicating that the Chinese control measures did have 

very different effects in each province.35 This somewhat unexpected result might be caused by 

the common value used by these authors to calibrate the reporting rate. On average, most of 

our reporting rates range from 10% to 79%, a similar variation found for the exposure rates in 

Chudik et al. (2020). Therefore, it might be the case that their estimated variety of exposure 

rates is caused by of the fact that their econometric model ignores systematic variations in 

reporting rates across provinces.  

Most of our estimated models provide evidence that the exodus from the epicentres of the 

Spanish coronavirus crisis of people wishing to spend the lockdown in provinces with few or 

no cases of COVID-19 markedly spread the virus across the country. Therefore, restricting 

people’s mobility (between or within provinces) seems to be a reasonable measure to attenuate 

the propagation of the coronavirus. In this sense, our results show that the lockdown has been 

effective in both preventing the propagation of the coronavirus between provinces, as well as 

in attenuating the propagation of the virus within each province. In other words, we find that 

the Spanish lockdown, together with other control measures, was an effective measure to battle 

COVID-19 in the absence of pharmaceutical measures (e.g., vaccines). 

The average contraction in the rates of growth of coronavirus cases attributed to the lockdown 

is around 6.8 percentage points (from 18.2% with no lockdown to 11.4% with the lockdown). 

The largest reductions are found in provinces that are either close to the epicentres of the 

coronavirus or adjacent to provinces with more advanced epidemics. The reductions in the rates 

of growth of coronavirus cases attributed to the lockdown in these provinces are much larger 

 
35 The estimated effectiveness of the social distancing policies is robust to using province-specific or pooled 

parameters and large or shorter temporal periods. 
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than the average value. For instance, we find notable effects in Ávila, Segovia and Cuenca, 

which neighbour Madrid, the Spanish province hardest-hit by coronavirus. Large effects are 

also found in Tarragona and Lérida, which neighbour Barcelona, the second hardest-hit 

Spanish province. We also find large effects of the lockdown in Ciudad Real and Albacete, two 

adjacent provinces that are two local foci of the coronavirus in the centre of Spain. In southern 

Spain, we find large effects in Córdoba, which neighbours Málaga, the main epicentre of the 

coronavirus in this area. We also find important effects for sparsely-populated provinces such 

as León, Soria, Palencia, Burgos and Teruel. It is worth mentioning that the epidemic in many 

of these provinces began almost one week later than it did in neighbouring provinces. 

Therefore, while local and national lockdowns of the population are effective measures to battle 

COVID-19, they should be implemented at the very early stages of the epidemics. 

We also extended our pure frontier epidemic models by including a set of socio-economic 

factors that might influence the evolution of the epidemic in each province. This information 

can be very useful for policy makers and health authorities when planning the relaxation of a 

lockdown. We find that the most-populated provinces had more intensive coronavirus 

epidemics. More (less) intensive coronavirus epidemics are also found in provinces with a 

relatively large share of workers in the service (agricultural) sector. These results, together the 

strong propagation effects estimated for provinces close to the main epicentre of the 

coronavirus in Spain, suggest carrying out a gradual, focused relaxation of the control measures 

in Spain. Thus, the relaxation of the lockdown should likely be slow in the most-populated 

provinces, in provinces with a higher share of the workforce in the service sector, and in the 

main epicentres of the coronavirus of Spain. Control measures could be lifted earlier in 

provinces mainly engaged in primary-sector production.36  

To conclude our discussion, it should be noted that another mitigation measure often 

implemented by the health authorities and government is the implementation of massive testing 

programs in order to uncover asymptomatic (or undocumented) coronavirus cases. Our results 

seem to support this type of measure because the cumulative incidence of COVID-19 tends to 

decrease with the initial reporting rates. We also find that there is a direct and strong 

relationship between the reporting rates and the onset of the epidemic. The earlier the onset 

day, the smaller the reporting rates.37 Therefore, our findings suggest prioritizing the detection 

of coronavirus cases at early stages of the epidemics as an effective strategy to combat the 

propagation of this virus. 

 

5. Conclusions and future research. 

 

This is one of the first papers that attempts to bridge the epidemiological modelling and 

production economics literatures by proposing stochastic frontier analysis as a useful tool with 

which the epidemic curves of COVID-19 can be estimated. We have proposed two different 

types of stochastic epidemic frontier specifications, one based on the econometric SIR 

specification of Chudik et al. (2020) and the other based on previous work by Orea and Álvarez 

(2020) which approximates the epidemic curves with functions of the epidemic times, i.e., the 

time since the onset of the pandemic. The most appealing feature of these models is that they 

 
36 As most tasks in the construction sectors are outdoor, this sector might also be restarted before other sectors. 
37 This result simply provides evidence about the difficulty to detect this new and little-known virus by the Spanish 

regional health systems. 
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both can be estimated using standard stochastic frontier techniques. One of the specifications 

of the model can be interpreted as a heteroskedastic version of the model introduced by Wang 

and Ho (2010). As such, the model we propose should prove useful for practitioners to control 

for individual effects in a production economics context under time-varying heteroskedasticity. 

The models presented permit undocumented cases to be estimated, rather than assumed, and 

also allow spatial propagation of the virus across geographical areas to be modelled. A 

simulation exercise indicated that the epidemic-time model performed better, and in an 

empirical application to the case of the original outbreak of the pandemic in Spain we provide 

estimates from several different specifications of this model. The results from our models 

provided insights into the effectiveness of the national and regional lockdown measures and 

the influence of socio-economic factors in the propagation of the virus.  

Our work can be extended in several directions. In the empirical application in this paper we 

availed of data at provincial level that allowed us to analyse the effectiveness of national and 

regional institutional responses at this level of disaggregation. However, several regions in 

Spain, including Andalusia, Asturias, the Basque Country, Cantabria, Catalonia, Madrid and 

Murcia have also provided data on coronavirus cases at municipal level. By adapting our 

empirical strategy to this more disaggregated data we will be able to evaluate the local control 

measures established by the regional governments during the second and successive wave of 

contagion of COVID-19. 

Another extension would be to explore the possibility of different collectives within the 

population having different proportions of asymptomatic or undocumented cases. For example, 

data at provincial level by gender would allow us to examine whether the proportion of 

undocumented cases among women is larger or smaller than that among men. If this were the 

case, public health authorities should be particularly aware of gender-based channels of 

transmission of the virus in sectors of the economy where one gender or the other makes up a 

substantial majority of the workforce. These types of differences between collectives can be 

modelled with a system of epidemic spatial stochastic frontier equations, one for each 

collective. The copula-based maximum likelihood (ML) approach introduced by Lai and 

Huang (2013) is well-suited for such an analysis.  

Finally, the relationship between reported and undocumented cases could be explored in greater 

depth. Li et al (2020) have indicated that undocumented (asymptomatic) cases facilitate the 

dissemination of COVID-19. One way to capture this cross-group propagation effect would be 

to use a two-step procedure where, in the first step, a standard DEA is used to obtain an estimate 

of the proportion of undocumented cases and then, in the second step, this estimate is included 

as a regressor in the epidemic model of reported cases. The estimated coefficient of this variable 

shows the elasticity of reported cases with respect to changes in the proportion (number) of 

undocumented cases, and therefore can be used to test the so-called cross-group propagation 

effect. Adetutu et al. (2016) adopted a similar two-stage strategy to produce wide range of 

rebound effects from super-conservation to backfire. 
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Table 1. Simulation results for sample structure (𝑵 = 𝟐𝟎, 𝑻 = 𝟓𝟎) 

 

Sim. 

No. 

Parameter Settings and MF  Model 1: Epidemic time (𝐥𝐧𝑲𝒕) specification  Model 2: SIR specification 

Parameter Values True 

MF 

 Results  Results 

 
𝑙𝑛𝜎𝑣 𝜂𝑢 𝜂𝑣 𝑙𝑛𝜎𝑢 𝑒−𝑢 

 𝑅2 
(𝑢
= 0) 

𝑅2 
(𝑢
≥ 0) 

𝑙𝑛𝜎𝑢 
MSE 

(𝑢
− 𝑢̂) 

Corr.(𝑢, 𝑢̂) 𝜂̂𝑢  
𝑅2 
(𝑢
= 0) 

𝑅2 
(𝑢
≥ 0) 

𝑙𝑛𝜎𝑢 
MSE 

(𝑢
− 𝑢̂) 

Corr.(𝑢, 𝑢̂) 𝜂̂𝑢 

                    
1a -3 -

0.2 

0 1 1.289  0.469 0.635 0.951 0.001 0.997 -0.203  0.618 0.727 1.605 0.061 0.997 -0.226 

     (0.139)  (0.048) (0.057) (0.185) (0.002) (0.002) (0.007)  (0.055) (0.043) (0.166) (0.026) (0.001) (0.005) 

                    
                    

1b -3 -

0.2 

0 0.5 1.121  0.384 0.475 0.413 0.002 0.993 -0.207  0.485 0.608 1.118 0.021 0.993 -0.232 

     (0.026)  (0.041) (0.050) (0.208) (0.002) (0.004) (0.012)  (0.037) (0.035) (0.161) (0.011) (0.003) (0.011) 

                    
                    

2a -3 -

0.2 

-

0.1 

1 1.269  0.716 0.961 1.547 0.114 0.950 -0.198  0.919 0.966 1.633 0.089 0.995 -0.216 

     (0.088)  (0.055) (0.011) (0.153) (0.055) (0.021) (0.005)  (0.021) (0.009) (0.143) (0.027) (0.002) (0.004) 

                    
                    

2b -3 -

0.2 

0.1 0.5 1.120  0.743 0.929 1.251 0.098 0.931 -0.199  0.855 0.939 1.265 0.060 0.989 -0.210 

     (0.029)  (0.041) (0.016) (0.264) (0.066) (0.032) (0.009)  (0.029) (0.013) (0.132) (0.019) (0.005) (0.007) 

                    
                    

3a -3 -

0.1 

0 1 2.015  0.422 0.565 0.892 0.011 0.996 -0.106  0.598 0.672 1.402 0.053 0.988 -0.135 

     (0.429)  (0.039) (0.049) (0.178) (0.013) (0.003) (0.005)  (0.041) (0.037) (0.221) (0.041) (0.003) (0.005) 

                    
                    

3b -3 -

0.1 

0 0.5 1.346  0.335 0.406 0.318 0.022 0.975 -0.111  0.479 0.551 0.825 0.012 0.979 -0.148 

     (0.082)  (0.035) (0.046) (0.198) (0.109) (0.155) (0.015)  (0.031) (0.032) (0.212) (0.006) (0.009) (0.013) 

                    
                    

4a -2 -

0.2 

0 1 1.285  0.146 0.196 0.788 0.016 0.980 -0.226  0.373 0.400 0.575 0.042 0.904 -0.439 

     (0.101)  (0.029) (0.039) (0.259) (0.010) (0.011) (0.030)  (0.036) (0.036) (1.237) (0.054) (0.200) (0.447) 

                    
                    

4b -2 -

0.2 

0 0.5 1.118  0.088 0.1 0.032 0.186 0.634 -0.205  0.314 0.336 0.401 0.021 0.888 -0.477 

     (0.026)  (0.016) (0.024) (0.670) (0.308) (0.558) (0.330)  (0.023) (0.027) (0.721) (0.014) (0.105) (0.363) 
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Table 2. Simulation results for sample structure (𝑵 = 𝟒𝟎, 𝑻 = 𝟐𝟓) 

 

Sim. 

No. 

Parameter Settings and MF Model 1: Epidemic time (𝐥𝐧𝑲𝒕) specification Model 2: SIR specification 

Parameter Values True MF Results Results 

 
𝑙𝑛𝜎𝑣 𝜂𝑢 𝜂𝑣 𝑙𝑛𝜎𝑢 𝑒−𝑢 

𝑅2 
(𝑢 = 0) 

𝑅2 
(𝑢 ≥ 0) 

𝑙𝑛𝜎𝑢 
MSE 

(𝑢 − 𝑢̂) 
Corr.

(𝑢, 𝑢̂) 
𝜂̂𝑢 

𝑅2 
(𝑢 = 0) 

𝑅2 
(𝑢
≥ 0) 

𝑙𝑛𝜎𝑢 
MSE 

(𝑢 − 𝑢̂) 
Corr.

(𝑢, 𝑢̂) 
𝜂̂𝑢 

                  
1a -3 -0.2 0 1 1.562  0.436  0.704  0.931  0.003  0.997  -0.202  0.728  0.777  0.622  0.042  0.944  -0.108  

     (0.134) (0.041) (0.042) (0.134) (0.002) (0.002) (0.007) (0.031) (0.032

) 

(0.218) (0.014) (0.027) (0.018) 

                  
                  

1b -3 -0.2 0 0.5 1.234  0.332  0.503  0.393  0.003  0.993  -0.209  0.571  0.622  0.131  0.018  0.937  -0.106  

     (0.044) (0.038) (0.055) (0.150) (0.002) (0.003) (0.010) (0.042) (0.042

) 

(0.176) (0.009) (0.030) (0.020) 

                  
                  

2a -3 -0.2 -0.1 1 1.566  0.581  0.948  0.970  0.001  0.998  -0.203  0.918  0.962  1.141  0.032  0.997  -0.178  

     (0.146) (0.041) (0.012) (0.123) (0.001) (0.001) (0.005) (0.014) (0.009

) 

(0.182) (0.020) (0.002) (0.008) 

                  
                  

2b -3 -0.2 0.1 0.5 1.229  0.588  0.885  0.458  0.001  0.996  -0.206  0.845  0.915  0.610  0.007  0.996  -0.186  

     (0.033) (0.039) (0.018) (0.108) (0.001) (0.002) (0.009) (0.021) (0.014

) 

(0.140) (0.004) (0.002) (0.008) 

                  
                  

3a -3 -0.1 0 1 3.049 0.293 0.577 0.902 0.013 0.997 -0.101 0.612  0.683  1.275  5.400  0.815  -0.023  

     (0.883) (0.034) (0.048) (0.121) (0.013) (0.002) (0.003) (0.033) (0.035

) 

(0.249) (9.867) (0.065) (0.008) 

                  
                  

3b -3 -0.1 0 0.5 1.688 0.219 0.379 0.383 0.011 0.992 -0.102 0.478  0.536  1.258  11.827  0.760  -0.013  

     (0.150) (0.026) (0.047) (0.150) (0.007) (0.003) (0.005) (0.033) (0.039

) 

(0.437) (22.727) (0.050) (0.006) 

                  
                  

4a -2 -0.2 0 1 1.573  0.153  0.249  0.812  0.031  0.979  -0.227  0.441  0.441  0.814  2.798  -0.061  0.000  

     (0.144) (0.026) (0.040) (0.191) (0.019) (0.010) (0.028) (0.030) (0.030

) 

(0.224) (0.897) (0.568) (0.000) 

                  
                  

4b -2 -0.2 0 0.5 1.233  0.080  0.107  -0.472  0.055  0.801  -0.379  0.346  0.346  0.362  1.115  -0.075  0.000  

     (0.040) (0.015) (0.028) (1.642) (0.040) (0.334) (0.342) (0.022) (0.022

) 

(0.167) (0.366) (0.657) (0.000) 
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Table 3. MLE: Epidemic-time (𝒍𝒏𝑲𝒊𝒕) specification 

  

Linear Exponential 

Non-frontier model Frontier model Non-frontier model Frontier model 

Coef.   s.e. Coef.   s.e. Coef.   s.e. Coef.   s.e. 

Overall epidemic curve                         

                            

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.8083 ** 0.3734 0.8950   0.7857 4.1081 *** 1.1877 5.1474   3.2768 

  𝑙𝑛𝐾𝑖𝑡 -0.3775   0.4130 -0.4959   0.8168 -7.0363 *** 1.5375 -8.8926 ** 3.8386 

  𝑙𝑛𝐾𝑖𝑡
2  0.1492   0.1518 0.1602   0.2869 3.2610 *** 0.6438 4.0997 *** 1.5123 

  𝑙𝑛𝐾𝑖𝑡
3  -0.0248   0.0183 -0.0227   0.0333 -0.5010 *** 0.0863 -0.6332 *** 0.1964 

  𝑊𝑖𝑙𝑛𝐾𝑖𝑡 0.0360 * 0.0185 0.0830 *** 0.0201 0.0835 *** 0.0499 0.1278 * 0.0724 

  𝐷𝑡 -0.1815 *** 0.0304 -0.1376 *** 0.0295 -0.5964 *** 0.0875 -0.4977 *** 0.1306 

  𝑊𝑖𝑙𝑛𝐾𝑡 ∙ 𝐷𝑡 -0.0466 *** 0.0187 -0.0782 *** 0.0175 -0.1964 *** 0.0541 -0.2879 *** 0.0592 

Noise term (𝑙𝑛𝜎𝑣)                         

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.7954 *** 0.1375 1.1092 *** 0.0924 0.8430 *** 0.1333 1.1247 *** 0.1111 

  𝑙𝑛𝐾𝑖𝑡 -1.0215 *** 0.0485 -1.1673 *** 0.0322 -1.0411 *** 0.0468 -1.1714 *** 0.0390 

Scaling function                         

  𝐾𝑡       -0.0383 *** 0.0112       -0.0437 *** 0.0145 

  𝑊𝑖𝑙𝑛𝐾𝑡       -0.1376 *** 0.0429       -0.0796   0.0501 

  𝐾𝑡 ∙ 𝐷𝑡       -0.0020 * 0.0011       -0.0026 * 0.0014 

  𝑊𝑖𝑙𝑛𝐾𝑡 ∙ 𝐷𝑡       -0.0281 ** 0.0136       -0.0350 * 0.0194 

u-term (𝑙𝑛𝜎𝑢)                         

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡       1.2122 *** 0.5060       1.1527 *** 0.4280 

  Day of the week effects Yes     Yes     Yes     Yes     

  Mean log LF 0.6572     1.6373     0.6648     1.6379     

  Pseudo R-sq 0.3442     0.3735     0.3291     0.3507     

  Mean RR       0.3490          0.4220     

  Obs. 1290     1290     1290     1290     

Notes: *, **, *** indicate significance at the 10, 5, 1% level, respectively. 
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Table 4. MLE:  SIR specification 

  

Linear Exponential 

Non-frontier model Frontier model Non-frontier model Frontier model 

Coef.   s.e. Coef.   s.e. Coef.   s.e. Coef.   s.e. 

Overall epidemic curve                         

                            

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.2897 *** 0.0301 0.1842 *** 0.0385 -1.4418 *** 0.1058 -2.0487 *** 0.1978 

  𝑙𝑛𝑌𝑡−1 0.1948 *** 0.0230 0.0370   0.0369 0.2666 *** 0.0679 -0.0901   0.1467 

  𝑙𝑛𝑌𝑡−2 -0.2380 *** 0.0220 -0.1062 *** 0.0330 -0.5327 *** 0.0618 -0.3994 *** 0.1238 

  𝑙𝑛𝑌𝑡−1 ∙ 𝑙𝑛𝑌𝑡−2 0.0053 *** 0.0007 0.0020   0.0020 -0.0105 ** 0.0053 -0.0334 ** 0.0149 

  𝑊𝑖𝑙𝑛𝐾𝑡 0.0550 *** 0.0181 0.0972 *** 0.0218 0.1941 *** 0.0491 0.4492 *** 0.1442 

  𝐷𝑡 -0.1121 *** 0.0296 -0.0574   0.0363 -0.3384 *** 0.0875 -0.0790   0.1639 

  𝑊𝑖𝑙𝑛𝐾𝑖𝑡 ∙ 𝐷𝑡 -0.0591 *** 0.0182 -0.0863 *** 0.0187 -0.2344 *** 0.0524 -0.3795 *** 0.1157 

Noise term (𝑙𝑛𝜎𝑣)                         

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.8743 *** 0.1352 1.0180 *** 0.0926 0.6446 *** 0.1288 0.9607 *** 0.1537 

  𝑙𝑛𝐾𝑡 -1.0710 *** 0.0476 -1.1553 *** 0.0326 -0.9807 *** 0.0453 -1.1295 *** 0.0554 

Scaling function                         

  𝐾𝑡       -0.0091   0.0233       -0.0538 *** 0.0188 

  𝑊𝑖𝑙𝑛𝐾𝑖𝑡       -0.0185   0.0395       -0.0688 * 0.0370 

  𝐾𝑡 ∙ 𝐷𝑡       0.0005   0.0012       0.0002   0.0018 

  𝑊𝑖𝑙𝑛𝐾𝑡 ∙ 𝐷𝑡       0.0044   0.0103       0.0042   0.0284 

u-term (𝑙𝑛𝜎𝑢)                         

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡       2.5189   2.1028       1.2793 *** 0.2587 

  Day of the week effects Yes     Yes     Yes     Yes     

  Mean log LF 0.7174     1.6843     0.6934     1.6817     

  Pseudo R-sq 0.3799     0.4531     0.3827     0.4344     

  Mean RR       0.0340           0.4060     

  Obs 1290     1290     1290     1290     

Notes: *, **, *** indicate significance at the 10, 5, 1% level, respectively. 
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Table 5. MLE: Exponential epidemic-time (𝒍𝒏𝑲𝒊𝒕) specification with socio-economic 

determinants 

    Coef.   s.e. t-stat LR test Mean log LF 

Overall epidemic curve             

  𝐴𝑔𝑒 15 − 25 (%) -0.0065   0.0456 -0.14 0.03 1.63789 

  𝐴𝑔𝑒 25 − 65 (%) 0.0131   0.0407 0.32 0.10 1.63792 

  𝐴𝑔𝑒 > 65 (%) 0.0010   0.0115 0.09 0.00 1.63788 

  𝑆𝑒𝑟𝑣𝑖𝑐𝑒 (%) 0.0256 *** 0.0090 2.84 10.32 1.64188 

  𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 (%) -0.0335 * 0.0173 -1.94 9.88 1.64171 

  𝑙𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦 0.1269 * 0.0703 1.81 6.40 1.64036 

  𝑙𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 0.1929 ** 0.0926 2.08 11.15 1.6422 

  𝑙𝑛𝐺𝐷𝑃𝑝𝑐 0.1498   0.2323 0.64 0.41 1.63804 

  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 0.0138   0.0141 0.98 1.75 1.63856 

  𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 -0.0005   0.0061 -0.08 0.03 1.63789 

Scaling function             

  𝐴𝑔𝑒 15 − 25 (%) 0.0727   0.2074 0.35 0.34 1.63801 

  𝐴𝑔𝑒 25 − 65 (%) 0.1509   0.1975 0.76 1.50 1.63846 

  𝐴𝑔𝑒 > 65 (%) -0.0335   0.0643 -0.52 0.85 1.63821 

  𝑆𝑒𝑟𝑣𝑖𝑐𝑒 (%) 0.0204   0.0498 0.41 0.83 1.6382 

  𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 (%) -0.0232   0.0481 -0.48 1.16 1.63833 

  𝑙𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦 0.0738   0.2663 0.28 0.39 1.63803 

  𝑙𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 0.1070   0.3139 0.34 0.67 1.63814 

  𝑙𝑛𝐺𝐷𝑃𝑝𝑐 0.2266   1.1090 0.20 0.10 1.63792 

  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 0.0030   0.0642 0.05 0.00 1.63788 

  𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 0.0213   0.1184 0.18 0.15 1.63794 
Notes:  

- Each variable has been introduced one at a time. 

- Other coefficients are not shown for space limitations. All coefficients are available from the authors upon 

request.  
- *, **, *** indicate significance at the 10, 5, 1% level, respectively. 
-  
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Table 6. NLLS: Epidemic-time (𝒍𝒏𝑲𝒊𝒕) specification 

  

Linear Exponential 

Non-frontier model Frontier model Non-frontier model Frontier model 

Coef.   s.e. Coef.   s.e. Coef.   s.e. Coef.   s.e. 

Overall epidemic curve                         

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.9862 *** 0.2756 0.5872 * 0.3545 0.9910   0.8877 4.7994   19.8171 

  𝑙𝑛𝐾𝑖𝑡 -0.4893   0.3383 0.2884   0.5696 -2.0803   1.2809 -8.5911   32.0505 

  𝑙𝑛𝐾𝑖𝑡
2  0.1717   0.1386 -0.2373   0.2680 0.9778 * 0.5932 3.8408   14.6131 

  𝑙𝑛𝐾𝑖𝑡
3  -0.0255   0.0182 0.0472   0.0426 -0.1748 ** 0.0857 -0.5638   1.9899 

  𝑊𝑖𝑙𝑛𝐾𝑡 0.0629 *** 0.0228 0.0302   0.0231 0.1687 *** 0.0545 0.4453   0.4421 

  𝐷𝑡 -0.2079 *** 0.0411 -0.1664 *** 0.0429 -0.6176 *** 0.0992 -2.1014   4.9969 

  𝑊𝑖𝑙𝑛𝐾𝑖𝑡 ∙ 𝐷𝑡 -0.0804 *** 0.0231 -0.0844 *** 0.0228 -0.2966 *** 0.0592 -1.0258   2.3479 

Noise term (𝑙𝑛𝜎𝑣) 

 

                      

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡       0.8916 *** 0.1351       0.9026 *** 0.1326 

  𝑙𝑛𝐾𝑡       -1.0756 *** 0.0478       -1.0802 *** 0.0467 

Scaling function 

 

                      

  𝐾𝑡       0.0401 *** 0.0056       -0.0388   0.0263 

  𝑊𝑖𝑙𝑛𝐾𝑡       -0.0900 ** 0.0453       -0.0693 ** 0.0340 

  𝐾𝑡 ∙ 𝐷𝑡       -0.0001   0.0008       -0.0012   0.0014 

  𝑊𝑖𝑙𝑛𝐾𝑡 ∙ 𝐷𝑡       0.0023   0.0064       0.0004   0.0077 

u-term (𝑙𝑛𝜎𝑢)                         

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡       1.2378 * 0.6543       1.9489 *** 0.4810 

  Day of the week effects Yes     Yes     Yes     Yes     

  Mean log LF                         

  Pseudo R-sq 0.3498     0.3753     0.3523     0.3676     

  Mean RR       0.0020          0.0710     

  Obs 1290     1290     1290     1290     

Notes: *, **, *** indicate significance at the 10, 5, 1% level, respectively. 
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Table 7. NLLS:  SIR specification 

  

Linear Exponential 

Non-frontier model Frontier model Non-frontier model Frontier model 

Coef.   s.e. Coef.   s.e. Coef.   s.e. Coef.   s.e. 

Overall epidemic curve                         

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.3340 *** 0.0382 0.1553   0.1018 -1.2951 *** 0.1208 -2.4057 *** 0.6045 

  𝑙𝑛𝑌𝑡−1 0.0524 * 0.0320 0.0419   0.0325 0.0111   0.0901 -0.1029   0.2126 

  𝑙𝑛𝑌𝑡−2 -0.0984 *** 0.0307 -0.0783 *** 0.0323 -0.2659 *** 0.0799 -0.4472 * 0.2324 

  𝑙𝑛𝑌𝑡−1 ∙ 𝑙𝑛𝑌𝑡−2 0.0050 *** 0.0011 0.0049 *** 0.0011 -0.0088   0.0066 -0.0291   0.0262 

  𝑊𝑖𝑙𝑛𝐾𝑡 0.0837 *** 0.0224 0.0734 *** 0.0226 0.2325 *** 0.0567 0.4488 ** 0.1927 

  𝐷𝑡 -0.1573 *** 0.0364 -0.1237 *** 0.0395 -0.4280 *** 0.0992 -0.5818 ** 0.2806 

  𝑊𝑖𝑙𝑛𝐾𝑡 ∙ 𝐷𝑡 -0.0924 *** 0.0224 -0.0813 *** 0.0224 -0.2758 *** 0.0612 -0.4960 ** 0.2036 

Noise term (𝑙𝑛𝜎𝑣)                        

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡       0.7563 *** 0.1331       0.6707 *** 0.1311 

  𝑙𝑛𝐾𝑡       -1.0374 *** 0.0469       -1.0041 *** 0.0462 

Scaling function                        

  𝐾𝑡       -0.0126 ** 0.0053       -0.0238 *** 0.0067 

  𝑊𝑖𝑙𝑛𝐾𝑡       -0.0288   0.0267       -0.0627 *** 0.0238 

  𝐾𝑡 ∙ 𝐷𝑡       0.0000   0.0004       -0.0005   0.0009 

  𝑊𝑖𝑙𝑛𝐾𝑡 ∙ 𝐷𝑡       0.0018   0.0037       0.0042   0.0070 

u-term (𝑙𝑛𝜎𝑢)                         

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡       2.5197 *** 0.8417       1.9251 *** 0.1856 

  Day of the week effects Yes     Yes     Yes     Yes     

  Mean log LF                         

  Pseudo R-sq 0.4011     0.4114     0.4038     0.4205     

  Mean RR       0.0000           0.0300     

  Obs 1290     1290     1290     1290     

Notes: *, **, *** indicate significance at the 10, 5, 1% level, respectively. 
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Table 8. MLE: Epidemic-time (𝒍𝒏𝑲𝒊𝒕) specification with different temporal windows 

    W0340 W0744 W1047 

    Coef.   s.e. Coef.   s.e. Coef.   s.e. 

Overall epidemic curve                   

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 5.1474   3.2768 31.3080   20.0320 2.5563   41.0100 
  𝑙𝑛𝐾𝑖𝑡 -8.8926 ** 3.8386 -39.1260 * 21.3360 -10.8850   41.3300 

  𝑙𝑛𝐾𝑖𝑡
2 4.0997 *** 1.5123 15.4096 ** 7.5498 6.1740   13.8290 

  𝑙𝑛𝐾𝑖𝑡
3 -0.6332 *** 0.1964 -2.0246 ** 0.8826 -1.0255   1.5368 

  𝑊𝑖𝑙𝑛𝐾𝑡 0.1278 * 0.0724 0.107   0.1116 -0.0035   0.1765 

  𝐷𝑡 -0.4977 *** 0.1306 -0.4942 ** 0.2522 -0.4194   0.4307 

  𝑊𝑖𝑙𝑛𝐾𝑡 ∙ 𝐷𝑡 -0.2879 *** 0.0592 -0.3453 *** 0.1054 -0.2671   0.1872 

Noise term (𝑙𝑛𝜎𝑣)                   
  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 1.1247 *** 0.1111 2.9305 *** 0.1539 4.1323 *** 0.2357 
  𝑙𝑛𝐾𝑡 -1.1714 *** 0.0390 -1.7956 *** 0.0474 -2.1826 *** 0.0707 
Scaling function                   
  𝐾𝑡 -0.0437 *** 0.0145 -0.0655 *** 0.0079 -0.0674 *** 0.0061 
  𝑊𝑖𝑙𝑛𝐾𝑡 -0.0796   0.0501 0.0119   0.0433 0.0216   0.0484 
  𝐾𝑡 ∙ 𝐷𝑡 -0.0026 * 0.0014 -0.0021 * 0.0012 -0.002   0.0015 
  𝑊𝑖𝑙𝑛𝐾𝑡 ∙ 𝐷𝑡 -0.0350 * 0.0194 -0.0298   0.0211 -0.0286   0.0248 

u-term (𝑙𝑛𝜎𝑢)                   
  Intercept 1.1527 *** 0.4280 1.7139 *** 0.4982 1.7959 *** 0.5377 

  Day of the week effects Yes     Yes     Yes     

  Mean log LF 1.6379     1.9594     2.2137     
  Obs 1290     1357     1394     

  Pseudo R-sq 0.3507     0.4157     0.4635     

Epidemic time                   

  Minimum  3     7     10     

  Maximum 40     44     47     

  Mean RR 0.422     0.438     0.473     

 Zero rates of growth (#) No   No   No   
Notes: *, **, *** indicate significance at the 10, 5, 1% level, respectively. 
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Table 9. Diagonal vs. first-differences variance-covariance matrix of the noise term 

    W1047A W1047B W1047C 

    Coef.   s.e. Coef.   s.e. Coef.   s.e. 

Overall epidemic curve                   

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 -24.5151 *** 5.9564 -29.0482 *** 6.1906 -38.8470 *** 6.0106 

  𝑙𝑛𝐾𝑖𝑡 16.4949 *** 3.9424 19.7441 *** 4.0948 25.4290 *** 4.4757 

  𝑙𝑛𝐾𝑖𝑡
2 -3.0285 *** 0.6332 -3.5628 *** 0.6556 -4.4960 *** 0.7296 

  𝑙𝑛𝐾𝑖𝑡
3 -0.0299   0.1813 0.2430   0.1629 -0.0210   0.5540 

  𝑊𝑖𝑙𝑛𝐾𝑡 -0.3842   0.4481 -0.6655 * 0.3471 0.2807   0.9476 

  𝐷𝑡 -0.2528   0.1961 -0.4942 *** 0.1612 -0.1728   0.5536 

  𝑊𝑖𝑙𝑛𝐾𝑡 ∙ 𝐷𝑡                   

Noise term (𝑙𝑛𝜎𝑣) 4.1414 *** 0.2183 4.3246 *** 0.2278 5.8213 *** 0.1642 

  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 -2.1849 *** 0.0661 -2.2389 *** 0.0698 -2.5586 *** 0.0543 

  𝑙𝑛𝐾𝑡                   

Scaling function -0.0711 *** 0.0062 -0.0634 *** 0.0058 -0.0793 *** 0.0034 

  𝐾𝑡 0.0348   0.0484 0.0471   0.0462 0.1456 *** 0.0448 

  𝑊𝑖𝑙𝑛𝐾𝑡 -0.002   0.0015 -0.0035 ** 0.0015 -0.0059   0.0041 

  𝐾𝑡 ∙ 𝐷𝑡 -0.0296   0.0251 -0.0441 * 0.0242 -0.0407   0.0325 

  𝑊𝑖𝑙𝑛𝐾𝑡 ∙ 𝐷𝑡                   

u-term (𝑙𝑛𝜎𝑢) 1.8568 *** 0.4922 1.7275 *** 0.5083 2.2081 *** 0.2993 

  Intercept Yes     Yes     Yes     

  Day of the week effects Yes     Yes     Yes     

  Mean log LF 2.2119     2.1735     1.6378     

  Obs 1394     1424     1424     

  Pseudo R-sq 0.4575     0.3457     0.2877     

 Zero rates of growth (#) No   Yes   Yes   

 𝛱 matrix Diagonal     Diagonal     First-Differences   

Epidemic time                   

  Minimum  10     10     10     

  Maximum 47     47     47     

  Mean RR 0.482     0.470     0.473     
Notes: *, **, *** indicate significance at the 10, 5, 1% level, respectively. 


