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Abstract 

This paper evaluates the impact of the land consolidation (LC) processes that have taken place in 

Asturias over recent decades. These processes received European funding given that their purpose 

is to improve the economic activity in rural areas. As many parishes have been involved in two 

or more LC processes, we use a Difference-in-Difference (DiD) approach with heterogeneous 

treatment timings to examine the temporal evolution of parishes’ livestock production and farms. 

To our best knowledge, a similar DiD model has not been estimated as yet in the literature.  We 

examine whether LC helps to reverse rural depopulation in Asturias. We find that parishes’ 

livestock production increases about 3% on average once one or more LC processes have been 

implemented, and that the LC processes have especially attenuated the decline in the number of 

farms in (coastal) parishes where dairy farms predominate. We do not find strong evidence 

regarding the effectiveness of the LC processes in securing the level of rural population, except 

in some of the parishes located in western Asturias. 
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1. Introduction 

Land consolidation (LC) has been acknowledged as an effective instrument for 

adding new farmland, improving land productivity and promoting sustainable land use 

(see Zhou et al, 2019 and the references therein). LC always involves land reallocations 

aimed at mitigating the effect of land fragmentation (LF) on agriculture However such 

policy measures often encompass other elements ;the provision of relevant infrastructure, 

e.g. rural roads and irrigation networks; an increased protection of natural resources 

accompanied by sustainable management; other useful facilities for the local population 

such as village renewal  and the provision of social services, water and sanitation. For this 

reason, LC policies have increasingly become instruments for rural sustainable 

development in Europe and worldwide. 

 The effect of LF on agriculture has worried policymakers for a long time because 

most empirical studies conclude that fragmentation negatively affects agricultural 

production. A summary of the most recent literature on this topic can be found in previous 

manuscripts published by the authors (see Orea et al., 2015, 2020). It is germane to point 

out here that LF causes an increase in traveling time between parcels located some 

distance from one another, which induces both lower labour productivity and higher 

transport costs for inputs and outputs; reduces the efficiency of machines use; and land is 

lost when forming plot boundaries and access routes. The LC literature examines the other 

side of the fragmentation issue, i.e. the effect of reallocation of parcels on agricultural 

production, ecological environment, and population. This literature generally finds that 

LC has exerted wide-ranging impacts on promoting the scale of agricultural production 

as well as increasing the competitiveness of agricultural products in Europe and other 

countries, such as Spain.  

Our review of the literature shows that there is not a generally accepted 

methodology to measure LF and LC effects. The methodologies used in this literature 

vary from country to country due to lack of data availability, differences in both data 

disaggregation and data collection, the existence of different objectives of land-use policy 

or different categories of LC effects, e.g. agricultural production effects, transportation 

effects, effects on drainage and similar measures, the impact on ecological environment, 

or the social and regional economic effects.1 Furthermore, inconsistent conclusions exist 

as to the impact of LC on several of the above categories.2  

This paper evaluates the social and economic effects of the LC processes that have 

occurred over recent decades in Asturias, an autonomous region located in north-west 

Spain. A dominant traditional agricultural economy and a historical tradition of property 

inheritance by sub-division within families, have produced a high degree of LF in rural 

Asturias.3  As regional policy makers strongly believe that the high degree of LF in 

 
1 For instance, there are studies that analyse the effects of LF and LC at a micro-level or farm level (Wu et 

al., 2005; Manjunatha et al., 2013; Orea et al., 2015; Nilsson, 2018), while others carry out the analysis at 

a spatial level, taking the municipalities or regions as units of study assessing the effect on spatial 

distribution of economic activities (Crecente et al, 2002; Du et al., 2018; Dudzińska et al., 2018), even 

focusing on the socio-economic improvement of rural areas and the reduction of poverty in these territories 

(Zhou et al., 2019). 
2 For instance, Zhou et al (2019) point out that while some studies showed that LC has a negative impact 

on the ecosystem services value and landscape diversity (see e.g. Zhang et al., 2014), other papers found a 

positive ecological effect (see e.g. Yu et al., 2010 and Hartvigsen, 2014). 
3 As similar comments can be made for Galicia, an autonomous region that is adjacent to Asturias, several 

authors have tried to measure the economic and social effect of the LC processes in this neighbouring 

region.  For instance, Crecente et al. (2002) show that LC contributes to retaining farmland in agricultural 

use and improves the population evolution in rural areas. Miranda et al (2006) conclude that LC have 
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Asturias prevents local farms in being competitive, they have promoted the 

implementation of more than 250 public LC processes in this region since the 60s in order 

to mitigate the degree of LF. According to the information provided by the Principality 

of Asturias, the LC processes carried out in Asturias over this period have involved more 

than 28 thousand owners and about 60 thousand hectares of land with an average 

investment amounting to 2,300 euros per hectare. Moreover, these processes have been 

able to reduce the number of plots from 224 to 58 thousand plots. These processes have 

been receiving European funds because of their potential to improve the economic 

activity in rural areas, increase farmer income, and stabilize rural populations. 

Figure 1 shows the number of LC processes carried out in Asturias over the period 

1963-2017. Notice that the number of LC processes has intensified since 2000. This 

sizeable enforcement is most likely caused by the Legal Decree 80/1997 that established 

the conditions under which farmers can request the regional government to initiate a LC 

process. This regulation avoids negotiation and legal costs and allows the public 

administration to change access routes to the new plots. On the other hand, and following 

the principles established in the Agrarian Regulation and Rural Development Law of 

1989, the public administration itself can also promote a local LC process.4 

 

Figure 1. Number of LC processes in Asturias (1963-2017) 

 

 

While other studies have carried out their analyses taking the municipalities or 

regions as units of study (see e.g. Crecente et al, 2002; Du et al., 2018; Dudzińska et al., 

2018), we perform our analysis using even more disaggregated data. Indeed, our 

observations are parishes, i.e. Christian territorial entities that are much smaller than the 

standard municipalities (provinces) used in urban (regional) economics. This potentially 

 
improved agricultural land structure by reducing the number of plots per holding as well as the generalized 

drop in the number of active holdings, serving also to mitigate the decline in the population of rural areas.. 
4 The above two regulations can be found in the Asturias’ Official Bulletin  

(https://sede.asturias.es/portal/site/Asturias/menuitem.048b5a85ccf2cf40a9be6aff100000f7/?vgnextoid=c

0c756a575acd010VgnVCM100000bb030a0aRCRD&i18n.http.lang=es&calendarioPqBopa=true). 

https://sede.asturias.es/portal/site/Asturias/menuitem.048b5a85ccf2cf40a9be6aff100000f7/?vgnextoid=c0c756a575acd010VgnVCM100000bb030a0aRCRD&i18n.http.lang=es&calendarioPqBopa=true
https://sede.asturias.es/portal/site/Asturias/menuitem.048b5a85ccf2cf40a9be6aff100000f7/?vgnextoid=c0c756a575acd010VgnVCM100000bb030a0aRCRD&i18n.http.lang=es&calendarioPqBopa=true


5 
 

allows us to identify better the economic and social effects attributable to the LC 

processes that have taken place in Asturias.  

Although we do have information on all the public LC processes in Asturias, 

including those that ended before 2000, we focus our analysis on the period 2001-2017 

because of the lack of reliable data on parishes’ farms activity in previous decades. 

Furthermore, the study is focused on western Asturias because, as shown in Figure 2, 

since 2001 the LC processes were implemented with great intensity in the western 

municipalities and parishes of Asturias.5 Additionally no information is available 

regarding public investment for many of the LC processes carried out in eastern Asturias. 

 

Figure 2. Land consolidation processes in Asturias (2001-2017) 

 

In our application, we try to distinguish between three different cohorts of LC 

processes, one of them external to the sample period. The first cohort involves LC 

processes that took place in the 90s, but with possibly non-negligible effects during our 

sample period. The Department of Planning and Rural Infrastructures of the Government 

of the Principality of Asturias ensures that these LC processes are probably more effective 

than other LC processes because they were mainly promoted in the most agricultural-

oriented municipalities of Asturias. The second cohort involves the LC processes 

developed during the economic boom of the Spanish economy, i.e. from 2001 and 2008. 

Due to the good financial situation of most Spanish and European institutions, these LC 

processes involved increasing resources for investment in rural and villages 

infrastructures. The third cohort includes the LC process that ended in the period 2009-

2017. Unlike the previous ones, the Government of the Principality of Asturias allocated 

fewer and fewer financial resources in these LC processes due to the stringent financial 

restrictions caused by the severe economic crisis in Spain.  

We will focus our analysis on three different categories of LC effects: livestock 

activity measured in terms of farm figures; restructuration of livestock production 

measured as average cows per farm; and parishes’ population. Unfortunately, it is not 

 
5 Similar geographical distribution is found for previous LC processes.  

Selected municipalities 
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possible to extend the study to other categories such as the impact on ecological 

environment, local economy, and other social effects.  

Three hypotheses are tested based on the recent evolution of these three categories 

in Asturias. Figure 3 depicts the average annual parish farm figures, using our dataset. 

This figure shows a persistent decline in the number of farms over the last 17 years. Said 

evolution serves to captures the increasing cessation of livestock activity in the Asturian 

rural areas. Therefore, the first hypothesis to be tested in this paper is whether the LC 

processes in Asturias have attenuated the decline in farm figures. Livestock activity not 

only depends on the number of farms, but also on farm size. Figure 3 also shows the 

tendency of parishes’ average farm size over time. This figure suggests that the above 

decline in the number of farms has favoured the concentration and intensification of 

production on larger farms. A second hypothesis to be tested is whether the LC processes 

in Asturias have stimulated the aforementioned restructuration of livestock production. 

Moreover, as shown in Figure 4, rural areas are characterised by declining populations as 

local people have migrated to urban areas and other regions in search of employment. 

The accelerated process of depopulation is one of the main challenges facing large areas 

of rural Spain and in particular Asturias. For this reason, we also examine a third 

hypothesis, i.e., whether LC has been an effective policy measure for reducing the rural 

depopulation in Asturias. If LC is not helping to reverse rural depopulation, the latter  will 

requires an important reorientation of current rural policies and investment decisions. 

 

Figure 3. Temporal evolution of farms size and farm numbers. 
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Figure 4. Temporal evolution of parishes’ population. 

 

 

To test the above three hypotheses, we use a multi-cohort multi-treatment 

Difference-in-Difference (DiD) approach with heterogeneous treatment timings. To the 

best of our knowledge, a similar DiD specification has not been estimated yet in the 

literature. The research goal in a DiD model is to estimate the expected effect of the 

treatment on an outcome variable over a series of time periods. In the two-period setting, 

the treatment effect of interest can be estimated non-parametrically using the well-known 

two-way FE estimator (see e.g. Abadie, 2005). However, Borusyak and Jaravel (2017) 

and Strezhnev (2018) point out that extending the intuition from the two-period DiD case 

to multiple time periods is much more complicated and much less trivial than expected. 

For instance, they show that the standard two-way FE estimator suffers from severe biases 

when different units are treated at different moments (i.e., when the treatment timing is 

heterogenous across cohorts) and the effect changes over time.6 This also occurs in our 

application as the LC processes do not take place at the same time and thus the treatment 

periods vary across parishes. In this sense, our multi-period setting is just as asymmetric 

as in the above-mentioned papers.  

The above-mentioned papers assumed that each unit at most receives a unique 

treatment. This is not the case in our application as some parishes are involved in more 

than one LC process. Therefore, we need to extend the previous framework to an 

asymmetric multi-treatment setting. Extending the previous framework to a multi-

treatment setting is far from simple and opens new issues and questions. For instance, 

how should we deal with the new treatments? Can different treatments be aggregated? If 

so, under which conditions? Can the new treatments be considered as different levels of 

a unique treatment? In this sense, the main contribution of this paper to the DiD literature 

is to show that we can accumulate sequential treatments as long as they have the same 

effect on outcome. Therefore, in addition to the well-known parallel trends (PT) 

assumption, in a multi-treatment DiD model we should test a new assumption labelled as 

the common sequential parameter (CSP) assumption.  If the CSP assumption is satisfied, 

 
6 They show that the DiD estimated effect can be expressed as a weighted average of time-varying effects 

with positive weights on the short-run effects and negative weights on the long-run ones. If they differ, the 

standard DiD estimator will completely miss this difference and yield completely erroneous results.  
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the multi-treatment DiD model can be viewed as a one-treatment DiD model where the 

new treatments are considered as different levels of a unique treatment as Abadie (2005) 

does in a two-period framework.7 Our DiD specification can also be interpreted as if there 

was a unique treatment with modest short-run effects and larger long-run effects in the 

same fashion as Strezhnev (2018). This implies that the generalized parallel assumption 

and cohort-specific treatment effects examined with a unique treatment are still valid in 

a setting with more than one treatment. 

 

2. Theoretical framework 

In this section, we adapt the multi-period, but one-treatment, theoretical 

framework introduced by Borusyak and Jaravel (2017) and Strezhnev (2018) to a multi-

treatment context. Both papers explicitly take into account the existence of groups of units 

that initiate treatment at the same time, but at a different moment than other treated units. 

That is, they use a similar notion of treatment cohorts to that used in our empirical 

application.8 These authors also assume that when a unit receives treatment in some 

period within the sample, it will remain treated forever. Imai et al. (2018) labelled this 

assumption as the stable policy change (SPC) assumption. This also occurs in our 

application. As the parcel reallocation and new local infrastructures are expected to last 

decades, LC can be viewed as a permanent rural development policy. 

Although their frameworks differ because they are focused on different issues, we 

find both of them useful. Strezhnev (2018)’s model is completely non-parametric. 

Although our DiD model is parametric, this framework allows us to discuss the PT 

assumption that should be satisfied in a multiple period setting as well as the most 

intuitive (average) treatment effect that might prove of interest for research `purposes. 

Borusyak and Jaravel (2017) develop their setting using a flexible version of the standard 

two-way FE estimator. We take advantage of their flexible specification to propose a 

simple specification of the two-way FE estimator with multiple treatments once we 

impose the CSP assumption.   

 

2.1. General framework in a multi-period but one-treatment setting. 

Consider a panel of 𝑖 = 1,… ,𝑁 parishes or units observed in 𝑡 = 1, … , 𝑇 periods. 

Let be 𝑌𝑖𝑡 the outcome of interest for unit 𝑖 at time 𝑡. We next assume that some units are 

treated in some period 𝐸𝑖 within the sample, and they will stay treated forever. Each unit 

𝑖 is assigned to some treatment history denoted by a 𝑇𝑥1 vector 𝐷𝑖 = (𝐷𝑖1, … , 𝐷𝑖𝑇). Under 

the SPC assumption, 𝐷𝑖𝑡 = 0 before the treatment period, and 𝐷𝑖𝑡 = 1 during the 

treatment period.9  

As different units are treated at different moments, and the treatment effect might 

change over time, Borusyak and Jaravel (2017) and Strezhnev (2018) use the concept of 

 
7 Indeed, the number of treatments varies across units in the same fashion as the standard intensity variable 

associated to a unique treatment does if different units are treated at different moments.  
8 Another paper that considers estimation of a DiD model with multiple time periods and variation in 

treatment timing is Callway and Sant’Anna (2019). They do not use the cohort terminology, but they also 

define their groups by the time period when units are first treated. 
9 The treatment history of each unit in the two-period case is very simple: 𝐷𝑖 = (0,1) for a treated unit, and 

𝐷𝑖 = (0,0) for a control unit. The treatment history becomes much more complicated with more than two 

periods. However, the number of possible treatment histories can be drastically reduced under the SPC 

assumption. 
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treatment cohorts. The groups of units initiating treatment at the same time are referred 

to as a treatment cohort.  Therefore, each cohort corresponds to some event time 𝐸𝑖 or, 

alternatively, to some value 𝐶𝑖, which denotes the last period under which each unit is 

under control or not treated. The later variable plays a key role in Strezhnev (2018) 

framework because a unit’s treatment history can be determined entirely by 𝐶𝑖. Units with 

𝐶𝑖 = 𝑇 never receive treatment and are always control units. Units with 𝐶𝑖 = 𝑐 < 𝑇 

receive a treatment in period 𝐸𝑖 = 𝐶𝑖 + 1 and are treated units. Borusyak and Jaravel 

(2017) define another useful temporal variable, the so-called relative time 𝐾𝑖𝑡 = 𝑡 − 𝐸𝑖, 
which denotes the number of periods relative to the event. This variable can also be used 

to define the treatment history of each unit because the indicator variable for being treated 

can be written as 𝐷𝑖𝑡 = 1 if 𝑡 ≥ 𝐸𝑖 or 𝐾𝑖𝑡 ≥ 0. 

Strezhnev (2018) states that the most intuitive treatment effect that can be used in this 

setting is the so-called cohort average treatment effects on the treated (CATT), which 

can be viewed as a cohort-specific treatment effect measure. If we use 𝑎𝑐 to denote the 

treatment history associated with cohort 𝐶𝑖 = 𝑐 < 𝑇, an aggregate CATT measure that 

include all periods for which the cohort is exposed to treatment can be defined as: 

𝐶𝐴𝑇𝑇(𝑐) = ∑
𝐶𝐴𝑇𝑇𝑡(𝑐)

𝑇−𝑐−1
𝑇
𝑡=𝑐+1 = ∑

𝐸[𝑌𝑖𝑡(𝑎
𝑐)−𝑌𝑖𝑡(𝑎

𝑇)|𝐷𝑖=𝑎
𝑐]

𝑇−𝑐−1
𝑇
𝑡=𝑐+1    (1) 

where 𝑌𝑖𝑡(𝑎
𝑐) is the potential outcome observed for unit 𝑖 in time 𝑡 if it initiated treatment 

at time 𝑐 + 1. Strezhnev (2018) shows that 𝐶𝐴𝑇𝑇𝑡(𝑐) can be estimated non-

parametrically under a generalized PT assumption that compares expected outcomes of 

units that initiate treatment at time 𝑐 + 1 and units that, in an asymmetric multi-period 

setting, remain under control up until a period 𝑡 > 𝑐. That is, treated units that initiate 

treatment after a period 𝑡 are used as control units for those that initiate treatment prior to 

𝑡. It is worth noting that 𝐶𝐴𝑇𝑇(𝑐) averages all post-treatment observations of each cohort 

because treatment may have different effects over time. We also allow the treatment 

effects to vary over time in our application. For this reason, we present averages of all 

annual treatment effects as results. 

Following Borusyak and Jaravel (2017), a flexible two-way FE specification with 

different treatment cohorts that however abstracts away from other specification issues 

can be written as: 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + ∑ 𝛾𝑘𝐷𝑖𝐶𝑖+1+𝑘
𝑇−𝐶𝑖−1
𝑘=0 + 𝜀𝑖𝑡   (2) 

where 𝛼𝑖 is a fixed effect parameter for each unit, 𝛿𝑡 is the fixed parameter for each time 

period, 𝐷𝑖𝑘 is the treatment indicator, and 𝜀𝑖𝑡 is a mean-zero error term. Researchers 

typically report the average treatment effect as the estimated 𝛾𝑘 coefficient. For notation 

ease, the above model allows the treatment effect to change over time, but not across units 

because in many applications it is not feasible or very inaccurate to estimate a fully non-

parametric specification where 𝛾𝑘 is replaced with 𝛾𝑖𝑘.10  

It is worth highlighting here that 𝐶𝑖 differs across units in an asymmetric multi-

period setting.  This implies that the temporal effects (𝛿𝑡) in a two-way FE estimator with 

multiple periods will be computed using different sets of observations. In particular, as 

the number of 𝐷𝑖𝑡 = 1 increases with the number of treatment cohorts, 𝛿𝑡 is computed 

using less observations when 𝑡 increases. This result can be viewed as the parametric 

 
10 Some parameterization of the model not only is appealing (compulsory) when the number of post-

treatment observations is too large, but also because many of the estimated effects might have difficult 

economic interpretation. 
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counterpart of the above-mentioned generalized PT assumption introduced by Strezhnev 

(2018), because 𝛿𝑡 is estimated using both never-treated units and treated units that 

initiate treatment after period 𝑡. 

Note also that not only the treatment timing is heterogenous across units in 

equation (2), but also the treatment effects change over time. As aforementioned, 

Borusyak and Jaravel (2017) show that the standard two-way FE estimator suffers from 

severe biases in this setting. Although they advocate running non-parametric 

specifications of treatment effects and averaging the effects manually to deal with this 

issue, they alternatively assumed a parametric specification in their simulation exercise 

where the treatment effects change at a constant rate. In our application, we use this 

approach to allow the LC effects vary over time. In particular, we use the following 

parametric counterpart of (2): 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + (𝛾1 + 𝛾𝐾𝐾𝑖𝑡)𝐷𝑖𝑡 + 𝜀𝑖𝑡    (3) 

where 𝛾1 is the average treatment effect at the event time and 𝛾𝐾 allows the treatment 

effect to vary with the age of the treatment.  

A potential disadvantage of the above specification is the assumption that the 

treatment effects are the same for all units, except for their different treatment-timings. 
Some authors replace the binary treatment variable with a continuous but time-invariant 

variable 𝐼𝑖 ≥ 0 that measures the intensity of the treatment (see, e.g. Abadie, 2005, and 

Alonso et al, 2019). This allows the treatment effect to differ among units. If the treatment 

depends on other covariates, we could add 𝐼𝑖 as an additional treatment determinant:  

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + (𝛾1 + 𝛾𝐾𝐾𝑖𝑡 + 𝛾𝐼𝐼𝑖)𝐷𝑖𝑡 + 𝜀𝑖𝑡   (4) 

2.2. A multi-treatment two-way FE model with cohort-specific treatment effects. 

 The previous specifications assumed that each unit at most receives a unique 

treatment that cannot be removed. In our application, some units receive more than one 

treatment. We next try to develop a simple multi-treatment two-way FE estimator from 

the one-treatment models introduced in Section 2.1. We also try to respond to some of 

the questions that emerge in an asymmetric multi-period multi-treatment setting. 

2.2.1. Setup 

We first introduce the notation to be used throughout this section. Consider again 

a panel of 𝑁 units. Each unit is observed over a total of 𝑇 periods. The observed outcome 

in time 𝑡 for unit 𝑖 is again denoted by 𝑌𝑖𝑡. Similar to the setup in Section 2.1, we hereafter 

assume that some units receive one or more treatments during the sample period. As 

before, we make the SPC assumption, i.e. once a unit is treated, it will stay treated forever. 

Denote the number of treatments received by unit 𝑖 as 𝑀𝑖. Note that 𝑀𝑖 = 1 in the 

one-treatment case. Each treatment is denoted hereafter by 𝑚 = 1,… ,𝑀𝑖, and the event 

time and relative time of each treatment are respectively denoted by 𝐸𝑖
𝑚 and 𝐾𝑖𝑡

𝑚 = 𝑡 −
𝐸𝑖
𝑚. We assume that all treatments are sorted by their respective event time. The overall 

treatment history is denoted by a 𝑇𝑥1 vector 𝑛𝑖 = {𝑛𝑖1, 𝑛𝑖2, . . , 𝑛𝑖𝑇}, where 𝑛𝑖𝑡 =

∑ 𝐷𝑖𝑡
𝑚𝑀𝑖

𝑚=1  is the number of treatments that unit 𝑖 has accumulated at time 𝑡, and 𝐷𝑖𝑡
𝑚 is the 

treatment indicator defined in Section 2.1, but which is now defined for each treatment.11 

Under the SPC assumption, 𝑛𝑖 measures the number of treatments over time. For a never- 

 
11 The overall treatment history can alternatively be defined as 𝑛𝑖 = ∑ 𝐷𝑖

𝑚𝑀𝑖
𝑚=1 , where 𝐷𝑖

𝑚 summarizes the 

whole history of the 𝑚th treatment received by unit 𝑖. 
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treated or control unit, 𝑛𝑖 is a 𝑇𝑥1 vector of zero values. An illustration of the new 

treatment history variables can be found in Figure 5. Each column in Figure 5. represents 

the treatment history (𝑛𝑖) of several hypothetical units in an asymmetric multi-period 

multi-treatment setting. The treatment cohort (i.e., the value of 𝐶𝑖) of never-treated or 

control units in Figure 5 is equal to 17. The treatment history of a control unit is a vector 

of zeros as 𝑛𝑖𝑡 = 0 from 𝑡 = 1 to 𝑡 = 17. Units 5, 6 and 7 are units that receive one or 

more treatments during the sample period. This implies that the value of 𝐶𝑖 for these 

treated units is less than 𝑇 (i.e., 5, 10 and 15, respectively). The treatment history (𝑛𝑖) of 

one of these treated unit is a vector of zeros till 𝑡 = 𝐶𝑖. Since then, 𝑛𝑖𝑡 ≥ 1. 

 

Figure 5. Treatment histories in a multi-period multi-treatment setting 

Year t Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 

2001 1 0 0 0 0 0 0 0 

2002 2 0 0 0 0 0 0 0 

2003 3 0 0 0 0 0 0 0 

2004 4 0 0 0 0 0 0 0 

2005 5 0 0 0 0 1 0 0 

2006 6 0 0 0 0 1 0 0 

2007 7 0 0 0 0 1 0 0 

2008 8 0 0 0 0 1 0 0 

2009 9 0 0 0 0 1 0 0 

2010 10 0 0 0 0 2 1 0 

2011 11 0 0 0 0 2 1 0 

2012 12 0 0 0 0 2 1 0 

2013 13 0 0 0 0 2 1 0 

2014 14 0 0 0 0 2 1 0 

2015 15 0 0 0 0 3 2 1 

2016 16 0 0 0 0 3 2 1 

2017 17 0 0 0 0 3 2 1 

 

 A general multi-treatment two-way FE model that however ignores group-specific 

linear trends and control variables can be written as: 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + ∑ 𝛾𝑖𝑡
𝑚𝐷𝑖𝑡

𝑚𝑀𝑖
𝑚=1 + 𝜀𝑖𝑡   (5) 

where the effect of each treatment is allowed to change across treatments and treated 

units. Under the SPC assumption, each treatment adds a specific effect on top the previous 

one. We next impose some restrictions on 𝛾𝑖𝑡
𝑚 in order to prevent estimating too many 

treatment parameters that might have difficult economic interpretation.  

2.2.2. The common sequential parameter assumption 

If we impose in (5) that sequential treatments have the same effect on outcome (i.e. 

𝛾𝑖𝑡
𝑚 = 𝛾𝑖𝑡), we obtain a first simplification of above unrestricted two-way FE model, 

where the set of 𝑀𝑖 treatment indicators are replaced with a single treatment variable: 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + 𝛾𝑖𝑡𝑛𝑖𝑡 + 𝜀𝑖𝑡    (6) 

The above specification suggests that we can accumulate sequential treatments as 

long as their effect on outcome is the same. Therefore, in addition to the PT assumption, 
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we should test the existence of common sequential effects in a multi-treatment setting. 

We refer to this as the common sequential parameter (CSP) assumption. If, in addition, 

we assume that the treatment effects are common to all units and do not vary over time 

and across treatments (i.e. 𝛾𝑖𝑡
𝑚 = 𝛾), we obtain the multi-treatment counterpart of a 

standard two-way FE model: 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + 𝛾𝑛𝑖𝑡 + 𝜀𝑖𝑡    (7) 

As in the standard one-treatment case, the estimated 𝛾 coefficient can be 

interpreted as the average effect of a single treatment. In a multi-treatment setting, 𝛾𝑛𝑖𝑡 
measures the cumulative effect of several treatments. We find the above simplifications 

very useful when there are many treatments or when we are interested in average effects 

per treatment. In this sense, the CSP assumption simplifies the economic interpretation 

of the two-way FE model in a multi-treatment setting.  

It is worth mentioning that 𝑛𝑖𝑡 can always be written as 𝑛𝑖𝑡𝐷𝑖𝑡
1  if we take into 

account that all treatments are sorted by their respective event time. Using this notation, 

equation (7) can be rewritten as: 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + 𝛾𝑛𝑖𝑡𝐷𝑖𝑡
1 + 𝜀𝑖𝑡    (8) 

Note that equation (8) looks like a standard one-treatment two-way FE model with 

a time-varying and heterogeneous treatment parameter. This implies that, under the CSP 

assumption, a multi-treatment two-way FE model can be viewed as a sort of one-

treatment two-way FE model where the new treatments can be treated as different levels 

of a unique treatment such as the two-period framework of Abadie (2005), or our own in 

(4) when we allow the treatment effect to vary with 𝐼𝑖. Like the standard intensity variable 

(𝐼𝑖) associated with a unique treatment, 𝑛𝑖𝑡 varies across units in an asymmetric multi-

treatment setting. Another appealing interpretation is possible. As 𝑛𝑖𝑡 increases over time 

in multi-treated units, the above specification can also be interpreted as if there was a 

unique treatment with modest short-run effects and larger long-run effects as in Strezhnev 

(2018). This implies that the generalized PT assumption and cohort-specific treatment 

effects examined with a unique treatment are still valid in settings with more than one 

treatment if the CSP assumption is fulfilled.  

2.2.3. Time-varying and cohort-specific treatment effects 

As Borusyak and Jaravel (2017) showed that the standard two-way FE estimator 

suffers from severe biases in multi-period settings with time-varying treatment effects, 

we next summarize our strategy to parameterize the treatment effects in equation (5) or 

(6) without imposing the restrictions used in (7) and (8). 

The effect of each LC process is allowed to change at a constant rate over time in 

the same fashion as (3). That is, we hereafter assume that the effect of treatment 𝑚 on 

outcome (𝛾𝑖𝑡
𝑚) depends on its relative time (𝐾𝑖𝑡

𝑚). As some characteristics of the LC 

processes (such as investment per hectare) likely determine these effects, we henceforth 

assume as well that 𝛾𝑖𝑡
𝑚 depends on treatment intensity (𝐼𝑖

𝑚). Taking these two 

assumptions together, we obtain the following multi-treatment model under the CSP 

assumption: 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + 𝛾𝑛𝑛𝑖𝑡 + 𝛾𝐼ΣI𝑖𝑡 + 𝛾𝐾ΣK𝑖𝑡 + 𝜀𝑖𝑡   (9) 

where 𝑛𝑖𝑡 = ∑ 𝐷𝑖𝑡
𝑚𝑀𝑖

𝑚=1 , ΣI𝑖𝑡 = ∑ 𝐼𝑖
𝑚𝐷𝑖𝑡

𝑚𝑀𝑖
𝑚=1 , ΣK𝑖𝑡 = ∑ 𝐾𝑖𝑡

𝑚𝐷𝑖𝑡
𝑚𝑀𝑖

𝑚=1  are respectively the 

number of treatments received by unit 𝑖 at period 𝑡, their cumulative intensity and their 

cumulative ages or event times.  
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The foregoing model does not allow for cohort-specific differences, except for 

their different treatment-timings and intensities. Figure 5 helps us to explain the 

implications of this restriction in a multi-treatment setting. While the first four units in 

Figure 5 are never-treated, the last three units are treated several times. These units belong 

to three different treatment cohorts: unit 5 belongs to cohort 𝐶𝑖 = 5; unit 6 belongs to 

cohort 𝐶𝑖 = 10; and unit 7 belongs to cohort 𝐶𝑖 = 15. Equation (9) implies that initial 

effects on outcome of unit 5, 6 and 7 are same (i.e., 𝛾5,5
1 = 𝛾6,10

1 = 𝛾7,15
1 ) if we abstract 

from observed differences in relative times and treatment intensities. As unit 5 is firstly 

treated five and ten years before than units 6 and 7, this seems to be a strong assumption 

if there are unobserved differences among distant cohorts’ treatments. For the same 

reason, the first and second treatment received by unit 5 might be different (i.e., 𝛾5,5
1 ≠

𝛾5,10
2 ). However, the CSP assumption restricts both effects in being equal. Moreover, the 

above three treated units receive treatment in 2015. As they coincide in time, their nature 

is likely to be similar. That is, although the effect of their first treatments is expected to 

differ, it is reasonable to assume that contemporaneous treatments have similar effects 

(i.e., 𝛾5,15
3 = 𝛾6,15

2 = 𝛾7,15
1 ). Interestingly enough, this seems to suggest that a common 

parameter restriction should be imposed across units, not across sequential treatments.  

In order to take the above issues into account, but still keeping the CSP 

assumption, we propose extending our model using treatment cohorts in the spirit of 

Borusyak and Jaravel (2017) and Strezhnev (2018).  Assuming that the treatment cohorts 

are defined in terms of decades, and that only the initial effect is allowed to vary across 

cohorts for notational ease, the outcome effect of each treatment can be written as: 

𝛾𝑖𝑡
𝑚 = (∑ 𝛾𝑛𝑗𝐷𝑚∈𝐶𝑗

𝐽
𝑗=1 ) + 𝛾𝐼𝐼𝑖

𝑚 + 𝛾𝐾𝐾𝑖𝑡
𝑚  (10) 

where 𝐷𝑚∈𝐶𝑗 = 1 if treatment m belongs to cohort j. Equation (10) can be labelled 

hereafter as the treatment effect function. If we plug (10) into (5) and make the CSP 

assumption, we get the following multi-treatment model with cohort-specific parameters: 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + ∑ 𝛾𝑛𝑗𝑛𝑖𝑡
𝑗𝐽

𝑗=1 + 𝛾𝐼ΣI𝑖𝑡 + 𝛾𝐾ΣK𝑖𝑡 + 𝜀𝑖𝑡  (11) 

where 𝑛𝑖𝑡
𝑗
= ∑ 𝐷𝑖𝑡

𝑚𝐷𝑚∈𝐶𝑗
𝑀𝑖
𝑚=1 . By definition, 𝑛𝑖𝑡 = ∑ 𝑛𝑖𝑡

𝑗𝐽
𝑗=1 = ∑ 𝐷𝑖𝑡

𝑚𝑀𝑖
𝑚=1 . Therefore, we 

obtain model (9) if we impose common cohort-specific parameters, i.e. 𝛾𝑛𝑗 = 𝛾𝑛. 

 In our empirical application, the treatment cohorts are defined in terms of decades, 

and hence only three cohorts are examined (i.e., 𝐽 = 3). We also use an extended version 

of (10) as cohort-specific coefficients are estimated for K𝑖𝑡 and I𝑖𝑡. It is worth mentioning 

here that it is not possible to estimate non-parametrically the economic and social effects 

of the first cohort of LC processes that took place before our sample period. See e.g., 

Strezhnev (2018, footnote #6, p. 11). However, their time-varying effect can be measured 

parametrically because 𝐾𝑖𝑡 varies over time.12  

 To make the PT assumption more credible, we extend the two-way FE model in 

two directions. In both cases we try to model the unobserved time-varying heterogeneities 

explicitly as the unobserved time-varying factors might cause the failure of the PT 

assumption. A widely used strategy is to add a set of group-specific linear trends to 

conventional two-way FE models (see, for example, Wolfers, 2006). In our application, 

the groups are municipalities and the extended FE model to be estimated is:  

 
12 Their time-invariant effect can be measured if we take advantage of the CSP assumption and assume that 

the effect of LC processes that took place in the 90s is equal to the effect of next LC processes. 
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𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + 𝜏𝑔𝑡 + ∑ 𝛾𝑛𝑗𝑛𝑖𝑡
𝑗𝐽

𝑗=1 + 𝛾𝐼ΣI𝑖𝑡 + 𝛾𝐾ΣK𝑖𝑡 + 𝜀𝑖𝑡  (12) 

where 𝑔 stands for municipality. As Xu (2017) points out, this strategy works if treatment 

is randomly assigned conditional on both the fixed effects and the imposed trends.13 The 

second strategy aimed at making the PT assumption more credible relies on a set of 

control variables that, in addition, allows the treatment effects to depend on units’ 

observable characteristics. This strategy is explained in next sub-section. 

2.2.4. Control variables and non-neutral treatment effect  

 In this sub-section we extend the previous model by adding a set of control 

variables (𝑋𝑖𝑡), which can be written as: 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + 𝜏𝑔𝑡 + 𝜋𝑋𝑖𝑡 + ∑ 𝛾𝑛𝑗𝑛𝑖𝑡
𝑗𝐽

𝑗=1 + 𝛾𝐼ΣI𝑖𝑡 + 𝛾𝐾ΣK𝑖𝑡 + 𝜀𝑖𝑡 (13) 

We are aware that measuring the treatment effects using this conditional (on X-

covariates) model can be problematic if the control variable 𝑋𝑖𝑡 is a bad control in the 

terminology of Angrist and Pischke (2009). Indeed, if 𝑋𝑖𝑡 is part of the causal effect of 

𝐷𝑖𝑡  on 𝑌𝑖𝑡, the treatment effect function 𝜕𝑌𝑖𝑡 𝜕𝐷𝑖𝑡⁄  is likely to either under or over-estimate 

the global treatment effect because it misses the partial effect 𝜋 · 𝜕𝑋𝑖𝑡 𝜕𝐷𝑖𝑡⁄ . As we are 

not sure whether the alternative ‘solutions’ proposed in the literature14 can be used in a 

multi-treatment setting or, if so, how they should be implemented, we have decided to 

keep the X-covariates and compute 𝜕𝑋𝑖𝑡 𝜕𝐷𝑖𝑡⁄  using an auxiliary regression of 𝑋𝑖𝑡 on 𝐷𝑖𝑡 
for robustness analysis. This allows us to measure the total treatment effect using 𝛾𝑖𝑡 +
𝜋 · 𝜕𝑋𝑖𝑡 𝜕𝐷𝑖𝑡⁄ . 

Note finally that the above conditional specification assumes that the treatment 

effects only depend on their relative time and treatment intensities. This assumption has 

two implications. First, it implies that the treatment effects do not depend on units’ 

characteristics, a strong assumption in our application as LC might be more (less) 

effective in parishes with relatively more milk (beef) livestock production and/or using 

more (less) traditional production systems. Second, the treatment effects in equation (13) 

are neutral in the sense that the units’ outcome function (technology) does not change 

with, say, the number of treatments. If we, for instance, interpret 𝜋 as a marginal product 

(elasticity), equation (13) imposes that this important technological feature does not 

change with LC.  In order to get a non-neutral specification of our model, we assume that 

each treatment coefficient in (13) is a linear function of 𝑋𝑖𝑡, that is: 𝛾𝑛𝑗 = �̅�𝑛𝑗 + 𝛾𝑛𝑥𝑋𝑖𝑡, 

𝛾𝐼 = �̅�𝐼 + 𝛾𝐼𝑥𝑋𝑖𝑡, and  𝛾𝐾 = �̅�𝐾 + 𝛾𝐾𝑥𝑋𝑖𝑡. Using this new specification of (10), we obtain 

the following non-neutral model: 

 
13 Although the DiD method does not require us to specify the rules by which the treatment is assigned 

(Gertler et al. 2011), it is germane to point out here that the Department of Planning and Rural 

Infrastructures of the Government of the Principality of Asturias has confirmed that most of the conditions 

that should be in place before a LC project is undertaken are time invariant as they are geographical in 

nature, e.g. land quality, location of natural resources, distribution of current infrastructures, the existence 

of appropriate legislation, etc. 

14 No consensus exists in the literature on how to proceed when the X-covariates also depends on the 

treatments. Dropping the X-covariates is probably imprudent because it might put the PT assumption in 

danger, reduce goodness-of-fit notably, and generate severe omitted variable biases. Another option is to 

use adjusted X-covariates. For instance, Imai et al (2018) suggest the use of pre-treatment covariates. Other 

authors also condition on pre-treatment observables using matching methods. For example, Abadie (2005) 

proposes matching before DID estimations. The synthetic control method used e.g. by Abadie et al. (2010, 

2015), and Gebel and Vossemer (2014) go one step further as it matches both pre-treatment covariates and 

outcomes.  



15 
 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + 𝜏𝑔𝑡 + 𝜋𝑋𝑖𝑡⏟            
𝑜𝑢𝑡𝑐𝑜𝑚𝑒 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

+ ∑ �̅�𝑛𝑗𝑛𝑖𝑡
𝑗𝐽

𝑗=1 + �̅�𝐼ΣI𝑖𝑡 + �̅�𝐾ΣK𝑖𝑡⏟                  
𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡

+

𝛾𝑛𝑥𝑋𝑖𝑡𝑛𝑖𝑡 + 𝛾𝐼𝑥𝑋𝑖𝑡ΣI𝑖𝑡 + 𝛾𝐾𝑥𝑋𝑖𝑡ΣK𝑖𝑡⏟                      
𝑛𝑜𝑛−𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡

+ 𝜀𝑖𝑡         (14) 

It is worth mentioning that the effects of the LC variables are parish-specific as 

we have interacted the LC variables with observed parishes’ characteristics (such as the 

number of farms). Although the main focus of our paper is whether LC matters as a whole, 

the individual coefficients allow us to capture differences among LC processes. That is, 

the interactions with parishes’ characteristics allow us to identify which parishes have 

benefited the most from the LC processes.  

Using equation (14), the direct effect of LC15 can be computed using the following 

difference of two conditional expected productions: 

𝐿𝐶𝐸𝑖𝑡 = 𝐸[𝑌𝑖𝑡|𝛼𝑖, 𝛿𝑡, 𝑋𝑖𝑡, 𝑛𝑖𝑡
𝑗
, ΣI𝑖𝑡, ΣK𝑖𝑡]𝑛𝑖𝑡≥1 − 𝐸[𝑌𝑖𝑡|𝛼𝑖, 𝛿𝑡, 𝑋𝑖𝑡, 𝑛𝑖𝑡

𝑗
, ΣI𝑖𝑡, ΣK𝑖𝑡]𝑛𝑖𝑡=0

 (15) 

This equation measures the effect of LC as the difference between the expected 

production of a parish that has been involved in a LC process (i.e. when 𝑛𝑖𝑡 ≥ 1) and the 

expected production of a similar but hypothetical parish that has the same explanatory 

variables (and coefficients) than the aforementioned parish but which has not been 

involved in any LC process (in this case 𝑛𝑖𝑡 should take a zero value). Notice that (15) is 

conditional on both parish effects, 𝛼𝑖.Therefore, we are controlling for time-invariant 

differences between the two mentioned parishes. We are also controlling in (15) for 

differences in the value of 𝛿𝑡 before and after the first LC process took place. This 

prevents us from wrongly attributing to the LC processes any change in parishes’ 

production that is more likely related to exogenous factors common to all farms and 

parishes.  

Notice that while the first conditional expectation in (15) is equal to the so-called 

outcome function plus the neutral and non-neutral effects in equation (14), all LC-based 

variables take the zero value when 𝑛𝑖𝑡 = 0, and then the second conditional expectation 

in (15) is equal to the outcome function. As both conditional expectations include the 

outcome function, 𝐿𝐶𝐸𝑖𝑡 in (15) can alternatively be defined as the sum of the neutral and 

non-neutral effects attributable to the LC processes, that is: 

𝐿𝐶𝐸𝑖𝑡 = ∑ �̅�𝑛𝑗𝑛𝑖𝑡
𝑗𝐽

𝑗=1 + �̅�𝐼ΣI𝑖𝑡 + �̅�𝐾ΣK𝑖𝑡 + 𝛾𝑛𝑥𝑋𝑖𝑡𝑛𝑖𝑡 + 𝛾𝐼𝑥𝑋𝑖𝑡ΣI𝑖𝑡 + 𝛾𝐾𝑥𝑋𝑖𝑡ΣK𝑖𝑡   (16) 

 

3. Sample and data 

In this paper we examine three different categories of LC effects. First we examine 

whether LC has exerted broad impacts on promoting livestock production scale, measured 

as average cows per farm. This empirical exercise allows us to see whether LC has helped 

in the restructuration of livestock production already mentioned in the introduction 

section. We carry out this analysis using a production approach as in Wu et al. (2005). 

However, while these authors use farm-household data to evaluate the effectiveness of 

LC projects in China, we use detailed geo-spatial data of Asturian parishes with and 

without LC processes, as in Crecente et al. (2002) and Miranda et al. (2006) who evaluate 

 
15 Why we have added the ‘direct’ label to this effect is explained later in sub-section 4.2.  
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several LC effects in Galicia, an autonomous region located in north-west Spain that is 

adjacent to Asturias, the region examined in our paper.16 

This work has been possible thanks to the availability of statistical information 

disaggregated by parishes on farms and livestock, as well as specific information on the 

quantity and the intensity of the LC processes, over a sufficiently long period of time. 

This allows us to use panel data estimators that control for many variables that are not 

available at parish level but are likely to be time-invariant.  

The data used in our study comes from two complementary sources and has 

allowed us to have a panel of parishes from 2001 to 2017. On the one hand, SADEI has 

provided us with annual information at the parish level that contains the following 

variables: population, parish's total land area, number of bovine farms, total bovine herd 

(both beef and dairy), and livestock units (see SADEI, 2011).17 On the other hand, the 

Principality of Asturias has provided us with information on the processes of LC carried 

out from 1963 to the present, with data about the parishes and municipalities affected, the 

treated hectares, the starting and ending plots number, the date of taking possession of the 

new plots, the volume of public investment in the development and implementation of 

the LC processes, etc.  

All models are estimated using panel data techniques because, as pointed out by 

Demetriou (2018), there are many characteristics that affect parishes’ production, but 

which are unobserved at parish level such as geographic conditions, transport connections 

and accessibility, etc. If these omitted variables are correlated with our regressors, we will 

get both biased parameters and biased effects attributed to LC processes. However, notice 

that many of the above unobservable variables are likely to be time-invariant or rarely 

changing variables. Our two-way FE estimator thus allows us to address this important 

source of endogeneity. 

3.1. Farms’ size. 

We first examine whether LC has exerted broad impacts on promoting livestock 

production scale or farms’ size.  

As it is customary in regional economics, we treat the parishes in Asturias as 

production units. Thus, our observations are not individual farms as in most papers 

examining the effect of LF on farms’ productivity and efficiency, but rather aggregate 

production units comprising many farms. In this sense, we will hereafter assume that our 

production units “employ” farms, and other unobserved inputs captured by the parish-

specific effects, to produce dairy and beef products. While an adequate indicator to assess 

dairy (beef) production is the production of milk (beef) in litres (kilograms) or the 

farmers’ sales in monetary units, there is no data source from which these volumes can 

be measured directly at parish level. In this sense, it should be pointed out that most of 

the literature in agricultural economics shows that the most important input in dairy (beef) 

production is the dairy (beef) livestock number, and thus both variables are highly 

 
16 Crecente et al. (2002) show that LC contributes to retaining farmland in agricultural use and improves 

the population evolution in rural areas, although they observe changes in use from cropland to pasture land. 

Also using very disaggregated geo-spatial data at parish-level, Miranda et al (2006) conclude that LC have 

improved agricultural land structure by reducing the number of plots per holding, as well as the generalized 

drop in the number of active holdings, serving also to mitigate the decline in the population of rural areas. 

. 
17 See http://www.sadei.es/datos/sad/vacas/vacas.aspx 
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correlated. For this reason, we use parishes’ cattle as proxy for livestock production in 

each parish.18 

We first estimate a production function using the natural logarithm of the total 

number of parishes’ bovine animals (i.e., 𝑌𝑖𝑡 = 𝑙𝑛𝑦𝑖𝑡) as the dependent variable. The main 

input of this production function is the natural logarithm of the total number of bovine 

farms (𝑖. 𝑒. , 𝑋𝑖𝑡 = 𝑙𝑛𝑥𝑖𝑡). As the estimated coefficient of LC in this model is conditional 

on farm figures, this model allows us to examine whether LC has exerted broad impacts 

on promoting livestock production scale, measured as average cows per farm. To 

distinguish between traditional (extensive) and non-traditional (intensive) farms in each 

parish, we have included in our production function the ratio livestock units to total 

bovine herd, 𝑧𝑖𝑡. The z-ratio is less than unity because adult cows count as one livestock 

unit, while younger animals count less than one livestock unit. The higher the value of 

the z-ratio, the less weight the younger animals have in the herd of cattle. Although the 

z-ratio is a maturity indicator of farms’ cattle, 𝑧𝑖𝑡 can also be viewed as an indicator of 

the traditional (extensive) character of livestock in each parish. The lower the z-ratio, the 

greater the intensification of productive activity.19 

The effect of each LC process on parishes’ production is allowed to change with 

its relative time, as well as its intensity. We use the natural logarithm of the investment 

per hectare involved in LC plans to measure LC intensity. Under the CSP assumption, 

this implies that parishes’ production depends on the cumulative number of LC processes 

(𝑛𝑖𝑡), their cumulative age (ΣK𝑖𝑡), and their cumulative intensity (ΣI𝑖𝑡). In order to capture 

unobserved differences among distant LC processes, we also estimate a multi-cohort 

production model in the spirit of Borusyak and Jaravel (2017) and Strezhnev (2018), 

where we distinguish between LC processes implemented in the 1990s, 2000s and 2010s.  

Therefore, we use three cohorts (C1, C2 and C3) in our multi-cohort production model. 

We not only estimate cohort-specific parameters for the number of LC processes 

belonging to a particular cohort, but also for their cumulative age and intensity.20  

Finally, recall that our DiD model not only includes a set of parish-specific but 

also a set of time-specific dummy variables. As our production function is conditional on 

the number of farms, the estimated parameters of the time dummy variables measure here 

the ‘natural’ tendency of parishes’ average farm size over time. 

3.2. Number of farms and parishes’ population. 

Our previous model aims to measure the economic impact of LC processes at the 

parish scale, conditional on the number of farms. To obtain the unconditional effect of 

the LC processes on parishes’ production, we need to estimate the effect of our LC-based 

 
18 This is not the first time where input and output variables are used for the same purposes. For instance, 

the relative size of a particular industry is often given by either its value-added share or its labour share (see 

e.g., Balk, 2016). 
19 In the case of dairy farms, the lower the z-ratio, the more weight the heifers have. This reflects that the 

farms require a high rate of annual replacement of cows because dairy cows of high production usually 

have a shorter productive life. Therefore, in the case of milk orientation the lower the value of the z-ratio, 

the greater the intensification of productive activity (cows with higher production, with more feed 

consumption per cow, etc.). On the other hand, in the case of beef farms, the lower the z-ratio, the more 

weight the calves have (breeding and baiting). The higher the value of the z ratio, the lower the weight of 

the calves in the cattle, thereby  indicating that the meat holdings have few calves in the process of bait. 

This would be the case of those farms that decide to sell the calves after a few months of life to be fattened 

on other more professional farms (feedlots) outside the parish. 
20 For notational ease, we will label these variables as ΣDC𝑗, ΣKC𝑗, and ΣIC𝑗  when presenting our parameter 

estimates. 
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variables on the number of farms using an auxiliary regression.21 In this auxiliary 

regression model we regress the logged number of farms (𝑋𝑖𝑡 = 𝑙𝑛𝑥𝑖𝑡) on the maturity 

indicator of farms’ cattle (𝑧𝑖𝑡) and its squared value, as well as the cumulative number of 

LC processes (𝑛𝑖𝑡), their cumulative age (ΣK𝑖𝑡), and their cumulative intensity (ΣI𝑖𝑡). This 

model is again estimated using a two-way FE estimator. One-cohort and multi-cohort 

models are estimated as before. Again, this model includes parish-specific and time-

specific dummy variables. In this case, the parameters of the time dummy variables 

measure the ‘natural’ decline in the number of farms over the last 17 years.  

To acquire a social view of the subject we also estimate an additional auxiliary 

regression that allows us to measure the effect of our LC-based variables on parishes’ 

population. The second auxiliary regression model simply regresses the natural logarithm 

of parishes’ population (𝑙𝑛𝑃𝑖𝑡) on the cumulative number of LC processes, their 

cumulative age, and their cumulative intensity, as well as the set of parish-specific and 

time-specific dummy variables. In this case, the parameters of the time dummy variables 

measure the “natural” decline in parishes’ population over the last 17 years.  

3.3. Descriptive statistics. 

As mentioned in the introduction section, our study is focused on western Asturias 

because the LC processes were implemented with greater intensity in this geographical 

area. More concretely, our sample includes 292 parishes belonging to 26 municipalities 

located in western Asturias. Table 1 shows the descriptive statistics of these parishes over 

the period 2001-2017. The total sample size is 4,964 observations with 1,056 observations 

having been involved in one or more LC processes. As all LC variables in a parish take a 

zero value before the first LC process is implemented, the descriptive statistics of the 

three LC-based variables (i.e. the cumulative number of LC processes, and their 

cumulative age and intensity) are computed using 1,056 observations. 

[Insert Table 1 here] 

4. Results 

Our first empirical model aims to measure the economic impact of LC processes 

on parishes’ livestock production using a primal representation of parishes’ production 

technology. The effects estimated here can be interpreted as an effect on farms’ average 

size because they are conditional on the number of farms of each parish. In order to 

achieve an unconditional effect, we next estimate the effect of our LC variables on the 

number of farms using an auxiliary regression that includes our set of LC-based variables 

as regressors. The effect of our LC-based variables on parishes’ population is estimated 

using a similar auxiliary regression model where we replace the number of farms with 

population. Despite their differences, all models are estimated using a two-way FE 

estimator that includes both parish-specific and time-specific fixed effects.  

4.1. Testing the PT and CSP assumptions 

Estimating a DiD model does not identify the causal effects of a policy measure 

or treatment if the standard parallel trends (PT) or common trend assumption is violated. 

In addition, we cannot view the multiple treatments as a unique treatment with different 

levels if the common sequential parameter (CSP) assumption that we have introduced in 

this paper is not fulfilled.  

 
21 We labelled this model as ‘auxiliary regression’ because it does not rely on well-known theoretical 

concepts in production economics as occurs with our production function model. 
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To investigate the PT assumption, it is customary to undertake tests to establish if 

there are systematic pre-treatment trend differences between treated and control units. To 

check for equality of pre-treatment trends, we estimate a couple of two-way FE models 

using only pre-treatment observations. While one includes a specific set of time-dummies 

for the treated units, the other includes a specific time-trend for such units. Both 

specifications are estimated without any treatment effect as the coefficients of the LC-

based variables are not identified in this case. An F-test of the compound null in which 

all the coefficients of the time-dummies are jointly zero is a test of the PT assumption.  

To test the CSP assumption, we estimate a DiD model that includes a different 

treatment indicator for each LC process. In this model the effect of each treatment is 

allowed to change across treatments. The CSP assumption is fulfilled if we cannot reject 

statistically that the coefficients associated with each LC process are the same. Using 

equation (5), this restriction implies that 𝛾𝑖𝑡
𝑚 = 𝛾𝑖𝑡 for all 𝑚 = 1, . . , 𝑀𝑖 where 𝑀𝑖 is the 

number of LC processes that have taken place in parish 𝑖. Similar restrictions are tested 

if we allow for differences attributed to the age and intensity of the LC processes.  

The F-tests carried out to check the PT assumption suggest that we cannot reject 

this assumption at any reasonable level of significance when we estimate the parishes’ 

production function, regardless whether we include a set of specific time-dummies or a 

specific time-trend for the treated units.22 When we estimate the auxiliary regression 

aimed at explaining the changes in parishes’ farms or their population, we find that the 

PT assumption cannot be rejected at any reasonable level of significance if we include a 

specific time-trend for the treated units. When we use specific time-dummies for the 

treated units, the PT assumption is rejected at the 5% level of significance. In summary, 

these tests seem to suggest that our DiD models are able to properly measure the causal 

effects attributed to the LC processes. 

The F-tests carried out to check the CSP assumption suggest that we cannot reject 

this assumption at any reasonable level of significance when we estimate the parishes’ 

production function and the auxiliary regression aimed at explaining the changes in 

parishes’ farms. In these two cases, therefore, we can simplify our analysis using a 

specification that measures the cumulative effect of several treatments with only three 

LC-based variables: the number of treatments (𝑛𝑖𝑡), their cumulative intensity (ΣI𝑖𝑡), and 

their cumulative ages (ΣK𝑖𝑡). Unfortunately, the same simplification cannot be 

implemented if we aim to measure the effect of the LC processes on parishes’ population. 

As we reject the null hypothesis of common sequential parameters in this case, we are 

forced to use a more comprehensive model that includes a different treatment indicator 

for each LC process when explaining the changes in parishes’ population. 

4.2. Parameter estimates and LC effects 

4.2.1. Farms’ size. 

The parameter estimates of the parishes’ production function are shown in Table 

2. This table shows the results of a one-cohort specification of the model that does not 

distinguish between LC cohorts and a multi-cohort specification that distinguishes 

between LC processes implemented in the 1990s, 2000s and 2010s.  

[Insert Table 2 here] 

 
22 Appendix A provides the F-test performed to check whether both PT and CSP assumptions are supported 

by the data. 
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The first set of coefficients (and variables) captures the characteristics of parishes’ 

livestock production technology. The natural logarithm of the total number of farms and 

the z-ratio are measured in deviations with respect to the sample mean. This 

transformation has no effect on the estimation but allows the first-order coefficients to be 

interpreted as elasticities or derivatives for a ‘representative’ parish. The second set of 

coefficients measures the cumulative effect of three LC-based variables on representative 

parish’s livestock production. The third set of coefficients allows the LC effects to depend 

on parishes’ characteristics. Finally, the estimated fixed effects (not shown), not only 

capture other relevant inputs for farms’ production but also other geographical and socio-

economic variables that condition farms’ size. The estimated coefficients of both the time 

dummy variables and the municipality-specific linear trends included in the model (also 

not shown), allow obtaining different natural tendencies over time for each municipality. 

Regarding the characteristics of parishes’ livestock production technology, we 

find a positive effect of the number of farms on total bovine livestock. The estimated 

elasticity is on average less than unity, indicating the existence of decreasing returns to 

scale at parish level. In other words, parishes with more farms tend to have smaller farms 

in terms of beef and dairy cattle. The effect of the number of farms on total herd adopts a 

form of inverted U due to the first-order effect proving positive and the quadratic term 

being negative. Furthermore, the negative coefficient associated with the squared value 

of 𝑧𝑖𝑡 implies that very extensive (and traditional) farms tend to be smaller as they on 

average use less cows than more intensive farms. Finally, it is worth mentioning that the 

coefficient of the interaction term between the total number of farms and the z-ratio is 

positive and statistically significant, indicating that the scale elasticity of more extensive 

farms is larger than the scale elasticity of an equivalent but more intensive farm.  

The next two sets of coefficients measure the cumulative effect of the number of 

treatments, their cumulative intensity, and their cumulative ages on parishes’ livestock 

production. As each LC process is a complex phenomenon it is difficult to interpret 

separately the coefficients of these three LC indicators. Although we are more interested 

in overall effects than in individual effects, we find a positive and significant effect of the 

investments per hectare (ΣI𝑖𝑡) on the livestock production of a representative parish. We 

find that 𝑛𝑖𝑡 has a negative coefficient. However, this somehow counterintuitive result 

could be caused by the fact that the number of LC processes is highly correlated with the 

cumulative intensity of these processes. Therefore, if we abstract from the age of the LC 

processes, computing their overall effect on farms’ size should take into account the 

coefficients of both 𝑛𝑖𝑡 and ΣI𝑖𝑡. Notice that ΣK𝑖𝑡 does not have a significant negative 

coefficient. This result seems to indicate that, on average, the LC processes have a delayed 

impact on Asturian parishes’ production (and on average farm size). 

Another remarkable result is the positive and statistically significant coefficient 

of ΣI𝑖𝑡𝑧𝑖𝑡. This coefficient indicates that the public investments in infrastructures tend to 

have a larger (positive) effect in parishes where the local farms use more traditional 

systems of livestock production. Our model includes interactions between our LC 

indicators and the number of farms, another characteristic of the parishes’ production 

technology. The coefficient of 𝑛𝑖𝑡𝑙𝑛𝑥𝑖𝑡 is positive and statistically significant, indicating 

that adding new LC processes is more effective in parishes with several farms. This result 

indicates the existence of some synergies between LC processes when the number of 

farms located in such a parish is large. However, the statistically significant and negative 

coefficient found for ΣK𝑖𝑡𝑙𝑛𝑥𝑖𝑡 seems to indicate that the better effect found in large 

parishes deteriorates at a greater rate than the (initially smaller) effect found for parishes 

with fewer farms.  
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Table 2 also shows the results of a multi-cohort specification that distinguishes 

between LC processes implemented in the 1990s, 2000s and 2010s. This allows us to 

examine whether the LC processes implemented in different decades have similar effects 

on parishes’ livestock production. To facilitate the econometric exercise, here we focus 

our analysis  on the average effects, captured by the first-order LC-based variables: the 

number of treatments (𝑛𝑖𝑡), their cumulative intensity (ΣI𝑖𝑡), and their cumulative ages 

(ΣK𝑖𝑡).  It is worth mentioning here that our sample begins in 2001 and that the cumulative 

number of LC processes (𝑛𝑖𝑡) does not necessary begin with a zero value in 2001 because 

it also considers the LC processes that were implemented in the 90s. This implies that it 

is impossible to estimate a specific-cohort parameter for the cumulative number of LC 

processes that were implemented in the 90s together with their cumulative intensity 

because these two variables do not vary over time in our sample. However, a specific-

cohort parameter can be estimated for their cumulative age because, in this case, it does 

vary over time. 

We find very similar coefficients using one-cohort and multi-cohort specifications 

as we cannot reject that the coefficients of different cohorts are the same. The latter result 

might indicate that the different, if any, nature of the LC processes implemented over 

different decades is being captured by the observed intensity and age variables. We find 

a positive and significant effect of the investments per hectare on the livestock production 

of a representative parish using a one-cohort specification. We now realize that this result 

is mainly explained by the LC processes that have taken place during the 2010s.  The 

estimated coefficients for the interactions of 𝑛𝑖𝑡 and ΣI𝑖𝑡 with 𝑧𝑖𝑡 are no longer statistically 

significant (although they maintain the same sign), indicating that their effects are 

somehow captured by the new set of cohort-oriented variables. Recall that we can 

estimate three specific-cohort parameters for ΣK𝑖𝑡 because this variable varies over time. 

As in our one-cohort specification, we do not find evidence of a decreasing effect of the 

LC processes implemented in the 1990s, 2000s and 2010s. As the coefficients of the 

interactions of these three LC-based variables with parishes’ characteristics are robust 

when using a single or multi-cohort specification, we again obtain a negative and 

statistically significant coefficient for ΣK𝑖𝑡𝑙𝑛𝑥𝑖𝑡 indicating that, although the LC 

processes are more effective in large parishes, their effect seems to decrease over time. 

 We next proceed to calculating the effect of LC on parishes’ livestock production 

using the parameter estimates of the multi-cohort specification in Table 2. Very similar 

effects are found using the one-cohort specification. We find very heterogeneous 

individual LC effects. For this reason, on average , it is difficult to obtain a noteworthy 

LC effect on parishes’ livestock production (conditional to the number of farms). Several 

comments are in order regarding the apparently negligible average effects found here. 

First, it should be pointed out that in these cases the public investment in LC processes 

might have positive effects on other variables not considered in our model, such as the 

satisfaction of the inhabitants of rural areas with the improvements made on roads and 

access to plots and villages. Second, the effects estimated here are conditional on the 

number of farms of each parish. Later on in this paper we obtain larger unconditional 

(total) effects on parishes’ livestock activity once we take into account the changes in 

farm figures caused by both internal and external LC processes. Third, as Figure 6 shows, 

we find larger (positive) effects attributable to the LC as time passes. This conclusion 

confirms the Crecente et al. (2002, p. 142) findings in the sense that a short temporal 

window is not enough to capture properly the final effects caused by the LC 

developments. The larger effects found for aged LC processes are also linked with the 
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fact that these processes were implemented in the 1990s, probably proving more effective 

than other LC processes because they were mainly promoted in the most agricultural-

oriented municipalities of Asturias. 

Figure 6. Temporal evolution of the direct LC effect on farms’ size  

 

 

Finally, Figure 7 shows the geographical distribution of the estimated effects 

attributable to the LC processes that have taken place in western Asturias.23 We find that 

some LC processes performed in Villanueva de Oscos, San Matín de Oscos or Cangas 

del Narcea have had a remarkable effect on farms’ size in terms of livestock numbers. 

These parishes tend to have a small number of farms if we consider both distant and recent 

LC processes. These farms, in addition, tend to use intensive systems of livestock 

production to produce beef. The lack of proper plots and infrastructures in these parishes 

might explain why they are not able to attract more farmers, a problem that is alleviated 

with land consolidation developments. Therefore, the LC processes implemented in these 

parishes have helped to maintain livestock production by favouring the concentration of 

production on larger beef-oriented farms. 

 

 

 

 

 

 

 

 

 

 
23 The white coloured parishes in this figure are parishes with no internal LC processes. 
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Figure 7. Direct LC effects on farms’ size 

 

 

4.2.2. Farm numbers 

Table 3 shows the parameter estimates of the auxiliary regression aimed at 

explaining changes in parishes’ farms, using the one-cohort and multi-cohort 

specifications of the model. The first set of coefficients (and variables) aim to control for 

the traditional (extensive) and non-traditional (intensive) orientation of the farms located 

in each parish. The second set of coefficients measures the cumulative effect of three LC-

based variables on representative parish’s livestock production: the number of treatments 

(𝑛𝑖𝑡), their cumulative intensity (ΣI𝑖𝑡), and their cumulative ages (ΣK𝑖𝑡).  The third set of 

coefficients allows the LC effects to depend on the main farms’ characteristic, i.e., their 

system of livestock production. Finally, the estimated coefficients of the time dummy 

variables included in the model (not shown), allow capturing the ‘natural’ deterioration 

in the number of farms over time that we mentioned in the introduction section. 

[Insert Table 3 here] 

Both parameter estimates and LC effects are robust when using a single or multi-

cohort specification. As it is difficult to interpret separately the coefficients of the three 

LC indicators, our analysis is again focused on the estimated effects attributable to the 

LC processes. Similar to our production function model, we find very heterogeneous 

individual LC effects that do not allow us to achieve any noteworthy average LC effect 

on farm figures.24 We obtain interesting findings once we split the sample into several 

groups or we locate the parishes on a map. Figure 8 shows the geographical distribution 

of the estimated LC effects on the number of farms. We find that the LC processes have 

specially attenuated the decline in the number of farms in coastal parishes 

(municipalities).25 As most of the dairy livestock is in these municipalities, this 

 
24 Notice that we have not distinguished in Table 3 between dairy and beef-oriented farms. In our robustness 

analysis section, we examine whether the apparently lack of significance of LC effects can be applied to 

both dairy and beef-oriented farms. 
25 Notice that a positive effect here does not imply that the number of farms increases over time due to the 

increasingly negative coefficients of the time dummies included in our auxiliary regression. They rather 

indicate that the decline in the number of farms is attenuated by the LC processes. 
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distribution suggests the existence of a positive effect in parishes where the dairy-oriented 

farms predominate. It should be pointed out, however, that this does not necessarily mean 

that the dairy farms are the most benefited by the LC processes if the LC processes help 

the replacement of dairy-oriented farms with beef-oriented farms. This result might 

simply suggest that the LC activity needs the existence of dairy farms to be effective at 

attenuating the decline in the number of farms, an issue that will be examined in the sub-

section devoted to robustness analyses and further results.  

 

Figure 8. Direct LC effects on parishes’ farms 

 

 

Figure 9 distinguishes the effect of LC processes between parishes with extensive 

farms using traditional systems of livestock production and parishes with more intensive 

farms. As in previous studies, we find that the effect of LC processes on the number of 

farms is more relevant when these farms are of an extensive type. For instance, Orea et 

al. (2015) also concluded that the LC processes would particularly improve extensive 

farms’ profits rather than those generated by intensive farms. If we compare this map with 

the previous one, we appreciate that some LC processes performed in parishes located in 

municipalities close to the Galician border (e.g. Villanueva de Oscos and San Matín de 

Oscos) or in Cangas del Narcea, the largest Asturian municipality), have had a noticeable 

effect on farms’ size in terms of livestock numbers, but a small effect, if any, on the 

number of farms. Both maps combined seem to indicate that while the LC processes were 

able to attenuate the decline of (extensive) farms located close to or in coastal parishes or 

municipalities, they were less effective at mitigating the decline of (intensive) farms 

located far from the coast. In these parishes, the LC processes have helped to maintain 

livestock production by favouring the concentration of production on larger farms. 
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Figure 9. LC effect on parishes’ farms. Traditional vs. non-traditional. 

 

 

As aforementioned, on average we do not find noteworthy effects on the numbers 

of farms located in parishes that have had one or more LC processes. Notice that our FE 

estimator uses annual changes to estimate the coefficients of the model. As pointed out 

by Crecente et al. (2002, p. 142), this temporal periodicity is probably insufficient for the 

purpose of identifying the effects of the LC processes. To detect the LC effects we clearly 

need to examine longer temporal windows. We do so in Figure 10. This figure depicts the 

estimated effect of a single LC process over more than one decade. Similar to our 

production function model, we find larger (positive) effects attributable to the LC as time 

passes.  

 

Figure 10. Temporal evolution of the direct LC effect on parishes’ farms 
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4.2.2. Population 

Table 4 shows the parameter estimates of the auxiliary regression aimed at 

explaining changes in parishes’ population. As the focus here is on social issues, this 

model does not include observed variables on the livestock activity carried out within the 

parishes. In addition to the LC-based variables, the model again includes fixed and 

temporal effects (not shown). The estimated coefficients of the time dummy variables 

included here allow capturing the ‘natural’ decline of the population in rural Asturias. As 

we have rejected the null hypothesis of common sequential parameters in this model, we 

present here the parameter estimates of a simplified specification where we have 

(incorrectly) imposed the CSP assumption together with a more comprehensive model 

that includes a different LC-based variable for each LC process that is performed in the 

same parish. In particular, here our model includes three dummy variables identifying the 

three first LC processes, three variables measuring the intensity of each LC process and 

three variables measuring their corresponding ages.26 To facilitate the econometric 

analysis and because the results are robust for this modelling issue, both models have 

been estimated using a one-cohort specification. 

[Insert Table 4 here] 

As in our previous models, the impact of the LC processes on population is on 

average close to zero. However, the LC processes have been able to attenuate, at least to 

some extent, the population decline observed in some of the parishes located in western 

Asturias. Figure 11 shows the geographical distribution of the estimated effects on 

parishes’ population. It resembles the previous ones, but with some interesting 

differences. Except in half a dozen of parishes located close to or several kilometres from 

the coast (see e.g., Cudillero), the largest positive effects are found in parishes or 

municipalities located very close to the Galician border (see e.g. Taramundi, Villanueva 

de Oscos, Santa Eulalia de Oscos and inland Vegadeo). Recall that a positive effect here 

does not imply that population increases over time. It instead indicates that the population 

decline is attenuated by the LC processes. Interestingly, while the LC processes were not 

able to attenuate the decline in the number of farms in many of the parishes located in the 

two biggest municipalities of Asturias (i.e. Tineo and Cangas del Narcea), they have had 

a larger effect on their population. It seems that these LC processes have promoted other 

economic activities in these rural areas due to most likely the improvements in roads and 

the better accesses to plots and villages. In general, these findings corroborate previous 

research focused on rural areas at spatial level (see, e.g. Crecente et al., 2002 in Spain, 

Du et al., 2018 and Zhou et al., 2019 for China or Dudzińska et al., 2018 in Poland) as we 

also find that the LC processes are key policies in promoting the socioeconomic 

conditions of rural areas. 

 

 

 

 

 

 

 
26 Only two parishes accumulate more than three LC processes. In these two cases, we have assumed that 

the effect of subsequent LC processes is equal to the third one. 
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Figure 11. Direct LC effects on parishes’ population 

 

 

4.4. Robustness analyses and further results 

4.4.1. Dairy vs. beef-oriented livestock production and farms 

In order to examine whether our results are robust for model misspecification 

issues, we also estimated alternative specifications of our models. In particular, we have 

estimated separately an auxiliary regression model for milk-oriented farms and an 

auxiliary regression model for beef-oriented farms. Although it is possible to split the 

overall number of farms in a parish into dairy and beef-oriented farms, we cannot allocate 

the observed dairy and beef livestock to each farm type. This issue prevented us from 

estimating two different production functions: one for dairy production and the other for 

beef production. However, we have taken advantage of production theory and estimated 

a multi-output distance function (a traditional concept in production economics) that 

allows measuring the effect of the LC processes on both dairy and beef production using 

a single equation.27  

The results using a single production function model or a multi-output distance 

function are quite similar in terms of both parameter estimates and LC effects. Indeed, we 

find decreasing returns to scale at parish level using a multi-output distance function, 

indicating again that parishes with more farms tend to have smaller farms in terms of beef 

and dairy cattle. When a multi-output distance function is estimated, we find a negative 

and significant relationship between parishes’ beef and dairy production, a somewhat 

expected result given that it is conditional on the number of farms. As aforementioned, 

we obtain a positive coefficient for 𝑛𝑖𝑡𝑙𝑛𝑥𝑖𝑡 and a negative coefficient for ΣI𝑖𝑡𝑙𝑛𝑥𝑖𝑡 using 

a single production function. The distance function model includes separate interactions 

of our LC indicators with the number of dairy and beef-oriented farms. This allows us to 

examine whether the above two results have more to do with dairy or beef-oriented farms. 

In both cases, we find that the coefficients of these two interactions are statistically 

significant when 𝑛𝑖𝑡 and ΣI𝑖𝑡 are interacted with the number of beef-oriented farms. This 

seems to indicate that adding new LC processes is more effective in parishes with several 

 
27 The parameter estimates of this alternative specification are available from the authors upon request. 
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beef-oriented farms. Moreover, as the coefficient of the interaction of ΣK𝑖𝑡 with the 

number of beef-oriented farms was not statistically significant using a distance function, 

the effect found for large parishes seems to be more persistent over time.  

Regarding the auxiliary regressions estimated separately for dairy and beef-

oriented farms,28 we find similar parameter estimates to those obtained using a single 

auxiliary regression model, except for the time dummy variables. Their different 

coefficients simply reflect the more pronounced decreasing trend in the number of dairy 

farms when compared with the decline of beef-oriented farms. Behind this dynamism is 

the productive reorientation of some small and uncompetitive dairy farms that took 

advantage of the plans to abandon dairy production financed by the administration as well 

as the possibility of selling their milk quota, maintaining their livestock activity with beef 

cows (see e.g. Parrondo, 2006; García et al., 2007). 

We also find very heterogeneous individual LC effects on both dairy and beef-

oriented farms. Using a single auxiliary regression model, we have already found that the 

LC processes were not on average quite as effective in mitigating the decline of the 

number of farms. When estimating separately two auxiliary regressions, we realize that 

this result can be explained by the different magnitude of the LC effects found for dairy 

and beef-oriented farms. That is, while the average effect of the LC processes on the 

number of dairy-oriented farms is negligible (or even negative), it is positive when we 

estimate the auxiliary regression for beef-oriented farms. Interestingly, the individual 

effects attributable to LC processes are larger for beef-oriented farms than for dairy-

oriented farms, even in parishes where the dairy-oriented farms predominate. In this case, 

the LC processes have been effective in attenuating the decline in both dairy and beef-

oriented farms, but the effectiveness of this policy measure is larger for the latter type of 

farms. Moreover, we do not find positive LC effects if the proportion of dairy farms is 

relatively small. That is, the LC activity needs the existence of dairy farms to be effective 

at attenuating the decline in the number of farms. This somehow bizarre, but expected, 

result can be explained if the LC processes help the replacement of dairy cows with beef 

cows and the transformation of the livestock activity from milk to beef production. The 

LC processes stimulates this transformation as beef production in Asturias is generally 

developed with more extensive livestock production systems.   

4.4.2. Additional Tests 

In order to examine whether the performed F-test carried out to check the PT and 

CSP assumptions were robust to model misspecification issues, we also performed these 

tests using the above three alternative specifications for the production model and the 

auxiliary regression aiming to explain changes in the number of farms. Similar F-tests are 

obtained using these three alternative model specifications. Indeed, both the PT and CSP 

assumptions cannot be rejected when a multi-output distance function is estimated instead 

of a production function that does not distinguish between dairy and beef production. 

Regarding the auxiliary regressions, we find that we cannot reject the CSP assumption 

when we estimate separately an auxiliary regression for milk and beef-oriented farms. On 

the other hand, the PT assumption is not rejected at any reasonable level of significance 

if two different auxiliary regressions are estimated for milk and beef-oriented farms, 

regardless of whether time-dummies or a time trend for the treated units are used. 

 
28 The parameter estimates of these two auxiliary regression models are available from the authors upon 

request. 
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One of the specifications used to investigate the PT assumption relies on the 

significance of the coefficient of a time-trend only included in the model for the treaded 

units. For robustness analyses, we also used the estimated coefficient of this specific time-

trend in order to adjust the outcome values of the treated units with the aim of ensuring 

that on average both treated and control units move in tandem, conditional on the control 

variables. The distributions of the LC effects were in all cases very similar to those 

obtained without the proposed adjustment, indicating that our causal effects are robust to 

deviations from the temporal pattern captured by the (common) time dummy variables.  

4.4.3. Spatial spillovers 

A common feature of the above models is that they ignore the spatial structure of 

the data. In other words, 𝐿𝐶𝐸𝑖𝑡 in (15) and (16) is only capturing a direct effect on 

parishes’ production ignoring that the local LC processes might also have an indirect 

impact on neighbouring parishes’ outcome.29 Obviously, similar comments can be made 

for the auxiliary regressions. As we use very small administrative units, for robustness 

analysis we have extended our preferred models by adding the LC variables of 

neighbouring parishes in the same fashion as a standard spatial lag model (SLX) does. 30 

In order to examine whether the parishes that have internal LC processes also have larger 

spatial spillovers from the LC processes implemented in neighbouring parishes, we 

estimate different coefficients for the spatially lagged variables for parishes with and 

without internal LC processes.31,32  

Table 5 provides a summary of the estimated total effects of the LC processes on 

farms’ size as well as their disaggregation into direct and indirect effects, understood as 

the effects from LC processes performed inside the parishes and those from the 

surrounding ones. Several comments are in order regarding the estimated indirect effects 

shown in this table. We observe that the indirect (spatial) spillovers are as relevant as the 

direct (internal) LC effects, thereby confirming the importance of considering the notion 

of spatial interactions in studies that rely on very disaggregated spatial information. 

Deininger and Xia (2016) draw a similar conclusion in their application to Mozambique. 

This finding thus indicates that the LC effects are likely to be underestimated if we only 

examine the local economic impacts of such processes. Notice as well that the parishes 

with no internal LC processes almost always take advantage of the LC processes 

performed in neighbouring parishes, regardless of whether we examine livestock 

 
29 One stylized result from the regional economics literature is that the direct effect of own variables on 

production reduces when the territorial disaggregation of locations increases because a larger portion of the 

overall effect spills over neighbouring units (see e.g. Álvarez-Ayuso et al, 2016). Substantial spatial 

spillovers might appear in our application, given that we use very disaggregated spatial information, and a 

parish might benefit from other parishes if it uses the plots and infrastructures existing in neighbouring 

parishes (Da silva et al., 2017).  
30 The spatial lags of the LC-based variables are computed using a spatial weight vector with elements that 

are equal to zero if a particular parish j is not a neighbour of parish i and equal to one if the two parishes 

are neighbours or adjacent. 

31 The parameter estimates of the spatial specifications of our models are available from the authors upon 

request. We only mention here that the coefficients of the spatially lagged variables were statistically 

significant in most models.  
32 While in our production function model the direct LC effect of each parish (𝐿𝐶𝐸𝑖𝑡) is computed using 

equation (16), the indirect or spatial effect of neighbours’ LC processes (𝐼𝐿𝐶𝐸𝑖𝑡) can be computed by 

multiplying the spatial lags of the LC-based variables with their estimated coefficient. Next we can compute 

the total effect of LC on parishes’ outcome (𝑇𝐿𝐶𝐸𝑖𝑡) by adding both direct and indirect effects, that is: 

𝑇𝐿𝐶𝐸𝑖𝑡 = 𝐿𝐶𝐸𝑖𝑡 + 𝐼𝐿𝐶𝐸𝑖𝑡 . The indirect and total LC effects on both parishes’ farms and population are 

obviously computed using a similar procedure. 
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production, farm numbers or population. Therefore, the effects only computed with 

parishes that have internal LC processes can be considered as a lower bound of the overall 

effect attributable to LC processes. The indirect effect found for the parishes with internal 

LC processes is unclear, as sometimes it is positive, but negative in other cases. 

Interestingly, we find a slightly negative correlation between the effects caused by LC 

processes performed inside the parishes and those from the surrounding ones. This result 

may be indicative of backwash Myrdal´s effects (Gude et al., 2018) in the sense that it 

may arise through competition in financial support between parishes. 

[Insert Table 5 here] 

 

4.4.4. Conditional vs. unconditional effects 

As previously discussed, LC processes might affect Asturian parishes’ livestock 

production via the number of farms. To explore this possibility, we have estimated a set 

of auxiliary regressions that include not only internal LC indicators, but also their spatial 

lags as explanatory variables of the number of farms. If we use the complete sample of 

observations, we do not obtain significant direct effects of the LC processes on the 

number of farms. Recall, however, that we have split the sample into dairy and beef-

oriented parishes in order to take into account the different composition of the farms 

located in each parish and found that the LC processes have attenuated the decline of 

beef-oriented farms. Moreover, the results shown in Table 5 confirm the positive 

spillovers coming from the LC processes in adjacent parishes. Overall these results 

suggest that the farm-induced channel through which the LC processes might affect 

parishes’ livestock production should not be ignored, especially in parishes where the 

beef-oriented farms predominate. 

Table 6 shows the conditional, farm-induced and unconditional (or total) LC 

effects on parishes’ livestock production computed using the parameter estimates of our 

production function model that aims to measure the impact of LC processes at the parish 

scale (i.e. conditional on the number of farms) together with the auxiliary regression that 

uses the number of farms as the dependent variable.33 This table shows that the farm-

induced effect of LC on farm numbers is on average positive for the whole set of parishes 

that were involved in LC processes. This favourable effect is even larger when we take 

into account the spatial spillovers from LC processes performed in surrounding parishes. 

Therefore, we can conclude that the unconditional effect of the LC processes on parishes’ 

livestock production tends to be smaller (larger) than the conditional effect when the 

proportion of dairy (beef) farms located in a particular parish is sufficiently high. Taking 

into account the two mentioned channels, we find that parishes’ livestock production 

increases about 3% if we take into account the spatial (indirect) effects. Interestingly, we 

also find that both the conditional and farm-induced effects are highly correlated, 

regardless of whether we include spatial spillovers or not. This result thus seems to 

indicate that the farm-induced channel through which the LC processes might affect 

parishes’ livestock production should not be ignored specially in those parishes with large 

(conditional) LC effects on farms’ size in terms of livestock number. 

 
33 If we denote the effect of LC on parishes’ farm numbers as 𝑋𝐿𝐶𝐸𝑖𝑡 , the unconditional effect of the LC 

processes on parishes’ production can be computed as 𝐿𝐶𝐸𝑖𝑡 + 𝜀𝑖𝑡𝑋𝐿𝐶𝐸𝑖𝑡, where 𝜀𝑖𝑡 = 𝜕𝑙𝑛𝑦𝑖𝑡/𝜕𝑙𝑛𝑥𝑖𝑡  is 

obtained from the production model. 
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[Insert Table 6 here] 

Figure 12 shows the geographical distribution of the unconditional effects on 

parishes’ livestock production. Obviously, it resembles Figure 7 and Figure 8 given that 

it combines the information contained in these two figures. As the farm-induced effect 

tends to complement the conditional effect, the coloured parishes in Figure 12 are 

associated with larger effects than in the case of Figure 7, which only takes into account 

the conditional effects on parishes’ livestock production. Again, the largest positive 

effects are found in half a dozen parishes located close to or several kilometres from the 

coast, parishes or municipalities located very close to the Galician border and in a set of 

parishes located in Tineo and Cangas del Narcea, the two biggest Asturian municipalities 

whose main economic activity is livestock production.  

 

Figure 12. Unconditional LC effects on parishes’ livestock production 

 

 

 

5. Conclusions 

The objective of this research is to evaluate the economic and social impact of the 

land consolidation (LC) processes that have taken place in Asturias during the period 

2001-2017. This is a relevant topic for several reasons. During the last decades, and 

particularly during the period under study, Asturias has received European funding aimed 

at promoting concentration processes. Second, the land has traditionally been fragmented 

in Asturias. Third, previous research has often found that LC processes are important 

tools for improving the economic activity of rural areas, increasing farmer income and 

stabilizing rural population. Finally, regional regulation in Asturias has contributed to the 

development of those processes.  

We have focused our analysis on parishes’ livestock activity measured in terms 

of farm figures; restructuration of livestock production measured as average cows per 

farm; and parishes’ population. Unfortunately, it is impossible to extend the study to other 
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categories such as the impact on ecological environment, local economy, and other social 

effects. 

First, we estimate a production function model using parishes’ herds as a proxy 

for livestock production and the number of farms as the main input. It also includes 

several LC-based variables that capture not only the number of LC processes 

implemented in each parish, but also their intensity and age. This model allows us to 

examine whether LC has exerted broad impacts on promoting livestock production, 

conditional on the number of farms. We also analyse the effect of LC-based variables on 

parishes’ farms and population using a couple of auxiliary regressions. The first auxiliary 

regression allows us to obtain the unconditional effects of the LC processes on parishes’ 

production and test whether the LC processes in Asturias have attenuated the decline in 

farm figures. The second one allows us to examine whether the LC efforts made by the 

Asturian Government have helped to secure the level of rural population and the 

economic activities in the territory. 

Our main contributions to this literature include the panel data techniques used to 

estimate all models and the spatial interdependence that has been incorporated into our 

analysis by adding the LC indicators of neighbouring parishes. This last feature allows us 

to decompose the total effects attributable to LC into direct and indirect effects. To test 

the above three hypotheses, we use a multi-cohort multi-treatment DiD approach with 

heterogeneous treatment timings. To the best of our knowledge, a similar DiD 

specification has not been estimated yet in the literature. We show that we can accumulate 

sequential treatments (LC processes in our application) as long as they have the same 

effect on outcome. Therefore, in addition to the well-known parallel trends (PT) 

assumption, in a multi-treatment DiD model we test a new assumption that we label as 

the common sequential parameter (CSP) assumption. Moreover, in our application, we 

try to distinguish between three different cohorts of LC processes, one of them outside 

the sample period, as they are likely to be of a different nature.  

We do not find strong evidence to support the effectiveness of the LC processes 

in mitigating the decline in livestock production in rural Asturias. Taking into account the 

effect on farms’ size, the so-called farm-induced effects and the spatial (indirect) effects, 

we find that parishes’ livestock production only increases about 3% on average once one 

or more LC processes are implemented. This modest effect simply reflects that many 

other factors explain the continuation of livestock production in western Asturias. 

Therefore in most cases, alternative actions should be launched in order to attenuate, or 

reverse, the depletion of livestock activity in Asturias.  

Although the average effect is not noteworthy, we find quite large impacts in some 

of the parishes that have had LC processes. For instance, we find that the LC processes 

have especially attenuated the decline in the number of farms in coastal parishes 

(municipalities), where the dairy-oriented farms predominate. Interestingly, these are the 

parishes where we observe more LC processes. Therefore, it seems that the Asturian 

policy makers have already contemplated a potentially larger effect in these parishes as 

compared to the beef-oriented parishes. The LC processes were less effective at 

attenuating the decline of (intensive) farms located far from the coast. In inland parishes, 

the LC processes have helped to maintain livestock production by favouring the 

concentration of production on larger farms. Moreover, the effects attributable to LC 

processes are larger for beef-oriented farms than for dairy-oriented farms given that LC 

processes tend to stimulate the transformation of livestock activity from milk to beef 

production. Finally, as expected, we find larger (positive) effects attributable to the LC 

on livestock production as time passes. 
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We observe that the indirect (spatial) spillovers are as relevant as the direct 

(internal) LC effects, thereby confirming the importance of considering the notion of 

spatial interactions in studies that rely on very disaggregated spatial information. Overall 

these results advocate using spatial econometrics techniques in the empirical 

examinations of economic effects attributable to LC processes. They also advocate using 

coordinated LC measures by regional governments in order to take full advantage of this 

important policy. Policy makers should also be aware that the impact of their LC 

processes might depend on parishes’ characteristics and that the expected effects might 

be underestimated if the spatial spillover effects of such measures are ignored. 

Regarding our third hypothesis, we have not been able to find strong evidence 

about the effectiveness of the LC processes in securing the level of rural population. If 

this is the general case, we might conclude that reversing rural depopulation most 

probably requires a reorientation of current rural policies and related investment 

decisions. However, the LC processes have been able to mitigate, at least to some extent, 

the population decline observed in some of the parishes located in western Asturias. 
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Table 1. Descriptive Statistics 

 

Variable Description Obs. Mean Std. Dev. Min Max 

x Total number of farms 4,964 23.26 18.39 0 153 

     - Beef 4,964 15.35 11.95 0 80 

     - Dairy 4,964 6.41 10.49 0 118 

y Total livestock 4,964 617.55 545.91 0 3586 

     - Beef 4,964 333.93 337.96 0 3317 

     - Dairy 4,964 283.61 454.34 0 2779 

z Livestock units / (Total bovine herd+1) 4,964 0.71 0.10 0 1 

P Population 4,964 329.51 668.74 3 7228 

n Number of LC processes 1,056 1.46 0.78 1 5 

 Cumulative investment per hectare  1,056 10.27 5.51 0 38.82 

K Cumulative age of LC processes 1,056 12.25 11.38 0 65 
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Table 2. Parameter estimates of parishes’ production function. 

 

Dep. Var.= 𝑙𝑛𝑦𝑖𝑡 One-cohort model Multi-cohort model 

Regressors Coef. Std. Err. Robust-t Coef. Std. Err. Robust-t 

𝑙𝑛𝑥 0.8975 0.0838 10.71 0.8999 0.0830 10.85 

𝑧 0.0085 0.0060 1.43 0.0083 0.0060 1.39 

1/2𝑙𝑛𝑥2 -0.2807 0.0681 -4.12 -0.2783 0.0686 -4.05 

1/2𝑧2 -0.0010 0.0002 -4.84 -0.0010 0.0002 -4.83 

𝑙𝑛𝑥 · 𝑧 0.0091 0.0027 3.37 0.0090 0.0027 3.34 

𝑛 -0.2514 0.0989 -2.54       

ΣDC1             

ΣDC2       0.0465 0.2867 0.16 

ΣDC3       -0.1512 0.0726 -2.08 

ΣI 0.0323 0.0125 2.59       

ΣIC1             

ΣIC2       -0.0070 0.0369 -0.19 

ΣIC3       0.0149 0.0093 1.60 

ΣK 0.0039 0.0036 1.07       

ΣKC1       0.0038 0.0047 0.81 

ΣKC2       0.0026 0.0046 0.58 

ΣKC3       0.0046 0.0070 0.65 

𝑛 · 𝑧 -0.0164 0.0097 -1.69 -0.0070 0.0078 -0.90 

ΣI · z 0.0025 0.0013 1.98 0.0012 0.0011 1.15 

ΣK · z -0.0003 0.0004 -0.71 -0.0003 0.0004 -0.72 

𝑛 · 𝑙𝑛𝑥 0.3218 0.1272 2.53 0.2334 0.1230 1.90 

ΣI · 𝑙𝑛𝑥 -0.0467 0.0166 -2.80 -0.0338 0.0156 -2.17 

ΣK · 𝑙𝑛𝑥 -0.0077 0.0034 -2.31 -0.0070 0.0033 -2.12 

Intercept 5.9606 0.0945 63.10 5.9545 0.0987 60.31 

Time dummies Yes     Yes     

Municipality 

trends Yes     Yes     

Fixed effects Yes     Yes     

# Obs. 4964     4964     

# treated obs.  1056     1056     

# Parishes 292     292     

Within R-sq 0.7694     0.7689     

Between R-sq 0.8171     0.8201     

Overall R-sq 0.8087     0.8117     

Mean LC effect -0.0484     -0.0023     
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Table 3. Parameter estimates of parishes’ number of farms function. 

 

Dep. Var.= 𝑙𝑛𝑥𝑖𝑡 One-cohort model Multi-cohort model 

Regressors Coef. Std. Err. Robust-t Coef. Std. Err. Robust-t 

𝑧 0.0069 0.0044 1.57 0.0069 0.0044 1.57 

1/2𝑧2 -0.0003 0.0001 -2.77 -0.0003 0.0001 -2.77 

𝑛 0.0230 0.0589 0.39       

ΣDC1             

ΣDC2       0.2951 0.3216 0.92 

ΣDC3       0.0477 0.0384 1.24 

ΣI -0.0063 0.0079 -0.79       

ΣIC1             

ΣIC2       -0.0461 0.0444 -1.04 

ΣIC3       -0.0078 0.0055 -1.41 

ΣK 0.0008 0.0031 0.26       

ΣKC1       0.0000 0.0057 0.00 

ΣKC2       0.0046 0.0041 1.11 

ΣKC3       -0.0068 0.0072 -0.95 

𝑛 · 𝑧 0.0133 0.0112 1.19 0.0129 0.0106 1.22 

ΣI · z -0.0017 0.0015 -1.16 -0.0015 0.0014 -1.08 

ΣK · z 0.0003 0.0005 0.68 0.0003 0.0005 0.57 

𝑛 · 𝑙𝑛𝑥 3.3007 0.0568 58.16 3.3137 0.0610 54.28 

ΣI · 𝑙𝑛𝑥 0.0069 0.0044 1.57 0.0069 0.0044 1.57 

ΣK · 𝑙𝑛𝑥 -0.0003 0.0001 -2.77 -0.0003 0.0001 -2.77 

Intercept 0.0230 0.0589 0.39       

Time dummies Yes     Yes     

Municipality 

trends Yes     Yes     

Fixed effects Yes     Yes     

# Obs. 4964     4964     

# treated obs.  1056     1056     

# Parishes 292     292     

Within R-sq 0.6468     0.6476     

Between R-sq 0.2282     0.2386     

Overall R-sq 0.1921     0.1962     

Mean LC effect 0.0018     0.0048     
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Table 4. Parameter estimates of parishes’ population function. 

 

Dep. Var.= 𝑙𝑛𝑃𝑖𝑡 With CSP assumption With no CSP assumption 

Regressors Coef. Std. Err. Robust-t Coef. Std. Err. Robust-t 

𝑛 0.0709 0.0260 2.72       

D1       0.1119 0.0183 6.10 

D2       0.0559 0.0551 1.01 

D3       0.0219 0.0340 0.64 

ΣI -0.0095 0.0038 -2.52       

I1       -0.0182 0.0028 -6.44 

I2       -0.0051 0.0067 -0.75 

I3       0.0107 0.0057 1.88 

ΣK -0.0011 0.0013 -0.84       

K1       -0.0015 0.0019 -0.78 

K2       0.0011 0.0041 0.28 

K3       -0.0109 0.0045 -2.41 

Intercept 5.2547 0.0379 138.59 5.2512 0.0363 144.67 

Time dummies Yes     Yes     

Municipality 

trends Yes     Yes     

Fixed effects Yes     Yes     

# Obs. 4964     4964     

# treated obs.  1056     1056     

# Parishes 292     292     

Within R-sq 0.7547   0.7588     

Between R-sq 0.0449   0.0111     

Overall R-sq 0.0071   0.0068     

Mean LC effect 0.0014   -0.0023     
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Table 5. Direct, Indirect, and total LC effects 

Farms’ size Obs. Mean Std. Dev. Min Max 

Parishes with internal LC processes      

   Direct Effect 1,056 -0.0023 0.0823 -0.2716 0.4335 

   Indirect Effect 1,056 0.0103 0.0285 -0.2123 0.1027 

   Total Effect 1,056 0.0080 0.0841 -0.2947 0.4345 

Parishes without internal LC processes     

   Direct Effect 3,908 0 0 0 0 

   Indirect Effect 3,908 0.0117 0.0240 -0.0025 0.2496 

   Total Effect 3,908 0.0117 0.0240 -0.0025 0.2496 

Number of farms Obs. Mean Std. Dev. Min Max 

Parishes with internal LC processes      

   Direct Effect 1,056 0.0048 0.0754 -0.2462 0.3190 

   Indirect Effect 1,056 0.0429 0.0375 -0.0153 0.1966 

   Total Effect 1,056 0.0477 0.0821 -0.1825 0.3775 

Parishes without internal LC processes     

   Direct Effect 3,908 0 0 0 0 

   Indirect Effect 3,908 0.0164 0.0269 0.0000 0.2205 

   Total Effect 3,908 0.0164 0.0269 0.0000 0.2205 

Population Obs. Mean Std. Dev. Min Max 

Parishes with internal LC processes      

   Direct Effect 1,056 -0.0023 0.0613 -0.0606 0.2661 

   Indirect Effect 1,056 -0.0123 0.0323 -0.1865 0.0525 

   Total Effect 1,056 -0.0146 0.0637 -0.1827 0.2778 

Parishes without internal LC processes     

   Direct Effect 3,908 0 0 0 0 

   Indirect Effect 3,908 0 0.0027 -0.0246 0.0201 

   Total Effect 3,908 0 0.0027 -0.0246 0.0201 
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Table 6. Conditional and unconditional LC effects on livestock production 

 Obs. Mean Std. Dev. Min Max 

With no spatial spillovers      

   Conditional Effect 1,056 -0.0023 0.0823 -0.2716 0.4335 

   Farm-induced Effect 1,056 0.0107 0.0486 -0.1237 0.2628 

   Unconditional Effect 1,056 0.0084 0.1034 -0.2998 0.6301 

With spatial spillovers     

   Conditional Effect 1,056 0.0080 0.0841 -0.2947 0.4345 

   Farm-induced Effect 1,056 0.0219 0.0610 -0.1280 0.4141 

   Unconditional Effect 1,056 0.0299 0.1080 -0.2718 0.7081 
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Appendix A. Testing the simplifying and identification assumptions  

 

CSP assumption 

      Robustness analyses 

Null hypotheses 

 

Production 

Function 

Total number 

of farms Population 

 Multi-output 

Distance Function Dairy farms Beef farms 

n=2n=3n F-test (a) 0.20 0.47 3.13  0.03 2.26 0.71 

  P-value 0.816 0.627 0.045  0.967 0.106 0.493 

           
n=2n=3n F-test (b) 1.56 1.50 4.30  0.40 2.65 0.55 

I=2I=3I P-value 0.185 0.204 0.002  0.806 0.034 0.700 

           
n=2n=3n F-test (b) 0.25 0.88 3.94  0.28 1.83 1.02 

=2K=3K P-value 0.912 0.474 0.004  0.891 0.124 0.400 

           
n=2n=3n F-test (c) 1.07 1.12 4.68  0.49 1.72 0.76 

I=2I=3I P-value 0.382 0.349 0.000  0.812 0.116 0.605 

=2K=3K          
Notes: a) degrees of freedom (2,291); b) degrees of freedom (4,291); c) degrees of freedom (6,291). Using clustered-robust covariance. 
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PT assumption 

      Robustness analyses 

Model 

  

Production 

Function 

Total number 

of farms Population 

 Multi-output 

Distance Function Dairy farms Beef farms 

Treated-specific time 

dummies 

F-test (a) 1.66 1.69 1.77  1.81 1.17 1.40 

P-value 0.053 0.048 0.034  0.030 0.290 0.138 

Treated-specific time trend 

Coef. -0.006 0.057 -0.001  0.002 -0.006 0.010 

F-test (b) 2.16 1.09 0.49  0.27 0.63 3.18 

P-value 0.143 0.297 0.484  0.604 0.428 0.076 
Notes: a) degrees of freedom (16,291); b) degrees of freedom (1, 291). Using clustered robust covariance 

 

 

 


