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Abstract 

 

In this paper, we provide an empirical assessment of the effects of infrastructure 

provision on structural change and aggregate productivity using industry-level data for a set of 

developed and developing countries over 1995-2010. A distinctive feature of our empirical 

strategy is that it allows the measurement of the resource reallocation directly attributable to 

infrastructure provision. To achieve this, we propose a two-level top-down decomposition of 

aggregate productivity that combines and extends several strands of the literature. In our 

empirical application, we find significant production losses attributable to misallocation of 

inputs across firms, especially among African countries. Our empirical application also shows 

that infrastructure provision has stimulated aggregate TFP growth through both within and 

between-industry productivity gains. 
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1. Introduction 

Differences in aggregate productivity account for the bulk of cross-country per-capita 

income differentials. Thus, understanding the drivers of productivity growth has long been of 

high interest to academics and policy makers. Much of the literature on productivity growth 

decomposition (see Färe et al., 2008) focuses on two key ingredients: the introduction of more 

productive technologies (i.e., technical change), and the barriers to diffusion and learning that 

prevent firms from adopting those technologies (i.e., the catching-up effect or efficiency 

change). Another strand of the literature (see Balk, 2016a,b) stresses that aggregate productivity 

growth depends not only on industry-level productivity change (within effect), but also on the 

shift in industry relative size (reallocation effect). Recent papers suggest that countries can 

increase output and aggregate total factor productivity (TFP) substantially by reallocating 

resources more efficiently across firms and industries (e.g., Hsieh and Klenow 2009). 

Moreover, in their summary of the literature, Restuccia and Rogerson (2008, 2013) conclude 

that weak public institutions may distort the allocation of resources and thus become a source 

of productivity and income losses. Basu et al. (2021) have recently pointed out that an increase 

in aggregate TFP due to reallocation or better use of scale economies is as much of a welfare 

gain for the representative consumer as a change in technology of the same magnitude and 

persistence. Therefore, TFP losses due to allocative inefficiency are of direct interest if we aim 

to connect TFP measures with welfare.1Public investment in infrastructure has long been 

considered as one of the key policy levers to affect both economic development and aggregate 

productivity. Its relevance is reflected in the large number of studies quantifying its effects on 

private production (Pereira and Andraz, 2013). In particular, one of the components that has 

generated the greatest interest has been the investment in highways, due to its uncertain effects 

on regional economic growth and territorial disparities (see, e.g. Crescenzi and Rodríguez-Pose 

2012). Public and private investments in telecommunication infrastructure and electricity 

distribution are increasingly recognized as fundamental for economic and social development 

(see, e.g. Qiang and Rossotto, 2009; Yang, 2000). Given the uneven effect that these sorts of 

investments might have across the economy, it is of great interest for both academics and policy 

makers to examine whether such infrastructure investments have also promoted gains in 

aggregate productivity through a better allocation of resources across firms and industries. 

 In this paper, we provide evidence on the effects of infrastructure provision on aggregate 

productivity using industry-level data for a set of developed and developing countries. To 

achieve this, we propose a two-level decomposition of aggregate productivity that combines 

and extends several strands of the literature. The first level, which does not require estimating 

any model, is a simplified version of the top-down TFP decomposition introduced by Diewert 

(2015).2 The second level of our productivity decomposition allows measuring aggregate TFP 

improvements directly attributable to infrastructure provision, and to other productivity drivers. 

A distinctive feature of this theoretical decomposition is that it traces two different channels 

through which infrastructure provision might promote aggregate productivity gains: i) by 

raising the productivity level of each industry (the within effect); and ii) by stimulating the 

 
1 Basu et al. (2021) show that one can measure welfare using data on aggregate TFP and the capital stock per 

capita, provided that TFP is calculated using domestic absorption rather than GDP as the output concept. They, 

however, do not decompose their aggregate TFP measure into its sectoral components. 
2 This top-down decomposition relies on a productivity measure that first aggregates all individual outputs and 

inputs and then computes the productivity of the aggregate. Petrin and Levinsohn (2012) pointed out that the top-

down productivity decompositions are conceptually more appealing than the bottom-up decompositions that uses 

a weighted ‘mean’ of the individual productivities in order to get an aggregate productivity measure (see e.g., 

Baily et al. 1992, and Foster et al., 2001). Indeed, Petrin and Levisohn (2012) showed that in the latter case the 

computed aggregate productivity can be negatively correlated with the degree of efficiency in the allocation of 

resources in the economy. 
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structural transformation of the economy (the reallocation effect). Thus, our theoretical model 

allows measuring inter-industry reallocation effects directly attributable to the infrastructure 

provision, which are often ignored in the literature measuring the effect of infrastructure 

provision on private production.3 

Decomposition of the within term into its fundamental explanatory factors requires 

estimating several production models. We also use the estimated production models to 

decompose the reallocation term capturing the output side of the adjustments taking place in 

the economy as it can be written as a function of several sectoral production models. These 

models are estimated using stochastic frontier (SF) techniques for two reasons. First, as 

advocated by Straub (2011), this empirical strategy allows infrastructure provision to have a 

direct effect on sectoral production as a standard input, and an indirect effect as a productivity 

externality. Second, although we use sector-level data, the technical inefficiency term of our 

production frontier model allows us to capture the production losses caused by a suboptimal 

allocation of resources across firms operating in the same industry. A proper inter-firm 

allocative inefficiency term requires knowledge of the marginal products at both the observed 

inputs and at the optimally allocated inputs for each firm. However, as the final effect of inter-

firm allocative inefficiency is a reduction in aggregate industry output (Ten Raa, 2005), it is 

captured by the sector-specific technical inefficiency term that appears in our SF models. Thus, 

while the theoretical model allows measuring inter-industry reallocation effects, our SF 

specification permits measuring inter-firm reallocation effects directly attributable to 

infrastructure provision.4  

The decomposition of the reallocation term capturing the input side of the adjustments 

taking place in the economy is much more challenging because employment is an intrinsically 

complex phenomenon influenced by many factors (see Vivarelli, 2012). A proper 

decomposition requires “endogenizing” industry-specific input levels using a suitable 

theoretical framework. The choice of theoretical framework is far from obvious, however, and 

instead we opt for estimating a set of auxiliary regressions to examine the effect of infrastructure 

provision on both industry labor and capital volumes and shares. 

We illustrate our decompositions using industry-level data for a set of developed and 

developing countries over the 1995-2010 period. The first-level decomposition shows that in 

many developing countries the simple aggregation of industry TFP growth rates does not 

properly describe aggregate TFP growth because the productivity gains attributable to 

reallocation of inputs across industries far exceed the poor TFP growth rates found in many 

industries. We also find significant production losses attributable to misallocation of inputs 

across firms in many industries, especially in Africa. Our empirical application finally shows 

that infrastructure provision has stimulated aggregate TFP growth through both within and 

between-industry productivity gains. 

The next section outlines the top-down approach used by Diewert (2015) to decompose 

aggregate productivity growth using a continuous-time setting. In Section 3 we develop a 

theoretical model that yields mutually consistent decompositions of both within and 

reallocation effects, once a set of production functions and auxiliary regressions are estimated.  

 
3 Remarkable exceptions are Asturias et al. (2019) and Perez-Sebastian and Steinbuks (2017), who calibrate a 

general equilibrium model to investigate respectively the role of transportation infrastructure in explaining inter-

firm resource misallocation in India (using a rich micro-level dataset), and the structural transformation of the 

economy attributed to public infrastructure in Brazil (using industry-level data).  
4 Our interpretation of the inefficiency term as a proxy for inter-firm misallocation of resources relies on the 

theoretical model developed by Asturias et al. (2019) who defined a “first best level” of productivity in the 

economy than can only achieved when there is no misallocation. Although they do not use any “frontier” 

terminology, their model seems to justify the use of SF techniques.  
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In Section 4 we discuss the data used in the empirical analysis and its sources. Section 5 presents 

both the parameter estimates and the computed productivity effects. This section also includes 

a discussion on the implications of the analysis for the design of strategies aimed at raising 

aggregate TFP, especially in developing countries. Finally, Section 6 presents the conclusions. 

2. Diewert’s (2015) TFP decomposition 

 This section outlines, using a continuous-time setting, the top-down approach proposed 

by Diewert (2015) to decompose an aggregate TFP productivity measure (𝑀) that can be 

defined as aggregate real output (𝑌) divided by aggregate real input (𝑋):5 

𝑀 =
∑ 𝑃𝑛𝑌𝑛

𝑁
𝑛=1 /𝑃

∑ 𝑊𝑛𝑋𝑛
𝑁
𝑛=1 /𝑊

=
𝑌

𝑋
      (1) 

where the subscript n stands for industry or sector, 𝑌𝑛 is industry n real output (value-added), 

𝑃𝑛 is the corresponding industry value added output price, and 𝑃 the aggregate output price 

index. On the other hand, 𝑋𝑛 is industry n aggregate input, 𝑊𝑛 is industry n aggregate input 

price, and 𝑊 the aggregate input price index. While 𝑋𝑛 can be viewed as a weighted average 

of industry labor and capital volumes, 𝑋 is a weighted average of industry-specific inputs.  

Diewert (2015, eq. 28) shows that it is possible to relate aggregate TFP level (𝑀) to the 

industry TFP levels (𝑀𝑛 = 𝑌𝑛/𝑋𝑛) as follows: 

𝑀 = ∑ (
𝑝𝑛

𝑤𝑛
)𝑠𝑋𝑛𝑀𝑛

𝑁
𝑛=1      (2) 

where 𝑝𝑛 = 𝑃𝑛/𝑃 is the industry n real output price, 𝑤𝑛 = 𝑊𝑛/𝑊 is the industry n real input 

price, and 

𝑠𝑋𝑛 =
𝑊𝑛𝑋𝑛

∑ 𝑊𝑠𝑋𝑠
𝑁
𝑠=1

=
𝑊𝑛𝑋𝑛

𝑊𝑋
      (3) 

is the nominal input share of industry n in aggregate cost.6 Thus, aggregate TFP is a weighted 

sum of industry-specific TFP productivities where the weight for each industry is its real output-

input price ratio (𝑝𝑛/𝑤𝑛) times its input cost share (𝑠𝑋𝑛). Next, Diewert (2015) develops an 

expression for the rate of growth of aggregate TFP. Using definition (1) and equation (2), 

aggregate TFP growth is equal to: 

�̇� = ∑ 𝑠𝑌𝑛Ṁ𝑛
𝑁
𝑛=1 + ∑ 𝑠𝑌𝑛ṗ𝑛

𝑁
𝑛=1 − ∑ 𝑠𝑌𝑛ẇ𝑛

𝑁
𝑛=1 + ∑ 𝑠𝑌𝑛ṡ𝑋𝑛

𝑁
𝑛=1          (4) 

where a dot over a variable indicates a rate of growth, and 𝑠𝑌𝑛 is the nominal value added or 

output share of industry n in total value added: 

𝑠𝑌𝑛 =
𝑃𝑛𝑌𝑛

∑ 𝑃𝑠𝑌𝑠
𝑁
𝑠=1

=
𝑃𝑛𝑌𝑛

𝑃𝑌
      (5) 

The first term in (4) can be interpreted as the aggregate TFP growth that would obtain 

if all real output and input prices and industry relative sizes were to remain constant over time. 

Notice that this term is just the straightforward aggregation of industry specific TFP growth 

rates, and thus it can be labelled as multifactor within effect (𝑊𝐸). The second and third terms 

in (4) indicate that aggregate TFP growth can also change due to changes in industry real output 

and input prices, respectively. We shall label these two terms respectively as 𝑂𝑃𝐸 and 𝐼𝑃𝐸. 

The last term indicates that aggregate TFP growth can also change due to changes in industry 

input cost shares. As this term has to do with transformation of the economy, measured by 

relative industry input usage, it represents an input reallocation effect, and thus it is labelled 

hereafter as 𝐼𝑅𝐸. Accordingly, if all real output and input prices remain constant, individual 

 
5 Diewert (2015) also proposed a decomposition of an aggregate measure of labor productivity. 
6 Hereafter we use lowercase “s” to denote nominal shares, and uppercase “S” to denote real shares. 
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industries can contribute positively to aggregate productivity change in two ways: if their own 

TFP level increases, or if those industries with above-(below-) average input cost share increase 

(decrease) in relative size.  

Up to this point, our analysis follows that of Diewert (2015), but now we extend his 

decomposition further. He links the 𝑂𝑃𝐸 term to changes in the price weights of the industry 

output growth rates in (1), which in turn affects aggregate TFP growth. We show in Appendix 

A that Diewert’s output price effect is (the negative) of an output reallocation effect that 

measures changes in the structure of the economy using industry real output shares, instead of 

using relative industry input usages as 𝐼𝑅𝐸. We also show in Appendix A that, although the 

output changes in the structure of the economy might be remarkable, the 𝑂𝑃𝐸 term tends to be 

negligible in practice as it mainly depends on the difference between real and nominal output 

shares. This term vanishes if both output shares coincide. Notice that this happens if all industry 

output prices 𝑃𝑛 are equal to the aggregate output price 𝑃. As both prices are likely similar in 

applications using industry-level data, we should not expect large 𝑂𝑃𝐸 values in practice.7  

A similar conclusion can be obtained for the 𝐼𝑃𝐸 and 𝐼𝑅𝐸 terms. We demonstrate in 

Appendix B that the sum of these two input-based terms capture input reallocation effects, and 

that their combined effect (labelled hereafter as Input Price Reallocation Effect, 𝐼𝑃𝑅𝐸) depends 

on how the structure of the economy in terms of output and inputs differs. As the relative size 

of a particular industry in output and input terms might differ notably in practice, we thus expect 

larger values for 𝐼𝑃𝑅𝐸 than for 𝑂𝑃𝐸. 

 In summary, aggregate TFP growth can alternatively be decomposed as follows: 

�̇� = 𝑊𝐸 + 𝑂𝑃𝐸 + 𝐼𝑃𝑅𝐸      (6) 

where 

𝑊𝐸 = ∑ 𝑠𝑌𝑛Ṁ𝑛
𝑁
𝑛=1   

𝑂𝑃𝐸 = − ∑ 𝑠𝑌𝑛�̇�𝑌𝑛
𝑁
𝑛=1 = ∑ (𝑆𝑌𝑛 − 𝑠𝑌𝑛)�̇�𝑛

𝑁
𝑛=1   

𝐼𝑃𝑅𝐸 = ∑ 𝑠𝑌𝑛�̇�𝑋𝑛
𝑁
𝑛=1 = ∑ (𝑠𝑌𝑛 − 𝑆𝑋𝑛)�̇�𝑛

𝑁
𝑛=1   

Several comments are in order regarding the above decomposition. First, it is a 

simplified version of the top-down TFP decomposition introduced by Diewert (2015) as it only 

includes three productivity sources. Equation (6) yields a decomposition with no price effects 

that instead incorporates the traditional within effect and two reallocation terms that capture 

both the input and output sides of the adjustments taking place in the economy. In this sense, 

equation (6) treats symmetrically the two variables used to compute aggregate TFP 

productivity, total input and total output. Second, as written above, the 𝑂𝑃𝐸 and 𝐼𝑃𝑅𝐸 terms 

and their components can be readily evaluated with the help of the sectoral production and input 

models that will be used in the next section to proceed with the second level of our 

decomposition. Third, as the output shares of the highest (lowest) productivity industries tend 

to be larger (smaller) than their input shares, the IPRE term simply suggests that to raise 

aggregate TFP the input share of high-productivity sectors should increase and the input share 

of low-productivity sectors should decrease. In this sense, the IPRE term has an economic 

interpretation similar to that of the traditional shift-share term that often appears in a bottom-

up decomposition of aggregate productivity growth. 

 
7 Note that, by construction, all industry and aggregate output prices are equal to unity in the base year because 

they are indices. If the period examined includes (or is close to) the base year, all output prices do not likely differ 

too much in practice. This likely explains why the overall productivity contribution term due to changes in industry 

real output prices found in Diewert (2015) is practically zero. 
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3. Decomposing the within and reallocation effects  

We next try to decompose the above-mentioned three general productivity effects into 

their basic drivers using the parametric estimates of a set of production functions and auxiliary 

regressions.  

3.1. Decomposing the within effect 

As is customary in regional economics, we hereafter assume that the output of industry 

n depends on its own use of private capital and labor, and on a set of country-level variables 

measuring the provision of different infrastructures such as transport, electricity, information, 

communication, etc. Moreover, in order to distinguish between an industry’s pure (i.e., 

technological) productivity improvements and those caused by a more efficient allocation of 

resources among its constituent firms, we propose estimating a stochastic production frontier 

model for each industry, which may be written as follows: 

𝑙𝑛𝑌𝑛 = β0𝑛 + 𝛽𝐾𝑛𝑙𝑛𝐾𝑛 + 𝛽𝐿𝑛𝑙𝑛𝐿𝑛 + δ𝑛𝑡 + γ𝑛𝑙𝑛𝑍 + 𝑣𝑛 − 𝑢𝑛(𝑙𝑛𝑍)  (7) 

where for notational ease we have dropped the standard subscript t indicating time, and we 

include a country-specific fixed-effect (with the country subscript omitted) to control for 

unobserved cross-country heterogeneity in the estimation.  𝐾𝑛 denotes the capital stock of 

industry n, and 𝑙𝑛𝑍 is an indicator measuring infrastructure provision (including transport, 

electricity distribution, telecommunication networks, etc.). It is also worth noting that we have 

included a conventional time trend in (7) in order to capture global technological shocks over 

time (i.e., technical change).8 Lastly, equation (7) also includes two error terms, 𝑣𝑛 and 𝑢𝑛. 

While the former term is a symmetric error term measuring pure random shocks, the latter term 

is a non-negative error term measuring industry inefficiency, which we link to misallocation of 

resources across firms. As Asturias et al. (2019) and Perez-Sebastian and Steinbuks (2017) 

found evidence that inter-firm resource misallocation in India and Brazil depends on 

(transportation) infrastructure, we allow our industry inefficiency term to depend on our 

indicator measuring infrastructure provision.9 

Using the production model in (7), the changes in industry production can be 

decomposed as: 

Ẏ𝑛 = 𝛽𝐾𝑛�̇�𝑛 + 𝛽𝐿𝑛�̇�𝑛 + 𝜃𝑛�̇� + δ𝑛    (8) 

where 

𝜃𝑛 =
𝜕𝑙𝑛𝑌𝑛

𝜕𝑙𝑛𝑍
= γ𝑛 −

𝜕𝑢𝑛

𝜕𝑙𝑛Z
    (9) 

Equation (9) just indicates that the effect of infrastructure provision on industry output 

is a combination of a direct effect through the frontier, and an indirect effect through the 

allocative efficiency term. Alternatively, we can rewrite the changes in industry production in 

(8) as: 

Ẏ𝑛 = 𝛽𝑛�̇�𝑛 + 𝜃𝑛�̇� + δ𝑛    (10) 

where 𝛽𝑛 = 𝛽𝐾𝑛 + 𝛽𝐿𝑛, and 

�̇�𝑛 = [
𝛽𝐿𝑛

𝛽𝑛
�̇�𝑛 +

𝛽𝐾𝑛

𝛽𝑛
�̇�𝑛]    (11) 

 
8 In our empirical application, the time trend is replaced by a set of time dummies that in reality capture any 

common factor (e.g. the global cycle) or measurement error that affects all countries equally. 
9 In our application we follow Battese and Coelli (1992) and include a time trend as an additional covariate of 𝑢𝑛 

in order to capture the effect of other factors on the efficiency of the allocation of resources across firms operating 

in the same industry. 
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 The above equations suggest that the estimated coefficients in (7) can be used to both 

compute (the change of) an aggregate input measure at industry level, and decompose changes 

in industry production. They can also be used to decompose (the change of) an industry TFP 

measure if we simply subtract from both sides of equation (10) the aggregate input measure:  

Ṁ𝑛 = Ẏ𝑛 − �̇�𝑛 = (𝛽𝑛 − 1)�̇�𝑛 + δ𝑛 + 𝜃𝑛�̇�   (12) 

where (𝛽𝑛 − 1) is a measure of the returns to scale at industry level. Equation (12) decomposes 

industry TFP changes into a size effect associated to an increase in the usage of inputs, technical 

change, and the overall effect of the Z variables. Using (12) we can now decompose the within 

effect that appears in (6) as follows:  

𝑊𝐸 = ∑ (𝛽𝑛 − 1)𝑠𝑌𝑛�̇�𝑛
𝑁
𝑛=1 + ∑ 𝑠𝑌𝑛δ𝑛

𝑁
𝑛=1 + ∑ 𝑠𝑌𝑛𝜃𝑛�̇�𝑁

𝑛=1   (13) 

3.2. Decomposing the output price effect 

Next we discuss how to decompose the 𝑂𝑃𝐸 term. We show in Appendix A that 

Diewert’s output price effect can be interpreted as an output reallocation effect that measures 

changes in the structure of the economy using industry real output shares. Unlike the 𝐼𝑃𝑅𝐸 

term, we do not need a new theoretical framework to decompose 𝑂𝑃𝐸 because the production 

model used in Subsection 3.1 to decompose 𝑊𝐸 also provides information on the industry 

output shares.  

𝜕𝑙𝑛𝑆𝑌𝑛

𝜕𝑙𝑛𝑍
= 𝜃𝑛 − ∑ 𝑆𝑌𝑠𝜃𝑠

𝑁
𝑠=1 = 𝜃𝑛 − 𝜃    (14) 

This equation indicates that the effect of infrastructure provision on the relative size of 

industry n depends on how different the within productivity effect is with respect to the average. 

Recall that we have found that 𝑂𝑃𝐸 can be defined as − ∑ 𝑠𝑌𝑛�̇�𝑌𝑛
𝑁
𝑛=1 . Therefore, the 

productivity effect of infrastructure provision through structural changes in the economy 

disappears if 𝜃𝑛 is the same for all industries.  

The output share of each industry also depends on capital and labor, and the time trend. 

Therefore, these ingredients also generate inter-industry reallocation effects. Taking next into 

account that 𝑂𝑃𝐸 can alternatively be defined as ∑ (𝑆𝑌𝑛 − 𝑠𝑌𝑛)�̇�𝑛
𝑁
𝑛=1 , the output price effect 

can be decomposed as follows:  

𝑂𝑃𝐸 = ∑ (𝑆𝑌𝑛 − 𝑠𝑌𝑛)[𝛽𝐾𝑛�̇�𝑛 + 𝛽𝐿𝑛�̇�𝑛 + θ𝑛�̇� + δ𝑛]𝑁
𝑛=1    (15) 

It should be emphasized that all decompositions in this subsection rely on the same 

parameters that have been used (and estimated) to decompose the within effect in the previous 

subsection. In this sense, our decomposition of 𝑂𝑃𝐸 is theoretically consistent with the 

decomposition of 𝑊𝐸. In other words, both 𝑊𝐸 and 𝑂𝑃𝐸 decompositions are mutually 

consistent.  

3.3. Decomposing the input price reallocation effect 

Lastly, we discuss how to evaluate the components of the 𝐼𝑃𝑅𝐸 term that appears in our 

TFP decomposition (6). Recall that 𝐼𝑃𝑅𝐸 is equivalent to ∑ (𝑠𝑌𝑛 − 𝑆𝑋𝑛)�̇�𝑛
𝑁
𝑛=1 , Therefore, its 

decomposition requires explaining changes in the aggregate input, 𝑋𝑛. Using a Divisia index 

and our parameter estimates, the effect of infrastructure provision on 𝑋𝑛 can be computed as 

follows: 

𝜕𝑙𝑛𝑋𝑛

𝜕𝑙𝑛𝑍
=

𝛽𝐿𝑛

𝛽𝑛

𝜕𝑙𝑛𝐿𝑛

𝜕𝑙𝑛𝑍
+

𝛽𝐾𝑛

𝛽𝑛

𝜕𝑙𝑛𝐾𝑛

𝜕𝑙𝑛𝑍
     (16) 

where 
𝜕𝑙𝑛𝐿𝑛

𝜕𝑙𝑛𝑍
 and 

𝜕𝑙𝑛𝐾𝑛

𝜕𝑙𝑛𝑍
 respectively measure the effect of infrastructure provision on labor and 

capital demand by industry n. Decomposing these input demands is more challenging than 
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decomposing the industry output shares. Indeed, the decomposition of 𝐼𝑃𝑅𝐸 requires 

“endogenizing” the industry-specific input levels using a theoretical framework. As we do not 

know a priori which framework is more appropriate (e.g. cost vs. profit-based), we adopt a 

holistic approach and propose estimating for each industry the following auxiliary regressions: 

𝑙𝑛𝐿𝑛 = ∑ 𝑏0𝑛𝑐𝐷𝑐
𝐶
𝑐=1 + 𝑏1𝑛𝑡 + 𝑏2𝑛𝑡2 + 𝑏𝑧𝑛𝑙𝑛𝑍 + 𝜀𝐿𝑛  (17) 

𝑙𝑛𝐾𝑛 = ∑ 𝑎0𝑛𝑐𝐷𝑐
𝐶
𝑐=1 + 𝑎1𝑛𝑡 + 𝑎2𝑛𝑡2 + 𝑎𝑧𝑛𝑙𝑛𝑍 + 𝜀𝐾𝑛  (18) 

where (𝑎0𝑛𝑐, 𝑎1𝑛, 𝑎2𝑛, 𝑎𝑧𝑛) and (𝑏0𝑛𝑐, 𝑏1𝑛, 𝑏2𝑛, 𝑏𝑧𝑛) are new parameters to be estimated. We 

use industry and country-specific intercepts and a time polynomial with industry parameters to 

control for the net effect of an unknown set of demand drivers that vary over time and across 

industries and countries.10 Using the above equations, we get: 

𝜕𝑙𝑛𝑋𝑛

𝜕𝑙𝑛𝑍
=

𝛽𝐿𝑛

𝛽𝑛
𝑏𝑧𝑛 +

𝛽𝐾𝑛

𝛽𝑛
𝑎𝑧𝑛    (19) 

 Finally, the portion of 𝐼𝑃𝑅𝐸 that can be attributed to infrastructure provision can be 

computed as ∑ (𝑠𝑌𝑛 − 𝑆𝑋𝑛)
𝜕𝑙𝑛𝑋𝑛

𝜕𝑙𝑛𝑍
𝑁
𝑛=1 . 

4. Sample and data  

To illustrate the proposed decompositions, we use a balanced data panel for 39 countries 

and 5 industries over the period 1995-2009. Most countries exhibited in this period remarkable 

increases in mature and/or technological infrastructure. The industries examined in this paper 

are fairly aggregated: Agriculture, Energy, Manufacturing, Construction and Services. To 

simplify the empirical exercise, we have aggregated mining together with electricity, gas and 

water supply into one sector. In addition, the Services sector includes a large range of services 

such as wholesale and retail trade, hotels, transport, storage, and communications, finance and 

insurance. The dataset includes annual observations on sectoral value-added and prices, 

physical capital and labor, and a set of mature and technological infrastructure asset stocks, 

namely transportation, electricity distribution, and information and telecommunication. Except 

for industry value-added, output prices and labor, the remaining variables are measured at the 

country level. 

We were forced to drop many countries from the sample given that many years suffered 

from missing values. Despite these data issues, we were able to work with a broad sample of 

countries from different world regions (see Appendix C). As these regions exhibit different time 

patterns in their productivity indicators, the relative importance of the intra and inter-industry 

effects for the observed productivity growth rates should be expected to vary substantially 

across regions.  

The Groningen Growth and Development Centre (GGDC) 10-Sector Database 

provides annual data for a large set of countries on real gross value added (𝑌𝑛) and nominal 

gross value added (𝑃𝑛𝑌𝑛) and employment (𝐿𝑛) for each industry. Aggregate real value added 

(𝑌 = ∑ 𝑌𝑛
𝑁
𝑛=1 ) and aggregate nominal gross value added (∑ 𝑃𝑛𝑌𝑛

𝑁
𝑛=1 ) are also available in this 

database, as is total employment (𝐿 = ∑ 𝐿𝑛
𝑁
𝑛=1 ). Sectoral and aggregate deflators are simply 

obtained by dividing each nominal value added by its corresponding real value. While nominal 

(real) output is measured at current (constant 2005) national prices in millions, the labor input 

is measured in thousands of jobs.. 

 
10 Similar results are obtained if we use a time polynomial á la Cornwell et al. (1990) with both country-specific 

and industry-specific parameters, which suggests that we are controlling quite well for other factors determining 

industry labor/capital demand (such as input prices). 
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The aggregate private capital stock (𝐾) was obtained from the International Monetary 

Fund, and it is originally measured in billions of national currencies. Notice that we do not have 

information on industry-specific capital input (𝐾𝑛), just the aggregate stock. To address this 

issue, we propose modeling the gap between 𝐾𝑛 and 𝐾 econometrically. The industry-specific 

but unobserved capital stock can be written as 𝐾𝑛 = 𝑆𝐾𝑛𝐾, where 𝑆𝐾𝑛 is the share of capital 

used by industry n. This variable is however not observed. As 𝑆𝐾𝑛 is likely correlated with 𝑆𝐿𝑛, 

we will assume in our empirical application that 𝑙𝑛𝑆𝐾𝑛 = 𝑑𝑛𝑆𝐿𝑛, where 𝑑𝑛 is a new parameter 

that captures such a correlation.11 Once this parameter is estimated with our production 

functions, all capital shares are adjusted proportionately in order to impose ∑ 𝐾𝑛
𝑁
𝑛=1 = 𝐾.  

We collected four indicators on aggregate infrastructure provision. From the World 

Bank, we use three indicators on transportation (the length of the total road network in millions 

of kilometers), information network (the number of internet users), and telecommunication 

network (the number of fixed telephone and mobile cellular subscriptions). The last 

infrastructure variable used in our empirical application is electric generation capacity 

(measured in thousands of KW), provided by the US Energy Information Administration.  

Attempting to capture the multidimensionality of infrastructure by introducing a variety 

of infrastructure indicators as inputs in our production functions could lead to imprecise and 

unreliable estimates of the contribution of the individual infrastructure indicators. For this 

reason, we follow Calderón et al (2015) and use a principal component analysis (PCA) to build 

a synthetic index (𝑍) summarizing the above-mentioned dimensions of infrastructure: telephone 

lines and mobile phones, internet, road transport and power.12  

We also compute a PCA composite (𝑄) of four indicators of institutional quality 

provided by the World Bank, namely  corruption, government effectiveness, quality of 

regulation and rule of law. This synthetic index is interacted with 𝑍 in order to allow the 

production effect of public investment in infrastructure to depend on the quality of institutions 

(see, e.g. Crescenzi et al, 2016; and Esfahani and Ramírez, 2003). 

Computing aggregate TFP (𝑀) requires computing the aggregate real input, 𝑋, which 

in turn requires computing first industry-specific real input, 𝑋𝑛. Diewert (2015, p. 372) states 

that the exact functional form for 𝑋𝑛 does not matter for his analysis. He only assumes that 

𝑊𝑛𝑋𝑛 equals industry n’s input cost. In his application to Australian sector data, he computes 

𝑋𝑛 using the Fisher index number formula, which is a superlative index (Diewert, 1976). We 

in turn propose using a Törnqvist index, the discrete counterpart of a Divisia index. As both 

indices are superlative indices, their results using annual data tend to converge. Using the 

Divisia index, the rate of growth of our aggregate input variable can be written as a weighted 

average of �̇�𝑛 and �̇�𝑛. In his Australian application, Diewert computed each input weight using 

the observed industry shares for both labor and capital. This is not possible in our multi-country 

application because we do not have such information at the industry level. To address this issue, 

we propose using the estimated elasticities of our industry production functions (see next 

section) to compute the above weights. That is, we replace observed weights with estimated 

weights.13 Once we have computed 𝑋𝑛 = 𝐿𝑛
𝛽𝐿𝑛/𝛽𝑛 · 𝐾𝑛

𝛽𝐾𝑛/𝛽𝑛  for each industry using estimated 

 
11 The sign of 𝑑𝑛 is not known a priori. If large (small) industries use not only more (less) labor but also more 

(less) capital, we expect a positive value for 𝑑𝑛. But if labor is used to replace capital, we should expect a negative 

value for 𝑑𝑛. 
12 We used a within-transformation of the (logged) individual infrastructure indicators before implementing the 

principal component analysis because the production models will be estimated using a FE-type estimator that only 

uses the temporal variation of the data. 
13 Equating elasticities and shares not only requires assuming constant returns to scale technologies, but also the 

existence of perfect competitive input markets and long-run equilibria. 
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weights, labor volumes, and real capital stocks, they should be aggregated in order to compute 

the aggregate real input, 𝑋. We compute 𝑋 simply by aggregating the industry-level real inputs 

(i.e. 𝑋 = ∑ 𝑋𝑛
𝑁
𝑛=1 ).  

The corresponding input price variables are computed using the same assumption as in 

Diewert (2015, p. 374), i.e., that value added equals input cost for each industry,14 so that with 

our industry nominal value-added volumes (𝑃𝑛𝑌𝑛) and our estimates of aggregate input 

quantities by industry (𝑋𝑛) we can obtain estimates of 𝑊𝑛 = 𝑃𝑛𝑌𝑛/𝑋𝑛 by industry. These 

implicit price indexes for each industry input were normalized to equal 1 in 2005. Finally, we 

compute 𝑊 as a weighted average of the individual industry input price indexes, where the 

weights are the real input cost shares of each industry in total input, that is: 𝑊 = ∑ 𝑊𝑛𝑋𝑛
𝑁
𝑛=1 /𝑋.  

We also compute industry output and input shares using the above output and input 

volumes. While the nominal input share 𝑠𝑋𝑛 of industry n is computed using equation (3), the 

real input share 𝑆𝑋𝑛 is computed as 𝑋𝑛/𝑋. The nominal and real output shares of industry n are 

computed equally. That is, while the nominal output share 𝑠𝑌𝑛 is computed using equation (5), 

the real output share 𝑆𝑌𝑛 is computed as 𝑌𝑛/𝑌. The variation over time of these four industry 

shares provides useful information about the output and input-oriented structural changes taking 

place in ea. 

Figure 1 depicts the average temporal evolution of these industry output and input shares 

for the whole set of countries of our empirical application. Two comments are in order regarding 

this figure. First, it shows that, on average, the structure of the sample economies has changed 

markedly over the 1995-2009 period. For instance, both output and input shares in agriculture 

and manufacturing have declined over time. The production factors (in particular, labor) 

released by the agricultural sector as part of the well-known rural-to-urban migrations occurred 

in many countries have been absorbed mostly by services and the construction sector. Second, 

Figure 1 also shows that, while nominal and real industry shares are similar, the output and 

input industry shares differ notably in many cases. Therefore, we expect larger values for 𝐼𝑃𝑅𝐸 

(which heavily depends on differences between the relative size of the industries in output and 

input terms) than for 𝑂𝑃𝐸 (which mainly depends on the difference between nominal and real 

output shares).  

[Insert Figure 1 here] 

Table 1 summarizes the descriptive statistics of the variables used in the empirical 

application. It also includes the annual rates of growth (or annual changes) of the key variables 

used to compute our TFP measures. Notice that, by construction, the rate of growth of the 

aggregate real input (3.19%) is a weighted average of the rate of growth of labor (1.85%) and 

the rate of growth of total capital (6.10%). As the increase in aggregate real output (3.78%) 

exceeded the increase in aggregate input (3.19%), aggregate TFP rose (0.58%) over the sample 

period. The growth in aggregate labor productivity was much larger (1.93%) due to the 

moderate expansion of the labor input, and the large accumulation of capital occurred in this 

period.15 It is finally worth mentioning that our infrastructure synthetic index also exhibits a 

non-negligible increase during the sample period. Therefore, it might have contributed 

substantially to the above increase in both aggregate TFP and labor productivity. This is one of 

the issues we examine in the next section. We also try to examine whether infrastructure 

 
14 Notice that this implies constant returns to scale for each industry under perfect competition. 
15 The largest (smallest) increase in labor productivity growth (not shown in Table 1) is found in the agriculture 

(construction) sector. This result is mostly caused by labor mobility, from the agriculture sector to the construction 

sector. The services sector also saw an increase in employment, but its productivity performance outpaced that of 

the construction sector due to its faster output growth. Aggregating all industry outputs and labor quantities, we 

obtain an aggregate labor productivity growth rate of about 2 percent. 
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provision has had an uneven effect across industries, and whether infrastructure development 

has enhanced (or weakened) aggregate productivity through a more (less) efficient allocation 

of resources across industries and firms. 

[Insert Table 1 here] 

5. Results  

5.1. Parameter estimates 

The proposed productivity decompositions rely on the estimation of a heteroscedastic 

stochastic frontier (SF) production model for five industries: Agriculture, Energy & Mining, 

Manufacturing, Construction and Services. We have assumed that the inefficiency term 𝑢𝑛𝑡 in 

equation (7) is distributed as a heteroscedastic half-normal random variable, i.e. as 𝑁+(0, 𝜎𝑢
2) 

where 𝑙𝑛𝜎𝑢 is a linear function of a set of covariates that might affect the allocation of resources 

within the industry. On the other hand, the noise term 𝑣𝑛𝑡 is assumed to be distributed as a 

homoscedastic normal random variable, i.e. as 𝑁+(0, 𝜎𝑣
2). 

The five SF production models extend the specification provided by equation (7). First, 

all the models are estimated using a set of country-specific dummy variables to control for 

unobserved country heterogeneity. In this sense, our model can be viewed as a heteroscedastic 

version of the True Fixed Effect (TFE) stochastic frontier model introduced by Greene (2005). 

Second, for the estimation the simple time trend in (7) is replaced by a set of time dummies in 

order to capture better common technological shocks that reflect shifts of the global 

technological frontier over time. Third, in keeping with the majority of earlier literature, 

constant returns to scale have been imposed. That is, we impose the restriction 𝛽𝐾𝑛 + 𝛽𝐿𝑛 = 1 

when we estimate our models by maximum likelihood.  

Fourth, in the empirical implementation equation (7) is augmented adding the synthetic 

index of infrastructure provision (𝑙𝑛𝑍) times the institutional quality index (𝑄), to allow the 

production effect of public infrastructure to depend on the quality of institutions. Moreover, as 

equation (9) indicates, infrastructure provision not only has a direct or frontier effect on industry 

output, but also an indirect effect through the efficiency term. For this reason, 𝜎𝑢 depends on 

𝑍.  

Fifth, as mentioned above, 𝑙𝑛𝐾𝑛 in equation (7) is replaced with 𝑑𝑛𝑆𝐿𝑛 + 𝑙𝑛𝐾 because 

we do not have industry data on capital (𝑙𝑛𝐾𝑛). This implies that our SF production models are 

estimated using aggregate private capital (𝑙𝑛𝐾) plus the industry share of labor (𝑆𝐿𝑛). Moreover, 

lacking estimates of capital utilization by industry, we opt for using the labor-to-capital ratio of 

neighboring countries as a proxy of capacity utilization.16 As labor is a variable input while 

capital is a quasi-fixed input, the ratio varies with the cycle of the economy. The implicit 

assumption here is that the cycles of neighboring economies are correlated. 

Finally, endogeneity problems can arise in our SF models if economic affects both 

private capital and labor inputs (Kumbhakar et al., 2013). Some authors (e.g., Feng and Wu, 

2018) similarly argue that public capital is likely to be an endogenous variable due to the likely 

reverse causality between output and infrastructure. We deal with this issue using the two-step 

procedure proposed by Amsler et al. (2016). They suggest estimating first a set of reduced form 

equations for the endogenous variables (using exogenous frontier variables and a set of external 

instruments), 17 and then using the reduced form residuals in the estimation of a standard SF 

model by maximum likelihood.  

 
16 Other countries in our sample that belong to the same region (Asia, Africa, Europe & US, or Latin America) are 

considered here as neighboring countries.  
17 We have used spatial lags of the endogenous variables (and their squared values) as external instruments. 
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The industry-specific parameter estimates are shown in Table 2. The means across 

industries of the industry-specific elasticities of capital and labor are 0.36 and 0.64 respectively. 

They are close to the elasticities typically used in growth accounting – a labor elasticity around 

two-thirds, and a capital elasticity around one-third.18 Notice also that the labor share coefficient 

is negative and highly significant for Energy & Mining and Construction. This suggests that 

labor replaces capital in these two industries.  

[Insert Table 2 here] 

We also find positive and significant coefficients for the infrastructure index, especially 

when it is interacted with the index measuring the quality of institutions. Like Crescenzi et al. 

(2016), the implication is that the effects of infrastructure depend on government quality. 

Moreover, in many cases the estimated coefficients differ substantially across industries, 

suggesting the existence of non-negligible structural effects attributable to infrastructure 

provision. In addition to shifting the production frontier, the expansion of mature and 

technological infrastructures , infrastructure tends to reduce industry inefficiency in most 

industries. This particularly occurs at the beginning of our sample period in Agriculture and 

Construction, or at the end of the period in Manufacturing and Services. The result is consistent 

with the view advanced by Straub (2011) of public infrastructure as an efficiency-enhancing 

externality. It is also consistent with the hypothesis defended by Asturias et al. (2019) that 

transportation infrastructure increases competition between firms, and thus helps reduce 

resource misallocation through a less dispersed distribution of markups in the industry.  

Notice, however, that we find large (and significant) coefficients on the time trend in 

the inefficiency term. While the coefficient is positive in Agriculture, Energy & Mining and 

Construction, it is negative in Manufacturing and Services. This implies that other (unknown) 

factors have significantly worsened the allocation of resources between firms operating in the 

former three industries, whereas they have improved the allocation of resources across 

manufacturing and services firms. These time patterns are totally or partially offset by the 

estimated time effects (not shown in Table 2). Indeed, we find that the global technological 

shocks penalized production in Energy & Mining, Manufacturing, Services, and Construction 

(but turned positive since 2003). However, we also find that the agriculture sector experienced 

exogenous productivity improvements.   

While our productivity decompositions provide information on changes over time in 

industry productivity, the estimated fixed effects provide information on country-specific 

differences in productivity.19 The average industry-specific fixed effects estimates are shown 

in Figure 2 by regions. All of them measure productivity performance relative to the U.S.. Three 

comments are in order. First, the productivity gaps between Europe and the U.S. are not large, 

except in Energy & Mining and Construction, where we find higher productivity levels for 

Europe. Second, productivity performance in the energy and mining industry in developing 

countries outstrips those of Europe and the U.S., particularly in the cases of Africa and Latin 

America. This result can likely be explained by the abundance of natural resources in these 

countries. Finally, developing countries exhibit lower productivity levels in other industries 

when compared with Europe and the U.S., especially in Agriculture. As pointed out by Calderón 

et al. (2022), this result likely reflects a host of adverse factors, including technological gaps, 

geographic disadvantages, poor infrastructure, financial market imperfections, etc. that hamper 

 
18 Notice that these proportions are roughly satisfied in all industries, except Agriculture. This means that the 

aggregate input 𝑋𝑛 is computed using very similar weights in all sectors except Agriculture.  
19 As we are assuming constant returns to scale technologies, the fixed effects explain most of the (persistent) 

technological differences in TFP across countries. The other main (frontier) cross-sectional productivity driver is 

infrastructure provision. 
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their productivity levels. Our results also corroborate some of the stylized facts found in the 

literature (see e.g. Adamopoulos and Restuccia 2014) in the sense that the productivity gap 

between poor and rich countries tends to be bigger in agriculture than in non-agricultural 

activities. 

[Insert Figure 2 here] 

There is ample empirical evidence that firm-level misallocation of resources is an 

important factor behind differences in measured TFP across rich and poor countries (e.g. 

Restuccia and Rogerson 2008, Hsieh and Klenow 2009, Calderón et al., 2022). Recall that we 

use the SF approach to measure the degree of misallocation across firms within the same 

industry because distortions in the optimal allocation of labor and capital across firms will lead 

to (conditional) industry production losses, and, in turn, larger industry technical inefficiency. 

The average production losses attributable to firm-level misallocation of resources are shown 

in Figure 3 by industries and regions. Production losses due to misallocation are especially 

significant in Construction (12.3%), followed by Manufacturing (7.5%). However, it is worth 

highlighting that the agriculture and services sectors across African countries tend to exhibit a 

great degree of misallocation. Production losses are larger in Africa, especially in the 

agriculture sector (9.6%, compared with less than 4% in other regions). Similar results have 

been found in the literature. For instance, in their survey of the literature, Calderón et al. (2022) 

find evidence of severe misallocation in agriculture and manufacturing across sub-Saharan 

African countries. Like in our study, they also conclude that the dispersion of revenue 

productivity in these countries is larger than that of other developing countries (China and India) 

as well as the efficiency benchmark (United States). 

[Insert Figure 3 here] 

The decomposition of the productivity term capturing reallocation of resources across 

industries (i.e., what we have labeled the 𝐼𝑃𝑅𝐸 term) relies on the estimation for each industry 

of auxiliary regressions for both labor and capital. In Table 3 we show the estimated coefficients 

of the auxiliary regressions defined in equations (17) and (18). Notice that the fixed effects plus 

the two synthetic indexes of infrastructure and quality of institutions and the time polynomial 

allow us to achieve an almost perfect fit. Infrastructure provision tends to increase both capital 

and labor usage, but the effect is slightly larger for capital than for labor. The effect of the 

quality of institutions on input usage is biased towards capital: while we find a positive effect 

on capital demand in most industries, we find a negative effect on labor demand. 

[Insert Table 3 here] 

5.2. First-level decomposition  

In this subsection, we decompose the aggregate TFP rates of growth using equation (6), 

i.e. our simplified version of the top-down TFP decomposition introduced by Diewert (2015). 

Recall that equation (6) provides a decomposition with no price effects that instead incorporates 

the traditional within effect and two reallocation terms capturing transformations in the 

structure of the economy. Table 4 summarizes the descriptive statistics of the computed TFP 

rates of growth and their components. 20   

[Insert Table 4 here]   

 
20 In this paper, we use a Bennet-type symmetric method to obtain the discrete-time counterparts of all continuous-

time decompositions. For instance, following the method introduced by Bennet (1920), the discrete-time 

counterpart of equation (6) can be written as:  

ln (
M𝑡

M𝑡−1
) = ∑

𝑠𝑌𝑛𝑡−1+𝑠𝑌𝑛𝑡

2
𝑙𝑛 (

M𝑛𝑡

M𝑛𝑡−1
)𝑁

𝑛=1 + ∑
𝑠𝑌𝑛𝑡−1+𝑠𝑌𝑛𝑡

2
𝑙𝑛 (

𝑆𝑌𝑛𝑡

𝑆𝑌𝑛𝑡−1
)𝑁

𝑛=1 + ∑
𝑠𝑌𝑛𝑡−1+𝑠𝑌𝑛𝑡

2
𝑙𝑛 (

𝑆𝑋𝑛𝑡

𝑆𝑋𝑛𝑡−1
)𝑁

𝑛=1   



15 
 

Several comments are worth making. First, the aggregation of within-industry TFP 

growth rates (i.e. the WE term) is positive on average in Europe and the U.S. (0.78%), but 

negative in other regions, especially in Latin America (-0.42%). We also find that the output 

price effect is, on average, much smaller. As in Diewert (2015), the aggregate TFP productivity 

contribution of changes in real output prices is practically zero (the world average is just-

0.01%). As discussed before, this is an expected result because the nominal and real output 

shares are similar in our application (their coefficient of correlation ranges between 90 and 

99%).  

Notice as well that while the small OPE term indicates that changes in industry output 

shares are of little help to explain changes in TFP, as expected, the large IPRE terms in some 

regions indicate that changes in labor and capital input shares do account for a remarkable 

proportion of aggregate TFP growth. Moreover, we find that the IPRE term is the most 

important TFP driver for the set of countries examined in this paper. Indeed, the improved 

allocation of inputs across industries explains, on average, almost 100% of the TFP gains 

occurred in the world.  

Table 4 decomposes a TFP growth measure that takes into account the growth of all 

inputs. If the input mix does not vary over time, both TFP and labor productivity growth should 

coincide. Labor productivity growth exceeds TFP growth if capital per worker increases over 

time.21 While TFP grows by 0.58% annually in our empirical application, labor productivity 

grows by 1.93% annually. Therefore, the accumulation of capital accounts for most of the 

observed labor productivity growth, but the contribution of TFP growth is remarkable as well. 

Similar figures are found in Calderón et al. (2022), who conclude that the share due to TFP that 

explains labor productivity disparities is about 30 percent. They also find that the contribution 

of TFP growth has increased significantly over the past two decades. The larger TFP 

contribution could be attributed to an improving allocation of resources, in line with Hsieh and 

Klenow (2009). 

5.3. Second-level decomposition 

Next we turn to the second level of our decomposition, where we try to measure the 

aggregate TFP changes that can be directly attributable to infrastructure provision and other 

productivity drivers. The average effects for each region, and for the whole set of countries, are 

shown in Table 5.  

[Insert Table 5 here] 

5.3.1. Decomposing the within effect 

We first decompose the within effect (WE) using equation (13). As we have assumed 

constant returns to scale technologies, the size effect associated with an increase in the usage 

of inputs vanishes. The other productivity drivers are: global technological shocks, changes in 

infrastructure provision, changes in the quality of institutions, and a residual comprising other 

effects not included above.  

The contribution of each of these productivity drivers is shown in the first 

decomposition of the WE in Table 5. In all regions, the main factor raising within-industry TFP 

growth is infrastructure provision. Within-industry TFP rises on average 1.11% annually due 

 
21 Using equation (12), the changes in industry labor productivities can be decomposed as Ẋ𝑛 = Ṁ𝑛 + (1 −

𝛽𝐿𝑛)(�̇�𝑛 − �̇�𝑛). The second term measures the productivity effects of changes in the input mix. It vanishes if �̇�𝑛 =

�̇�𝑛.  
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to the expansion of both mature and technological infrastructure. Interestingly, the contribution 

is much larger in Africa as infrastructure provision raises TFP 1.47% per annum. These positive 

effects are partially offset by a deterioration in the quality of institutions. An appropriate 

infrastructure network that complements private capital and labor represents a source of TFP 

growth (Kim and Loayza, 2019). However, as Calderón and Servén (2010, 2014) argue, it also 

requires an institutional framework that regulates efficiently the provision of infrastructure. In 

turn, as the large (negative) estimated contribution of the time effects in Table 5 exceeds the 

(positive) contribution of infrastructure, within-industry productivity changes are positive only 

in Europe and the U.S., and negative in the other regions, especially in Latin America. 

It is worth mentioning that a portion of the measured within-industry productivity gains 

is due to reallocation of resources across firms, and therefore it does not reflect pure 

technological advancement. In this regard, the frontier WE can be computed and decomposed 

as in (12), but using frontier elasticities instead of total elasticities (e.g. using γ𝑛 instead of 𝜃𝑛). 

This amounts to measuring gains in industry productivity when there is no inter-firm 

misallocation (i.e. when 𝑢𝑛 = 0) as in Asturias et al. (2019). The total WE not explained by the 

frontier WE is the non-frontier WE, which captures productivity gains attributable to the 

changing allocation of resources between firms within the industry.  

Hence, the second decomposition of the WE term that appears in Table 5 decomposes 

the WE into frontier (pure) and non-frontier (misallocation) effects. Generally speaking, this 

second decomposition shows that the productivity growth attributable to reallocation effects 

within the industry is of similar magnitude to that of the productivity growth due to pure 

(frontier) technological improvements in the industry. However, one tends to counterbalance 

the other. Indeed, as we find negative technological shocks in most sectors, frontier TFP growth 

is negative in all regions.22 This negative performance is partially or totally offset by improved 

within-industry allocation of resources. Recall that the infrastructure expansion has had a 

catching-up effect in most industries. Thus, infrastructure provision has helped achieve 

allocation of resources between firms in the same fashion as in Asturias et al. (2019). 

5.3.2. Decomposing the output price effect 

We next decompose the output price effect (𝑂𝑃𝐸) using equation (15). Table 5 breaks 

down the 𝑂𝑃𝐸 term into changes in infrastructure, global technological shocks, and changes in 

other factors. This allows us to study to what extent each of these forces has contributed to 

improve (worsen) the output allocation across the different sectors of the economy. 

Recall that Diewert’s output price effect can be interpreted as an output reallocation 

effect that depends on two factors: i) changes in industry real output shares; and ii) differences 

between real and nominal output shares. Regarding the first factor, we obtained quite different 

coefficients across sectors for our infrastructure index when estimating the industry production 

functions, suggesting non-negligible structural effects attributable to infrastructure provision, 

at least in some regions. In practice, however, these structural changes have little effect on 

aggregate TFP because real and nominal output shares are very similar in our application.   

Indeed, aggregate TFP only decreases a 0.01% annually on average due to the structural 

changes in industry production. Although the reallocation of value added across industries is 

not too large on average, the most relevant OPE drivers are the time effects, which we interpret 

as technological shocks, and infrastructure provision. The time effects generate a worsened 

 
22 A negative frontier effect might appear if the input elasticities are over-estimated due to our constant returns to 

scale assumption. We estimated our industry production models without this assumption in early versions of this 

paper, but we decided to impose this restriction because we got incredibly large or small returns to scale in some 

of the industries.  
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allocation of value added across industries, whose TFP contribution is slightly negative (-

0.11%). In turn, the infrastructure index does not have major output reallocation effects as 

aggregate TFP only increases on average 0.08% annually due to the improved allocation of 

value added across industries attributable to infrastructure development.  

 

5.3.3. Decomposing the input price reallocation effect 

Lastly, we decompose the so-called input price reallocation effect (𝐼𝑃𝑅𝐸) using the 

parameter estimates of our auxiliary regressions. Table 5 breaks the 𝑂𝑃𝐸 term into changes in 

infrastructure, changes in quality of institutions and changes in other factors. Given that we did 

not find significant output reallocation effects from infrastructure development, this 

decomposition allows us to study to what extent infrastructure provision has, in contrast, 

generated aggregate TFP improvements due to improved allocation of inputs between the 

different sectors of the economy. 

We find much larger capital and labor reallocation effects than those found in terms of 

value added. Indeed, aggregate TFP rises 0.59% annually on average due to structural changes 

in industry input usage. The TFP gains associated to better allocation of inputs across industries 

are quite large in developing countries, especially those in Africa (1.12%) and Asia (0.78%). 

Our infrastructure indicator explains a remarkable portion (about one-fourth) of all the 

productivity growth attributable to inter-industry input reallocation, which represents a 0.13% 

annual increase in aggregate TFP. While this contribution is almost negligible in Latin America 

(-0.06%) and Europe and the U.S. (-0.08%), it is especially large in Africa (0.36%) and Asia 

(0.20%). The bottom line is that infrastructure provision has promoted aggregate TFP growth 

by both within- and between-industry productivity gains in these two regions. These findings 

highlight the importance of boosting infrastructure development in Africa and Asia. This agrees 

with the conclusion in Calderón et al. (2022) that adequate infrastructure can help overcome 

geographical disadvantages in those regions. 

It should be finally mentioned that, due to lack of data, we have not been able to identify 

other relevant drivers that explain the remainder 0.46% annual increase in aggregate TFP 

associated to inter-industry input reallocation effects. This is again an expected result given that 

employment and capital use are intrinsically complex phenomena that depend on many other 

factors, which in our auxiliary regressions are summarized by a simple time polynomial. 

5.3.4. Discussion  

This subsection draws implications of the analysis for the design of strategies aimed at 

promoting aggregate TFP improvements, especially in developing countries.  

Figure 4 summarizes the productivity growth decomposition of each country. It shows 

the relative importance of the two main productivity growth drivers, namely the within-industry 

effect (WE) and the input-oriented inter-industry reallocation effect (IPRE). The vertical and 

horizontal lines on the graphs show the average values for the respective regions, and thus allow 

us to organize the countries in each region into four quadrants. The countries located in the 

upper right quadrant have WE and IPRE terms above the region’s averages, and hence they 

tend to exhibit the best TFP performance in their regions. This is the case of China, India and 

Hong Kong in Asia, the United Kingdom in Europe, along with the United States, Peru in Latin 

America, and Tanzania in Africa.23  

 
23 It should be pointed out, however, that being in the north-east quadrant does not guarantee top TFP performance 

because what matters is the sum of the two components, not that both be ‘high’. While China is the Asian’s TFP 

leader with a TFP growth rate of 3.52% and belongs to the upper right quadrant, the other regional leaders belong 
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[Insert Figure 4 here] 

At the other end, countries located in the bottom left quadrant tend to be among the 

worst TFP performers in their respective region, with below-average WE and IPRE values. 

Moreover, some of these countries have simultaneously negative WE and IPRE terms, implying 

that their aggregate TFP fell over the sample period due to poor performance along both the 

WE and IPRE dimensions. Countries in the bottom left quadrant can improving their aggregate 

productivity by raising the TFP of some of their industries or by stimulating structural change 

in their economies favoring their high TFP industries..  

The remaining countries, located in the bottom right and upper left quadrants, have 

exhibited performance above the regional average in only one of the two main productivity 

growth drivers. These countries therefore might improve their relative position by focusing their 

policy measures on the productivity driver with the poorest performance. That is, the countries 

located in the bottom right quadrant could try to enhance the WE productivity component by 

improving the TFP of some of their industries, while those located in the upper left quadrant 

should try instead to adopt measures that result in inter-industry reallocation of capital and labor 

toward high TFP industries, thereby raising their aggregate TFP. Notice in this sense that most 

African, Latin American, and Asian countries located in these two quadrants exhibit large WE 

components but small IPRE components, indicating that there may be room for substantial TFP 

improvement, relative to the regional average, from implementing reforms that facilitate the 

transformation of their economies. 

The next two figures help identify more specific strategies for promoting aggregate 

productivity growth associated to the within-industry productivity effect (WE) and the inter-

industry reallocation effect (IPRE).  Figure 5 depicts the estimated sectoral fixed effects of our 

production models (equation (7)) that explain most of the (persistent) differences in TFP across 

countries, along with the estimated degree of inter-firm misallocation of resources for each 

industry in terms of production losses. The estimated fixed effects capture differences not only 

in sectoral production conditions that are mostly out of the control of the country’s economic 

authorities -- such as the abundance of natural resources, climatic and geographic conditions -- 

but also differences in other factors more amenable to policy action such as sectoral technology 

and the quality of the country’s infrastructure and institutions. Figure 5 thus allows us to identify 

two potential channels of productivity gains associated with the WE term: i) improvements in 

actionable sectoral production conditions; ii) improvements in the allocation of labor and 

capital among the firms operating in the same industry. The policy actions that the two channels 

would require are likely different. For instance, while improving sectoral technology might 

involve incentives to innovation activities or technology imports, enhancing the allocation of 

labor and capital likely demands enhancing the flexibility of labor and financial markets. 

[Insert Figure 5 here] 

Each country might try to improve the TFP of their industries using either or both of the 

above-mentioned strategies. The choice should be dictated by the economic situation and the 

feasibility of the desired policy measures. Figure 5 splits the sample countries into four groups, 

defined again using by the average value for their respective regions. As the initial economic 

situation of each group of countries is likely different, this figure thus shows areas in which 

there may be a chance for non-negligible sectoral productivity improvements. Countries located 

in the upper left quadrant exhibit above-average efficiency in the allocation of their sectoral 

inputs, and their sectoral production conditions (technologies) are also relatively favorable, 

 
to other quadrants. This is the case of Sweden in Europe with a 3.59% increase in TFP, Chile in Latin America 

with a poorer TFP growth rate of 0.85%, and Malawi in Africa with a remarkable increase in TFP of 2.63%. 
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suggesting no obvious choice of strategy to improve their TFP performance. In contrast, 

countries located in the bottom right quadrant exhibit relatively large production losses 

associated to suboptimal input across firms within the industry, and relatively poor production 

conditions, suggesting that either policy strategy could be helpful. Finally, countries located in 

the bottom right and upper left quadrants might want to give priority to the policy strategy 

targeting the dimension along which they underperform the regional average.  

In summary, Figure 5 shows that the country taxonomy is quite diverse, and hence the 

appropriate strategy to boost sectoral TFP should be tailored to each country’s circumstances. 

For instance, in Figure 4 we saw that Singapore and Indonesia exhibit negative within-industry 

TFP growth during the sample period. Figure 5 now suggests that Indonesia might try to remedy 

this situation by implementing reforms aiming to improve, say, its relatively poor production 

conditions in the services sector, while Singapore might try to enhance the allocation of capital 

and labor across firms in the Agriculture and Construction sectors. Another interesting 

comparison is that between Botswana and Nigeria. Both countries exhibit a poor within-

industry TFP contribution. Figure 5 shows that Botswana has relatively large fixed effects (i.e. 

good production conditions) in most industries, and hence it might focus on policy measures 

aiming to reduce the relatively large degree of inter-firm misallocation of resources found in 

Agriculture, Energy and Mining, and Construction, which translates into above-average 

production losses in these industries. However, Nigeria’s production conditions are much 

poorer in Manufacturing, Services and Construction. In this case, the priority might be to 

implement policy measures aiming to improve production conditions in these three industries.  

Another strategy to boost aggregate TFP is to through structural change that improves 

the allocation of inputs across industries. Recall that the IPRE term in equation (6) shows that 

aggregate TFP rises when the input share of high-productivity sectors increases and the input 

share of low-productivity sectors declines. Taking advantage of this mechanism requires 

implementing economy-wide reforms that facilitate the shift of resources from low-productivity 

(usually traditional) sectors to high-productivity (usually modern) sectors. The output shares of 

the highest (lowest) productivity industries tend to be larger (smaller) than their input shares, 

and thus Figure 6 depicts the differences between industry output and input shares for each 

country and industry in order to identify the high-productivity industries that should capture 

production resources from low-productivity industries. The figure also shows the input share 

of each industry. If high-productivity sectors use a relatively small proportion of the aggregate 

input, policy should aim to increase their weight in the economy.  

As in previous figures, we divide the figure into four quadrants using the average values 

for the regions under consideration. Notice that in many of the industries (and regions) the two 

variables shown are negatively correlated. For example, this is the case of the traditional 

agricultural and construction sectors in developing countries. We observe that several 

developing countries employ a relatively large proportion of their inputs in these two sectors, 

even though their productivity is lower than in other countries.24 One way to raise aggregate 

TFP then is to reduce the weight of these industries in the economy. Hence, policy makers in 

these countries should focus not only on raising the productivity of these sectors, but also on 

facilitating the transfer of labor and capital to higher productivity sectors of their economies, 

thus speeding up the process of structural transformation. Finally, it is worth noting that the two 

variables depicted in Figure 6 are positively correlated in other industries (see e.g. Energy and 

 
24 Developing countries, especially in Africa, exhibit very large shares of employment in agriculture, in contrast 

with the small agricultural employment share typically found in advanced economies; see e.g., Calderón et al. 

(2022). 
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Mining) and regions (see e.g. Europe and USA). In these cases, the policy objective should be 

to increase the weight of these industries in the economy.  

[Insert Figure 6 here] 

Previous figures suggest strategies for promoting aggregate productivity growth that 

may require implementing policy measures of different nature. However, this is not always the 

case. For instance, in our sample we have found that infrastructure provision stimulated 

aggregate TFP growth through both within- and between-industry productivity gains. That is, 

the expansion of mature and/or technological infrastructure helped raise aggregate TFP not only 

through improvements in sectoral technology (one of the strategies reviewed above), but also 

through an improved allocation of resources across both firms and industries (the other strategy 

reviewed above). Moreover, the TFP gains due to improved allocation of inputs were quite 

large in Africa and Asia, and the development of infrastructures contributed significantly to 

such gains.25  

 

6. Conclusions 

We provide novel insights about the relevance of infrastructure development as one of 

the policy tools exerting the greatest impact on both economic development and aggregate 

productivity. A distinctive feature of our empirical strategy is that it allows measurement of the 

resource reallocation across both firms and industries directly attributable to infrastructure 

provision, an effect often ignored in the literature measuring the effect of infrastructure 

provision on private production. 

In order to achieve this objective, we propose a two-level decomposition of aggregate 

total factor productivity that combines and extends several strands of the literature.  The first 

level is a simplified version of the top-down TFP decomposition introduced by Diewert (2015) 

and evaluates the aggregate TFP attributable to both the aggregation of industry TFP growth 

rates and the reallocation of inputs from low-productivity sectors to high-productivity sectors. 

The second level of our decomposition analyses the impact of infrastructure on aggregate 

productivity by improving the sectoral production technologies, allowing better within-industry 

allocation of capital and labor, and/or stimulating the structural transformation of the economy.  

We illustrate our decompositions using industry-level data for a set of developed and 

developing countries over the 1995-2010 period. The first-level decomposition shows that the 

within-industry productivity effect was negative in most developing regions, but positive in the 

European Union and the U.S. The reallocation of inputs across industries improved overall 

productivity in all regions, and especially among African and Asian countries. Moreover, our 

results indicate that the simple aggregation of industry TFP growth rates does not portray 

accurately TFP performance in many developing countries.  

A more detailed country-by-country analysis hints at the different strategies that 

different countries might try to implement to raise their TFP. In this regard, the contribution of 

 
25 This is consistent with the evidence that agricultural and manufacturing firms are often constrained by high 

transport cost (Diao and Yanoma, 2003), which can be attenuated by improvements in road quality. For instance, 

Asturias et al. (2019) and Perez-Sebastian and Steinbuks (2017) assess using rich micro-data sets the significance 

of transportation infrastructure in the reallocation of inputs to more productive activities in two developing 

countries (India and Brazil). In their models, the accumulation of infrastructure accelerates structural 

transformation through effects channeled by cross-sector differences in public capital intensity and entry costs. 

Overall, public capital formation explains about 15% of the Brazilian structural transformation process. On the 

other hand, Shiferaw et al. (2015) point out that improving infrastructure provision can encourage the entry and 

the size of manufacturing firms and the mobility of factors across sectors. 
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infrastructure provision to productivity in Africa and other developing countries merits special 

attention. We find that expansion of mature and/or technological infrastructures did enhance 

aggregate TFP, as in Calderón and Servén (2010). Unlike previous literature measuring the 

effect of infrastructure provision on private production, we find that infrastructure provision 

not only helped improve within-firm productivity, but also helped improve the allocation of 

inputs across both firms and industries. Given the multiple positive productivity effects 

associated to infrastructure provision, and the key role of productivity growth in raising living 

standards, the implication is that infrastructure expansion and upgrading should remain a top 

policy priority for most developing countries.  
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Figure 1. Output and Input shares 

  

 

 

Figure 2. Estimated fixed effects 
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Figure 3. Degree of inter-firm misallocation of resources 

 

 

 

Figure 4. Computed WE and IPRE terms by country 
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Figure 5. Estimated fixed effects and production losses by country 
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Figure 6. Share differences vs Input share by country 
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Table 1. Descriptive statistics 

Industry-level variables 
 

Country-level variables 

Variable Obs Mean Std. Dev. Min Max 
 

Variable Obs Mean Std. Dev. Min Max 

Real Gross Value Added (thousand million US$)(a) 

 

Labor and capital 

Agriculture 585 56.41 195.15 0.05 1304.99 
 

Private Capital (thousand million US$)(a) 585 1.26 3.05 0.00 20.40 

Energy 585 52.20 137.98 0.04 1464.58 
 

Labor (Million jobs) 585 46.82 123.81 0.39 715.04 

Manufacturing 585 146.63 295.90 0.18 1680.13 
 

Technological indicators and infrastructures 

Services 585 413.93 1169.62 0.70 8019.36 
 

Fixed and mobile phones (% of population) 585 60.06 54.78 0.25 241.64 

Construction 585 57.64 131.51 0.07 843.52 
 

Electricity access (% of population) 585 66.35 161.12 0.13 1000.00 

Real output prices (ratio) 
 

Internet users (% of population) 585 18.36 24.30 0.00 91.00 

Agriculture 585 1.10 0.21 0.49 2.11 
 

Roads (thousand Kms) 585 518.60 1180.58 1.72 6500.00 

Energy 585 0.96 0.23 0.35 2.13 
 

Annual rates of growth (%) 

Manufacturing 585 1.03 0.11 0.73 1.84 
 

Real Gross Value Added 546 3.78 4.02 -16.13 14.36 

Services 585 1.01 0.08 0.82 1.58 
 

Labor 546 1.85 2.17 -10.28 9.15 

Construction 585 0.99 0.21 0.37 2.44 
 

Private Capital 546 6.10 8.81 -43.20 70.03 

Labor (Million jobs) 
 

Total input (b) 546 3.19 3.10 -10.12 19.00 

Agriculture 585 20.44 65.60 0.01 366.40 
 

TFP (a) 546 0.58 4.08 -17.35 12.84 

Energy 585 0.64 2.14 0.00 15.73  Labor Productivity 546 1.93 3.52 -16.61 13.09 

Manufacturing 585 7.01 19.73 0.03 144.63 
 

Annual changes of synthetic indexes 

Services 585 15.69 31.99 0.11 215.33 
 

Infrastructure (c) 546 0.195 0.29 -0.01 3.16 

Construction 585 3.04 7.89 0.02 52.41 
 

Quality of Institutions (d) 546 -0.001 0.08 -0.60 0.30 
Notes: (a) the monetary variables have been expressed in US dollars for the unique purpose of issuing this table. (b) This variable has been computed using the estimated 

elasticities for capital and labor of our industry production models. (c) This index has been computed using a PCA based on the logged total value of the above technological 

and infrastructure variables. (d) This index has been computed using a PCA based on four variables measuring the quality of institutions provided by the World Bank (control 

of corruption: government effectiveness, regulatory quality, and rule of law).   
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Table 2. SF production functions. Parameter estimates 

 

 
 

Agriculture Energy & Mining Manufacturing Services Construction 

 Variables Coef.   Std. Err. Coef.   Std. Err. Coef.   Std. Err. Coef.   Std. Err. Coef.   Std. Err. 

Frontier function                               

 Intercept 9.782 *** 0.144 9.502 *** 0.127 10.365 *** 0.075 10.631 *** 0.070 8.680 *** 0.080 

 Capital (K) 0.111 ** 0.045 0.398 *** 0.064 0.453 *** 0.053 0.387 *** 0.032 0.439 *** 0.058 

 Labor (L) 0.889 *** 0.045 0.602 *** 0.064 0.547 *** 0.053 0.613 *** 0.032 0.561 *** 0.058 

 Infrastructure (Z) 0.003   0.048 0.341 *** 0.061 -0.014   0.044 0.043   0.029 0.282 *** 0.055 

 Z·Quality of Inst. 0.004   0.022 0.218 *** 0.036 0.061 *** 0.016 0.028 * 0.016 0.099 *** 0.033 

Capital function                               

 Labor Share (SL) 0.558   0.490 -8.171 *** 2.694 -0.551   0.675 -0.017   0.355 -5.874 *** 1.680 

Noise term                               

 Intercept -5.199 *** 0.856 -12.09 *** 4.060 -0.798 *** 0.131 -0.893 *** 0.182 -2.771 *** 0.265 

Inefficiency term                               

 Intercept -5.199 *** 0.856 -12.09 *** 4.060 -0.798 *** 0.131 -0.893 *** 0.182 -2.771 *** 0.265 

 Infrastructure (Z) -0.503 *** 0.161 1.523   1.313 0.110 ** 0.047 0.044   0.047 -0.416 *** 0.066 

 Z·t 0.006   0.011 -0.110   0.089 -0.016 * 0.008 -0.024 * 0.014 0.027 *** 0.006 

 Time trend (t) 0.242 *** 0.057 0.733 *** 0.274 -0.194 *** 0.027 -0.244 *** 0.050 0.092 *** 0.022 

 Fixed Effects Yes     Yes     Yes     Yes     Yes     

 Time Effects Yes     Yes     Yes     Yes     Yes     

 CU proxy Yes     Yes     Yes     Yes     Yes     

 1st-Stage Residuals Yes     Yes     Yes     Yes     Yes     

 Mean log-likelihood 0.9760     0.7018     1.0128     1.1653     0.7988     

 Observations 585     585     585     585     585     
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Table 3. Labor and capital auxiliary regressions. Parameter estimates. 

Labor 

  

Agriculture Energy & Mining Manufacturing Services Construction 

Coef.   t-ratio Coef.   t-ratio Coef.   t-ratio Coef.   t-ratio Coef.   t-ratio 

Infrastructure (Z) 0.101 *** 13.25 0.133 *** 8.93 0.207 *** 17.23 0.090 *** 12.69 0.197 *** 12.94 

Quality of Institutions (Q) -0.126 *** -4.77 0.003   0.07 -0.129 *** -3.12 -0.038   -1.58 -0.102 * -1.94 

t -0.049 *** -11.35 -0.081 *** -9.63 -0.067 *** -9.86 0.000   0.02 -0.046 *** -5.39 

t2 0.003 *** 7.60 0.008 *** 9.78 0.005 *** 7.85 0.002 *** 5.85 0.006 *** 6.84 

Fixed effects Yes     Yes     Yes     Yes     Yes     

R-squared 0.999     0.991     0.995     0.998     0.992     

         

Capital 

  

Agriculture Energy & Mining Manufacturing Services Construction 

Coef.   t-ratio Coef.   t-ratio Coef.   t-ratio Coef.   t-ratio Coef.   t-ratio 

Infrastructure (Z) 0.169 *** 8.66 0.224 *** 10.60 0.230 *** 11.90 0.253 *** 12.87 0.225 *** 10.32 

Quality of Institutions (Q) 0.193 *** 2.87 0.098   1.35 0.164 *** 2.46 0.146 ** 2.16 0.287 *** 3.83 

t -0.079 *** -7.21 -0.062 *** -5.24 -0.080 *** -7.38 -0.091 *** -8.24 -0.080 *** -6.55 

t2 0.011 *** 10.20 0.011 *** 9.44 0.013 *** 12.06 0.014 *** 12.34 0.012 *** 9.67 

Fixed effects Yes     Yes     Yes     Yes     Yes     

R-squared 0.987     0.993     0.994     0.994     0.990     
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Table 4. Diewert’s TFP growth decomposition (%) 

Asia Mean Std Dev Minimum Maximum 

Aggregate TFP growth (M) 0.66 4.09 -17.31 10.48 

Within Effect (WE) -0.10 4.23 -21.94 10.22 

Output Price Effect (OPE) -0.03 0.20 -0.84 0.84 

Input Price Reallocation Effect (IPRE) 0.78 1.40 -3.22 6.69      

Europe & USA  Mean Std Dev Minimum Maximum 

Aggregate TFP growth (M) 0.76 3.89 -11.32 12.84 

Within Effect (WE) 0.78 3.93 -11.32 13.13 

Output Price Effect (OPE) -0.03 0.19 -0.80 0.62 

Input Price Reallocation Effect (IPRE) 0.01 0.16 -0.33 0.60      

Latin America  Mean Std Dev Minimum Maximum 

Aggregate TFP growth (M) -0.19 3.71 -11.90 10.21 

Within Effect (WE) -0.42 3.90 -10.85 10.07 

Output Price Effect (OPE) 0.04 0.36 -1.02 1.67 

Input Price Reallocation Effect (IPRE) 0.19 0.74 -1.60 4.43      

Africa  Mean Std Dev Minimum Maximum 

Aggregate TFP growth (M) 0.97 4.40 -14.76 11.60 

Within Effect (WE) -0.12 4.87 -19.27 17.28 

Output Price Effect (OPE) -0.04 0.82 -6.18 2.26 

Input Price Reallocation Effect (IPRE) 1.12 2.00 -4.53 9.74      

World Mean Std Dev Minimum Maximum 

Aggregate TFP growth (M) 0.58 4.08 -17.31 12.84 

Within Effect (WE) 0.00 4.32 -21.94 17.28 

Output Price Effect (OPE) -0.01 0.50 -6.18 2.26 

Input Price Reallocation Effect (IPRE) 0.59 1.43 -4.53 9.74 
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Table 5. Productivity growth decompositions by region. 

Decomposition level Asia 
Europe 

& USA 

Latin 

America 
Africa World 

      

First-level      

 TFP growth (M) 0.66 0.76 -0.19 0.97 0.58 

 Within Effect (WE) -0.10 0.78 -0.42 -0.12 0.00 

 Output Price Effect (OPE) -0.03 -0.03 0.04 -0.04 -0.01 

 Input Price Reallocation Effect (IPRE) 0.78 0.01 0.19 1.12 0.59 

      

Second-level      

 Within Effect (WE) -0.10 0.78 -0.42 -0.12 0.00 

 Infrastructure  0.85 1.17 0.88 1.47 1.11 

 Quality of Institutions  0.03 -0.09 -0.02 -0.10 -0.05 

 Global Technological Shocks -0.50 -0.63 -1.09 -1.06 -0.84 

 Other Factors -0.47 0.32 -0.20 -0.42 -0.23 

      

 Within Effect (WE) -0.10 0.78 -0.42 -0.12 0.00 

 Frontier effects -0.97 -0.89 -0.81 -0.78 -0.86 

 Non-frontier Effects 0.87 1.66 0.38 0.66 0.86 

      

 Output Price Effect (OPE) -0.03 -0.03 0.04 -0.04 -0.01 

 Infrastructure 0.06 0.12 0.14 0.04 0.08 

 Quality of Institutions 0.00 0.00 0.00 0.01 0.00 

 Global Technological Shocks -0.08 -0.18 -0.17 -0.05 -0.11 

 Other Factors 0.00 0.03 0.08 -0.03 0.01 

      

 Input Price Reallocation Effect (IPRE) 0.78 0.01 0.19 1.12 0.59 

 Infrastructure 0.20 -0.08 -0.06 0.36 0.13 

 Quality of Institutions 0.00 0.00 0.00 0.01 0.00 

 Other Factors 0.59 0.09 0.25 0.75 0.46 
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Appendix A 

 

Diewert (2015) defines his output price effect (OPE) as a weighted average of industry 

real output prices: 

𝑂𝑃𝐸 = ∑ 𝑠𝑌𝑛�̇�𝑛
𝑁
𝑛=1       (A1) 

Notice that the industry n real output price 𝑝𝑛 is the industry output price 𝑃𝑛 divided by 

the aggregate output price index 𝑃, which can be defined as: 

𝑃 = ∑ 𝑃𝑛
𝑌𝑛

𝑌
𝑁
𝑛=1 = ∑ 𝑃𝑛𝑆𝑌𝑛

𝑁
𝑛=1      (A2) 

where 𝑆𝑌𝑛 = 𝑌𝑛/𝑌 is the real output share of industry n in total output. As the nominal output 

share 𝑠𝑌𝑛 can be rewritten as 𝑠𝑌𝑛 =
𝑃𝑛

𝑃
𝑆𝑌𝑛, the change of aggregate output price is equal to: 

�̇� = ∑ 𝑠𝑌𝑛�̇�𝑛
𝑁
𝑛=1 + ∑ 𝑠𝑌𝑛�̇�𝑌𝑛

𝑁
𝑛=1     (A3) 

Rearranging (A3), we get: 

𝑂𝑃𝐸 = − ∑ 𝑠𝑌𝑛�̇�𝑌𝑛
𝑁
𝑛=1     (A4) 

Therefore, we find that Diewert’s output price effect is (the negative of) an output 

reallocation effect that measures changes in the structure of the economy using industry real 

output shares.  

Notice, however, that the change in real industry output share is �̇�𝑌𝑛 = �̇�𝑛 − ∑ 𝑆𝑌𝑠�̇�𝑠
𝑁
𝑠=1 , 

where the second term is common to all industries. If we replace �̇�𝑌𝑛 with �̇�𝑛 − ∑ 𝑆𝑌𝑠�̇�𝑠
𝑁
𝑠=1  in 

(A4), we get: 

𝑂𝑃𝐸 = ∑ (𝑆𝑌𝑛 − 𝑠𝑌𝑛)�̇�𝑛
𝑁
𝑛=1     (A5) 

Therefore, equation (A5) finally indicates that the 𝑂𝑃𝐸 term mainly depends on the 

difference between nominal and real output shares.        

 

  



35 
 

Appendix B 

 

Diewert (2015) defines his input price effect (IPE) as (the negative of) a weighted 

average of industry real input prices: 

𝐼𝑃𝐸 = − ∑ 𝑠𝑌𝑛ẇ𝑛
𝑁
𝑛=1      (B1) 

Notice that the industry n real input price 𝑤𝑛 is the industry input price 𝑊𝑛 divided by 

the aggregate input price index 𝑊, which can be defined as: 

𝑊 = ∑ 𝑊𝑛
𝑋𝑛

𝑋
𝑁
𝑛=1 = ∑ 𝑊𝑛𝑆𝑋𝑛

𝑁
𝑛=1     (B2) 

where 𝑆𝑋𝑛 = 𝑋𝑛/𝑋 is the real input cost share of industry n in total input. The nominal input 

price share 𝑠𝑋𝑛 can be rewritten as 𝑠𝑋𝑛 =
𝑊𝑛

𝑊
𝑆𝑋𝑛. Taking into account that �̇� = ∑ 𝑠𝑋𝑛Ẇ𝑛

𝑁
𝑛=1 +

∑ 𝑠𝑋𝑛�̇�𝑋𝑛
𝑁
𝑛=1 , we get:  

𝐼𝑃𝐸 = �̇� − ∑ 𝑠𝑌𝑛Ẇ𝑛
𝑁
𝑛=1 = ∑ (𝑠𝑋𝑛 − 𝑠𝑌𝑛)Ẇ𝑛

𝑁
𝑛=1 + ∑ 𝑠𝑋𝑛�̇�𝑋𝑛

𝑁
𝑛=1   (B3) 

 The first term in (B3) indicates that Diewert’s input price effect measures changes in 

(nominal) input prices if the structure of the economy in terms of output and inputs differ. The 

second term indicates that 𝐼𝑃𝐸 also measures changes in the structure of the economy using 

(changes in) industry real input cost shares (�̇�𝑋𝑛), instead of industry nominal input cost shares 

(ṡ𝑋𝑛) as the 𝐼𝑅𝐸 term does.  

 As both 𝐼𝑃𝐸 and 𝐼𝑅𝐸 terms are capturing input reallocation effects, it is interesting to 

examine their combined effects. In this sense, it is first worth highlighting that both nominal 

and real changes in industry input cost shares are mathematically linked, i.e.  ṡ𝑋𝑛 = �̇�𝑋𝑛 +
Ẇ𝑛 − �̇�. Using this equation, the 𝐼𝑅𝐸 term is equivalent to: 

𝐼𝑅𝐸 = ∑ 𝑠𝑌𝑛ṡ𝑋𝑛
𝑁
𝑛=1 = ∑ 𝑠𝑌𝑛�̇�𝑋𝑛

𝑁
𝑛=1 − 𝐼𝑃𝐸    (B4) 

Therefore, equation (B4) indicates that the sum of 𝐼𝑃𝐸 and 𝐼𝑅𝐸 is equal to ∑ 𝑠𝑌𝑛�̇�𝑋𝑛
𝑁
𝑛=1 . 

That is, their combined effect is simply a weighted sum of changes in industry real input cost 

shares (�̇�𝑋𝑛) where the weight for each industry is its nominal output share (𝑠𝑌𝑛). The change 

in real industry input cost share is �̇�𝑋𝑛 = �̇�𝑛 − ∑ 𝑆𝑋𝑠�̇�𝑠
𝑁
𝑠=1  . This equation indicates that the 

change in relative size of industry n depends on how different the change in �̇�𝑛 is with respect 

to the average change in the economy. As the second term is common to all industries, we get: 

𝐼𝑃𝑅𝐸 = 𝐼𝑃𝐸 + 𝐼𝑅𝐸 = ∑ (𝑠𝑌𝑛 − 𝑆𝑋𝑛)�̇�𝑛
𝑁
𝑛=1     (B5) 

As the relative size of a particular industry in output and input terms might differ 

notably in practice, we expect larger values for 𝐼𝑃𝑅𝐸 than for 𝑂𝑃𝐸.  
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Appendix C 

 

Region Countries 

Africa Botswana, Egypt, Ethiopia, Ghana, Kenya, Mauritius, Malawi, Nigeria, 

Senegal, Tanzania, South Africa, Zambia. 

Asia China, China, Indonesia, India, Japan, Republic of Korea, Malaysia, 

Philippines, Singapore, Thailand. 

Europe and USA Denmark, Spain, France, United Kingdom, Italy, Netherlands, Sweden, 

United States. 

Latin America Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, México, Perú, 

Venezuela. 

 

 


