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Abstract. Improving the productivity of the agricultural sector is part of one of the Sustainable
Development Goals set by the United Nations. To this end, many international organizations have
funded training and technology transfer programs that aim to promote productivity and income
growth, fight poverty and enhance food security among small farmers in developing countries. Sto-
chastic production frontier analysis can be a useful tool when evaluating the effectiveness of these
programs. However, accounting for endogenous selection into treatment, often intrinsic to these
interventions, only recently received any attention in the stochastic frontier literature. In this work,
we extend the classical maximum likelihood estimation of stochastic production frontier models by
allowing both the production frontier and inefficiency to depend on a potentially endogenous binary
treatment. We use instrumental variables to define an assignment mechanism for the treatment,
and we explicitly model the density of the first and second-stage composite error terms. We provide
empirical evidence of the importance of controlling for endogeneity in this setting using farm-level
data on a soil conservation program in El Salvador.
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1. Introduction

The global need to increase productivity via technological change and efficiency improvements

in the agricultural sector has been recognized in the United Nations 2030 Agenda for Sustainable

Development. In particular, the Sustainable Development Goal (SDG) #2 aims to end hunger and

improve the agricultural productivity and incomes of small-scale farmers while promoting resilient

agricultural practices and sustainable food production systems. A growing number of governments,

development organizations, and agencies are implementing programs targeting this goal. Many of

these programs work at the scale of smallholder farm households and often include support for

the adoption of innovative technologies and practices, as well as funding for technical assistance,

agricultural education and training (see Bravo-Ureta et al., 2020, Jimi et al., 2019 and also de Janvry

et al., 2017, for a review).

However, participation in these programs often occurs voluntarily, which may lead to endogenous

selection of participants into treatment. Farmers who choose to participate (i.e., who self-select

into the program) may share specific characteristics that distinguish them from non-participants.

For instance, the participants’ cultivated land may suffer more from erosion, and as a consequence,

they may be less efficient than non-participants. If endogenous selection of participants into the

treatment is not controlled for, one might conclude that the program is not effective because the

agricultural efficiency of those who participate is lower than those who do not.

Stochastic Frontier Analysis is a popular method to assess agricultural efficiency as a measure of

the production potential of the agricultural sector. The production frontier is defined as the quantity

of output that can be produced with some input mix, given the technology and the environment.

Efficiency (or inefficiency) is measured by the distance of each producer from the frontier, and it

is usually modeled using a one-sided unobserved random variable. Similarly, the output may be

measured with an error, or there may be other sources of variation in the outcome not observed

by the econometrician that result in a further stochastic component. This composite error term is

a defining feature of stochastic frontier models. In this framework, endogenous selection has been

modeled either by considering the dependence between program participation and the two-sided

stochastic component of the error term (Greene, 2010); or by considering the dependence between

program participation and the unobserved inefficiency component of error term (Kumbhakar et al.,
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2009). However, as pointed out by Parmeter and Kumbhakar (2014, Section 6.3.3, p.293), “a

framework where selection is based on [the composite error term] does not exist." We fill this gap

in the current literature and develop a framework in which selection is based on the composite error

term.

In our framework, we let the treatment be binary and denote it with a random variable Z. The

decision of farmer i to participate in the treatment can be described as an index function, Z∗

i ,

which depends on observed (W̃i) and unobserved (ηi) variables (Heckman and Robb, 1985). If the

index Z∗

i is greater than a threshold (often normalized to 0), then the farmer decides to participate

in the treatment and Zi = 1; otherwise, she does not and Zi = 0. The decision of farmers to

participate in the treatment generates dependence between unobservable individual characteristics

(i.e., preferences and/or managerial abilities) and the treatment assignment. If the unobservable

factors, ηi, are correlated with the composite error term in the stochastic frontier framework, then

the latter affects the choice of the farmer to overtake the treatment. Hence, the composite error term

confounds the effect of Zi on the output and on the mean of the inefficiency term. This endogeneity

problem renders standard estimation methods inconsistent. As mentioned above, the challenge is

to provide a framework which allows for the treatment assignment to be potentially correlated with

both components of the composite error term.

In the stochastic frontier literature, the issue of endogeneity with respect to the two-sided error

component has been previously treated as an issue of sample selection bias. The main rationale for

this choice is that treated and non-treated units come from two distinct populations. The selection

mechanism therefore applies as we only observe the treatment group in one sample and the control

group in another sample (Greene, 2010; Lai, 2015). Bravo-Ureta et al. (2012) considers a framework

similar to Greene (2010) to control for selection on unobservables, coupled with a propensity score

matching technique to additionally control for selection on observables.

However, there are two reasons why the sample selection framework may not be appropriate to

study endogenous selection into treatment. From a methodological perspective, the sample includes

observations from both the treatment and the control group coming from the same population (e.g.,

the population of farmers in a specific region). In this context, there does not seem to be any

particular reasons to estimate two different frontiers for a population of farmers based on whether
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they participate in the treatment or not. From a statistical perspective, the application of the sample

selection approach requires splitting the full sample into two subsamples, which effectively reduces

the degrees of freedom. Potential differences in output elasticities between treatment and control

group can be appropriately introduced using interaction terms between the treatment variable and

the inputs without splitting the sample, as we explain below.

An alternative approach is proposed by Kumbhakar et al. (2009). In particular, Kumbhakar

et al.’s (2009) paper considers the endogeneity of technology choice (conventional or organic farming)

by jointly estimating technology and technology choice using a single-step maximum likelihood

method. In their framework, the technology choice directly depends on the inefficiency term, and

therefore endogeneity operates through the inefficiency term only. Moreover, they do not consider

treatment participation as a potential determinant of inefficiency.

The approaches in both Greene (2010) and Kumbhakar et al. (2009) are based on simulated

maximum likelihood, while we provide a closed-form likelihood function, and therefore we do not

need to resort to simulations. This has both computational advantages and may improve the finite

sample properties of the estimator.

More recently, Chen et al. (2020) study a general model with binary endogenous treatment and

mediator, that are potentially correlated with the composite error term. Their approach uses a

propensity score assumption, which is used to construct moment conditions that are robust to the

potential endogeneity of the treatment. However, they do not provide an estimator of technical

efficiency.

To the best of our knowledge, there does not exist a maximum likelihood framework in stochastic

frontier analysis which allows one to control for potential correlation between program participation

and both the unobservable idiosyncratic component and the stochastic inefficiency.

Our contribution to this literature is to provide a model that allows one to control for endogeneity

coming from both sources. We allow the treatment to enter the model in a flexible way, so that

participation in the program can act as both a determinant of (ine)efficiency as well as a facilitating

input. This is crucial as it permits to test whether program participation helps farmers produce more

efficiently, given the technology; and/or modifies the technology. Our empirical strategy is to employ

instrumental variables to construct an auxiliary assignment mechanism for program participation.
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We then propose a maximum likelihood framework in which we jointly model the density of the

first stage error and the density of the composite error term common to the stochastic production

frontier. Under appropriate conditional independence assumptions, we derive the likelihood function

in closed form, which allows us to use standard estimation and inference procedures, making the

model straightforward to estimate and interpret. We also provide some theoretical results about

identification and estimation, with a focus on the parameter capturing dependence between the

stochastic inefficiency and the unobservable first-stage error. We show that only the magnitude of

the dependence is identified, but not its sign. Moreover, when the true value of this parameter is 0,

the information matrix is singular and the model is only second-order identified. As this limiting case

is relevant for practitioners who wish to test the lack of endogeneity with respect to the inefficiency

component, we discuss some testing procedures which can be applied in this context, and also

discuss how to construct confidence intervals that are robust to the lack of first-order identification

Rotnitzky et al. (2000); Andrews (2001); Bottai (2003); Ekvall and Bottai (2022).

Our framework is similar in spirit to Kumbhakar et al. (2009), in that we also use a single-step

maximum likelihood method. However, we model the dependence of both components of the error

term. Compared to the model proposed by Chen et al. (2020), we also impose explicit distributional

assumptions on both the inefficiency term and the stochastic component. However, our approach is

based on a one-step maximum likelihood estimator and allows one to obtain an estimator of technical

efficiency for each producer, which is not provided in Chen et al. (2020). The ability to estimate

technical efficiency is an essential feature of stochastic frontier models, as it allows comparisons

across different observations (Farrell, 1957; Jondrow et al., 1982). We also contribute to the recent

literature about endogeneity in stochastic frontier models (Amsler et al., 2016, 2017; Centorrino

and Pérez-Urdiales, 2021), by studying the case in which the endogenous variable is binary.

We apply the proposed method to a sample of smallholder farm households from El Salvador. The

data consist of a sample of participants in an environmental program promoting soil conservation

practices, as well as a control group of non-participant farmers. In this empirical analysis, standard

stochastic frontier estimation does not show any effect of the policy, either on the production level

or on farmers’ technical efficiency. By contrast, our approach reveals that program participation

significantly improves technical efficiency. These results further highlight the need to control for
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endogeneity when evaluating such interventions, as this may substantially change the conclusions

regarding their effectiveness.

The paper is structured as follows. In Section 2, we described the econometric model and our

maximum likelihood estimator. Section 3 contain a finite sample assessment of our method, in

which we also discuss the implementation of our estimator. Section 4 contains a description of the

sample and outlines our empirical results. Finally, Section 5 concludes.

2. Binary Treatment in Stochastic Production Frontier

2.1. Model. We consider the following stochastic frontier regression model:

Y =m(X,Z,β) + V −U, (1)

where Y is the logarithm of output; m(X,Z,β) is the logarithm of the production frontier, which

depends on some unknown parameter β, some production inputs, X, and other environmental

factors, Z; and ε = V −U is a composite error term. This error term is divided into two parts: V is

a stochastic component with mean equal to 0, and U ≥ 0 is an inefficiency term that captures the

shortfall of the producer from the frontier. The latter may depend on other observed characteristics

of producers (for instance, experience and education) that are often introduced as a scale factor

affecting the distribution of U (Simar et al., 1994; Alvarez et al., 2006). Thus, we write U =

U0g(Z, δ), where g(⋅, ⋅) is the so-called scale function which is specified by the econometrician and

depends on some unknown parameter δ. This function is normalized such that g(0, δ) = 1. For

instance, in our empirical illustration, we take Z as the dummy for participation in the program

fostering soil-conservation. This is a binary treatment variable that takes value 1 if the producer

participates in the program and 0 otherwise. This variable can affect both the production frontier

and the inefficiency of the producer. To simplify the discussion that follows, we assume that the

participation dummy is the only environmental factor, so that Z is univariate. This specific model

can be easily generalized when Z includes also other exogenous environmental factors.

As Z is binary, we can write the production frontier as

m(X,Z,β) =m(X,β0) +Zm(X,β1),
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so that the frontier shifts from m(X,β0) to m(X,β0) +m(X,β1) as the treatment variable changes

from 0 to 1. Therefore, our model in (1) becomes

Y =m(X,β0) +Zm(X,β1) + V −U0g(Z, δ).

For instance, in the prevalent case in which the logarithm of the production function is linear

in parameters (e.g., Cobb-Douglas or translog), this modeling strategy involves the inclusion in

the production frontier of the dummy variable for the treatment and the interaction between the

treatment dummy and each one of the inputs (or a subset of these regressors). This specification is

in line with McCloud and Kumbhakar (2008) in that the treatment may affect the output through

the input coefficients (as a facilitating input that is not necessary for output production), the

technological change parameter (generating a frontier shift), and the efficiency term.

Maximum likelihood estimation is a popular approach to obtain estimators of the parame-

ters (β, δ) in a stochastic frontier framework (Kumbhakar and Lovell, 2003). Although heavily

parametrized, the likelihood specification allows one to identify and estimate the variance of the

inefficiency term. This in turn permits the construction of an estimator of technical (in)efficiency,

which captures the distance of each farmer from the production frontier.

These maximum likelihood estimators can be based on a variety of assumptions about the distri-

butions of V and U0. However, the most popular model assumes that V follows a normal distribution

and that U0 follows a half-normal distribution (Aigner et al., 1977). Moreover, one usually assumes

that V is independent of U0 and that (X,Z) are fully independent of (V,U0).

In our framework, the treatment is not taken to be independent of the joint error term (V,U0).

Volunteering for the treatment can depend both on the inefficiency of the producer and on other

preferences that are unobserved to the econometrician. This implies that the treatment is endoge-

nous. In this case, the stochastic frontier model based on an independence assumption between Z

and (V,U0) would lead to an inconsistent estimator of (β, δ).1 Our goal is to construct a maxi-

mum likelihood estimator that generalizes the normal-half-normal stochastic frontier model when

the treatment is allowed to be endogenous.

1Production inputs can also be correlated with the composite error term (Mundlak, 1961; Schmidt and Sickles,
1984). However, we focus here on the endogeneity of the treatment. Constructing an estimator that is also robust to
endogeneity in the inputs is possible, although we do not tackle it in this paper (see Centorrino and Pérez-Urdiales,
2021).
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In econometrics, the use of instrumental variables is a popular method to deal with endogeneity.

That is, we assume there exists a vector of instruments, W , of dimension q ≥ 1, which is correlated

with Z but independent of (V,U0). However, Z enters the second-stage equation nonlinearly, so

the usual approach used in linear instrumental variable models of obtaining the predicted values of

Z from the first stage and using them in a second stage maximum likelihood estimation instead of

Z would not lead to a consistent estimation of (β, δ) (Wooldridge, 2015; Amsler et al., 2016). An

alternative approach is based on a so-called control function assumption. That is, one can write

Z = 1 (W̃γ + η ≥ 0), where W̃ = (W,X), and assume that all the dependence between Z and (V,U0)

is captured by η. The latter can be considered an omitted variable in the second stage. Thus, once

we control for η, the dependence between Z and (V,U0) disappears (Newey et al., 1999; Imbens

and Newey, 2009).

In particular, we use a Probit specification to model the treatment assignment (i.e., the first stage

equation). Thus, we have that

P (Z = 1∣W̃ ) = 1 −Φ (−W̃γ) ,

where Φ (⋅) is the cdf of a standard normal distribution. The main assumptions of the Probit model

are that η ∼ N(0,1) and that W̃ is independent of η. A maximum likelihood framework requires

specification of the dependence between η and (V,U0). More formally, this is done by modeling the

conditional density of (V,U0) given η. Consistently with the work of Centorrino and Pérez-Urdiales

(2021), we assume that any dependence between V and U0 has to happen through η. When there

is no endogeneity, this assumption is equivalent to the full independence between V and U0 usually

imposed in stochastic frontier models.

Our main assumptions are formalized as follows.

Assumption 2.1. (i) W̃ á (V, η,U0) and V á U0∣η.

(ii) Z = 1 (W̃γ + η ≥ 0), with η ∼ N(0,1).

(iii) V ∣η ∼ N (ρV σV η, σ2
V (1 − ρ2

V )).

(iv) U0∣η ∼ FN (ρUσUη, σ2
U(1 − ρ2

U)), where FN denotes a folded normal distribution.

The parameters ρV and ρU capture the dependence between (V,U0) and η, respectively. The

conditional pdf of U0 given η is written as
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fU0∣η(u∣η) =
1

√
2π(1 − ρ2

U)σ2
U

{exp(−(u − ρUσUη)2

2(1 − ρ2
U)σ2

U

) + exp(−(u + ρUσUη)2

2(1 − ρ2
U)σ2

U

)} . (2)

Centorrino and Pérez-Urdiales (2021) have shown that this specification of the conditional density

of U0 provides a generalization with endogeneity to the normal half-normal stochastic frontier model

(Aigner et al., 1977). It can be seen that the pdf in Equation (2) reduces to the half-normal

distribution when ρU = 0, i.e., when the treatment is assigned independently of the efficiency of the

producer. In the following, we refer to ρU as a dependence parameter.

Maximum likelihood estimation in stochastic frontier models is usually based on the density of

the composite error term ε = V −U . In the case where the treatment is endogenous, our maximum

likelihood estimator is based on the joint density of (ε, η), which can be decomposed into the product

of the conditional density of ε given η and the marginal density of η which, in our case, is a standard

normal density.

From Centorrino and Pérez-Urdiales (2021), the conditional density of ε given η is equal to

fε∣η(ε∣η) =∫ fV ∣η(ε + u∣η) (g(Z, δ))
−1 fU0∣η((g(Z, δ))

−1 u∣η)du

= 1√
2πσ̃(Z)

{Φ(λ(Z)ρV σV η
σ̃(Z)

+ ρUσU(Z)η
λ(Z)σ̃(Z)

− λ(Z)ε
σ̃(Z)

) exp(−(ε − ρV σV η + ρUσU(Z)η)2

2σ̃2(Z)
)

+ Φ(λ(Z)ρV σV η
σ̃(Z)

− ρUσU(Z)η
λ(Z)σ̃(Z)

− λ(Z)ε
σ̃(Z)

) exp(−(ε − ρV σV η − ρUσU(Z)η)2

2σ̃2(Z)
)} ,

where

σ2
U(Z) =σ2

U (g (Z, δ))2 , σ̃2
U(Z) = (1 − ρ2

U)σ2
U(Z), σ̃2

V = (1 − ρ2
V )σ2

V ,

σ̃2(Z) =σ̃2
U(Z) + σ̃2

V , λ(Z) = σ̃U(Z)
σ̃V

.

Remark 1. The scaling property of U is essential to derive the conditional density of ε given η.

Given that U0 á Z ∣η, the scaling properties allows Centorrino and Pérez-Urdiales (2021) to write

the conditional density of U given η as a scaled transformation of the density of U0 given η.
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Finally, using our assumption that η follows a standard normal distribution, the joint density of

(ε, η) can be written as

fε,η(ε, η) =
1

2πσ̃(Z)
{Φ(λ(Z)ρV σV η

σ̃(Z)
+ ρUσU(Z)η
λ(Z)σ̃(Z)

− λ(Z)ε
σ̃(Z)

) exp(−(ε − ρV σV η + ρUσU(Z)η)2

2σ2
− η

2

2
)

+ Φ(λ(Z)ρV σV η
σ̃(Z)

− ρUσU(Z)η
λ(Z)σ̃(Z)

− λ(Z)ε
σ̃(Z)

) exp(−(ε − ρV σV η − ρUσU(Z)η)2

2σ̃2(Z)
− η

2

2
)} .

Let θ = (β′, δ′, σ2
U , σ

2
V , ρV , ρU , γ

′)′ be the vector of parameters of interest. When Z is continuous,

at least for identification purposes, we can assume that η is observed and thus define the likelihood

using the joint density of ε and η obtained above (Centorrino and Pérez-Urdiales, 2021). When Z

is binary, this is not possible, as the first stage error term, η, cannot be estimated from the data.

We thus need to define the joint likelihood differently.

In similar frameworks (e.g., Probit and Logit models), the observable random variable is discrete,

and we usually express the likelihood (conditional on exogenous covariates) as the cdf of a latent error

term which follows a known distribution. In our case, we have two observable endogenous variables

(Y,Z), and the likelihood is obtained by their density, conditional on the exogenous components,

W̃ . We aim at rewriting this density in terms of the error components (ε, η). Therefore, as η is

latent, the likelihood is written with respect to its cdf. In particular, we aim at writing the likelihood

as the product between the cdf of η conditional on ε and the pdf of ε.

To this end, we first consider the following joint probability of the observable endogenous variables.

For Z = 0, we have

P (Y ≤ y,Z = 0∣W̃ = w̃) =P (m(x,0, β) + ε ≤ y,Z = 0∣W̃ = w̃)

=P (ε ≤ y −m(x,0, β), η ≤ −w̃γ) = Fε,η (y −m(x,0, β),−w̃γ) ,

where the second line follows from the assumption of independence between (ε, η) and W̃ . A similar

derivation holds when Z = 1.

If we take the derivative of the joint probability in equation (3) with respect to its first argument,

we obtain a function which is a pdf with respect to ε and a cdf with respect to η. In particular, we

have

∂1Fε,η (y −m(x,0, β),−w̃γ) =∫
−w̃γ

−∞

fε∣η(y −m(x,0, β), η)dη
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=∫
−w̃γ

−∞

fε∣η(y −m(x,0, β)∣η)φ(η)dη,

where the second line follows from the Assumption that η ∼ N(0,1), and φ is the pdf of a standard

normal distribution.

The likelihood function can thus be obtained as

L(θ) = (∫
∞

−W̃γ
fε∣η(Y −m(X,Z,β)∣η)φ(η)dη)

Z

(∫
−W̃γ

−∞

fε∣η(Y −m(X,Z,β)∣η)φ(η)dη)
1−Z

, (3)

where θ is defined above.

The integrals appearing in the likelihood function can be solved analytically. In particular, we

obtain that the conditional cdf of η given ε is a mixture of two conditional skew-normal distributions

(Azzalini and Dalla Valle, 1996; Azzalini, 2013). For j = {1,2}, we let

Ψ0,j(Z, θ) =Φ2 (
−W̃γ − µη,j(Z) (Y −m(X,Z,β))

ση,j(Z)
, τj(Z) (Y −m(X,Z,β)) ;ρ∗(Z)) ,

Ψ1,j(Z, θ) =Φ (τj(Z) (Y −m(X,Z,β)))

−Φ2 (
−W̃γ − µη,j(Z) (Y −m(X,Z,β))

ση,j(Z)
, τj(Z) (Y −m(X,Z,β)) ;ρ∗(Z)) ,

where Φ2(⋅, ⋅;ρ∗) is the cdf of a bivariate normal random variable with correlation parameter ρ∗(Z),

and {µη,j(Z), ση,j(Z), τj(Z), ρ∗(Z), σ2
ε,j(Z)} are functions of the parameter θ, whose dependence

is suppressed for simplicity. We are finally able to show that the likelihood function can be written

as

L(θ) =
⎛
⎝ ∑j=1,2

Ψ1,j(Z, θ)
1

σε,j(Z)
φ(Y −m(X,Z,β)

σε,j(Z)
)
⎞
⎠

Z

×

⎛
⎝ ∑j=1,2

Ψ0,j(Z, θ)
1

σε,j(Z)
φ(Y −m(X,Z,β)

σε,j(Z)
)
⎞
⎠

1−Z

. (4)

A detailed derivation is provided in Appendix A.1.

When ρV = ρU = 0,

σ2
ε,1(Z) =σ2

ε,2(Z) = σ2
V + σ2

U(Z)

Ψ1,1(Z, θ) =Ψ1,2(Z, θ) = 1 −Φ(−W̃γ)
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Ψ0,1(Z, θ) =Ψ0,2(Z, θ) = Φ(−W̃γ),

and the likelihood reduces to the product of the pdf of a skew-normal distribution (the pdf of ε)

and the cdf of a normal distribution (the cdf of η), which would be the likelihood function if the

composite error term is independent of Z. This would be the standard approach in Stochastic

Frontier Analysis (Kumbhakar and Lovell, 2003). Also, if ρV = 0, and we assume that σ2
U(Z) is

constant wrt Z, we can write ηi = ei − ρ2
UU0i/(σ2

V + σ2
U), and our model will collapse to the one

proposed by Kumbhakar et al. (2009).

2.2. Identification. Let `(θ) = logL(θ) be the log-likelihood function, and assume that E [∣`(θ)∣] <

∞ for all θ ∈ Θ. As we can restrict Θ to be a compact parameter space, and the likelihood function is

continuous in θ, there exists at least one solution to the maximization of the log-likelihood function

(Gourieroux and Monfort, 1995).

We focus our identification analysis on the parameter ρU . To this end, we maintain the following

assumption.

Assumption 2.2. Let θ1 = (β′, δ′, σ2
U , σ

2
V , ρV , γ

′)′. The matrix

E [∇2
θ1θ′1

`(θ0)]

is negative definite and has full rank.

This assumption imposes that the parameter θ1 is first-order locally identified (Sargan, 1983). In

particular, we require that the variance of the inefficiency term σ2
U,0 > 0. Lee and Chesher (1986) and

Lee (1993) have shown that when σ2
U,0 = 0, the stochastic frontier model is not first-order identified.

Moreover, in our model, whenever σ2
U = 0, (δ, ρU) are not identified. We believe this case is worthy

of future investigation, but we rule it out here for simplicity.

Proposition 2.1. Let Assumptions 2.1-2.2 hold, and ρU,0 to be such that

E [
∂`(θ1,0, ρU,0)

∂ρU
] = 0.

We have that

(i) E [∂`(θ1,0,−ρU,0)∂ρU
] = 0.
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(ii) ∂`(θ1,0)
∂ρU

= 0, for any θ1, and

E [
∂2`(θ1,0,0)

∂ρ2
U

] = 0.

This Proposition extends the result shown in Centorrino and Pérez-Urdiales (2021) to the case in

which the endogenous variable is binary. Part (i) states that if ρU,0 is a solution of the maximization

problem, so is −ρU,0. That is, the sign of ρU is not identified. Part (ii) states that ρU = 0 always

satisfies the first order conditions of the maximization problem for any value of θ1. This result

implies that the matrix of second derivatives has rank equal to dim(θ) − 1, and the model is not

first-order identified at ρU = 0. A proof of this Proposition is provided in Appendix A.2.2

This identification issue is illustrated in Centorrino and Pérez-Urdiales (2021), and it follows

because the likelihood function is an even function of ρU and symmetric about ρU = 0. In our

setting, dealing with this identification issue is easier, compared to the framework in Centorrino

and Pérez-Urdiales (2021), as the parameter ρU is scalar.

We thus restrict the support of ρU to be [0,1] (Sundberg, 1974a). We let Θ̄ to be the parameter’s

space which embeds the restriction on ρU , and we define

θ0 = arg max
θ∈Θ̄

E [`(θ)] , (5)

which exists and is (locally) unique under Assumption 2.2.

2.3. Estimation and Inference. For estimation, we consider an iid sample from the joint dis-

tribution of (Y,X,Z,W ), which we denote {(Yi,Xi, Zi,Wi), i = 1, . . . , n}, where each observation

obeys to the model in (1).

Let `n(θ) = log (Ln(θ)), with

Ln(θ) =
n

∏
i=1

⎛
⎝ ∑j=1,2

Ψ1,j(θ,Zi)
1

σε,j(Zi)
φ(Yi −m(Xi, Zi, β)

σε,j(Zi)
)
⎞
⎠

Zi

×

⎛
⎝ ∑j=1,2

Ψ0,j(θ,Zi)
1

σε,j(Zi)
φ(Yi −m(Xi, Zi, β)

σε,j(Zi)
)
⎞
⎠

1−Zi

. (6)

2A similar identification problem arises in Zero Inefficiency Stochastic Frontier models, see Kumbhakar et al. (2013);
Rho and Schmidt (2015).
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Estimation is straightforward, with the maximum likelihood estimator of the parameter θ given by

θ̂n = arg max
θ∈Θ

`n(θ),

We analyze our estimator’s asymptotic distribution depending on the true value of the parameter

ρU . To simplify our analysis, we make the following high-level assumption.

Assumption 2.3. θ̂n
p
Ð→ θ0.

Under Assumptions 2.2 and 2.3 and since the log-likelihood function is at least twice continuously

differentiable with respect to the parameter θ0, when ρU is strictly in the interior of [0,1], standard

theory of maximum likelihood estimation applies and we can claim that

√
n (θ̂n − θ0)

dÐ→ N (0,I−1
θ0

) ,

where Iθ0 is the Fisher’s information matrix.

However, the asymptotic distribution and the rate of convergence of our estimator are non-

standard when ρU,0 is equal to 0. In this case, it follows from the result of Proposition 2.1 that

we have a singular Hessian matrix, and one of the parameters of interest is at the boundary of

the parameter space. This implies that we do not have the standard
√
n-rate of convergence, and

that our estimator of ρU is not asymptotically normal (Sundberg, 1974b; Andrews, 1999; Rotnitzky

et al., 2000). However, a reparametrization of the log-likelihood function allows us to obtain the

rate of convergence and asymptotic distribution of our estimator.

Let ρ2,U = ρ2
U . The following theorem gives the asymptotic properties of our estimator when

ρU,0 = 0.

Theorem 2.1. Let Assumptions 2.1-2.2 hold with ρU,0 = 0, and (Zθ1 , Zρ2,U ) a normal random vector

such that dim(Zθ1) = dim(θ1), dim(Zρ2,U ) = 1, with covariance matrix I−1
1 , where I−1

1 is the inverse

of

I1 =
⎡⎢⎢⎢⎢⎢⎣

Iθ1 I ′θ1ρ2,U
Iθ1ρ2,U Iρ2,U

⎤⎥⎥⎥⎥⎥⎦
.

Further let τ̂ρ2,U = max{Zρ2,U ,0}.Then
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(i)

√
n
⎛
⎜
⎝

θ̂1 − θ1,0

ρ̂2,U

⎞
⎟
⎠

dÐ→
⎛
⎜
⎝

Zθ1 − I−1
θ1
I ′θ1ρ2,U τ̂ρ2,U
τ̂ρ2,U

⎞
⎟
⎠

(ii) n1/4ρ̂U = OP (1).

This theorem reflects existing results in statistics about estimation of a parameter that is not

first-order identified (Rotnitzky et al., 2000). As the order of identification in our model is even,

the marginal asymptotic distribution of ρ̂2,U at ρU,0 = 0 is an equal mixture of a point-mass at

0, and a half-normal distribution (Chernoff, 1954; Andrews, 1999). The result in Part (ii) is a

direct consequence of Part (i). However, it is worth highlighting that our estimator has rates

of convergence slower than
√
n, and may not be asymptotically normal, depending on the true

value of the parameter ρU . These results have important implications for conducting inference and

constructing confidence intervals for ρU .

In particular, an important hypothesis to be tested is whether Z is independent of the inefficiency

term, i.e., ρU = 0. The trinity of tests is an obvious candidate, but the implementation of these tests

is not straightforward because of the non-standard asymptotic properties of the estimator of ρU .

Andrews (2001) studies the properties of the trinity of tests when some parameters are at the

boundary. His theoretical results about the Likelihood Ratio (LR) test can be used following

Theorem 2.1. The critical values from the asymptotic distribution of the LR statistic are obtained

from an equal mixture between a mass point at 0 and a χ2 distribution with one degree of freedom

(see Self and Liang, 1987; Andrews, 1999; Rotnitzky et al., 2000; Andrews, 2001).

Obtaining uniformly valid standard errors and confidence intervals is more cumbersome. Our

results suggest that one can first construct a test of the null hypothesis that ρU = 0. If the null is

rejected, we are then able to use standard errors and confidence intervals based on the normal ap-

proximation. If the null cannot be rejected, then other methods should be used to obtain confidence

intervals.

Bottai (2003) has shown that, when there is a singularity in the Fisher Information matrix,

confidence intervals based on inverting the Likelihood Ratio or Wald test fail to have nominal

coverage near the point of singularity. However, an appropriately modified version of the score test

can be used to obtain confidence intervals with asymptotically uniform nominal coverage. This
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theoretical result holds, however, only when θ is a scalar parameter. More recently, Ekvall and

Bottai (2022) have provided a generalization for any multivariate parameter θ and when the rank

deficiency of the information matrix is potentially larger than one. This modified version of the

score test in a model, such as ours, that is second-order identified, is constructed using the second

derivative of the likelihood function at the point of singularity, normalized by the expected value of

its square. This methodology could be potentially extended to the model we study in this paper to

construct uniformly valid confidence intervals when ρU,0 = 0. A formal theoretical result is deferred

to future research.

2.4. Technical Efficiency. To complete our framework, we obtain a feasible estimator of technical

efficiency, TEi = exp(−Ui). Researchers are often interested in obtaining the technical efficiency for

each producer. Amsler et al. (2017) and Centorrino and Pérez-Urdiales (2021) obtain an estimator of

this quantity from the conditional distribution of U given ε and η. However, as η is not observed in

our case, we have to follow the standard approach and obtain the estimator of technical inefficiency

from the conditional distribution of U given ε. The latter distribution can be derived as

fU ∣ε(u∣ε) = ∫ fU ∣ε,η(u∣ε, η)fη∣ε(η∣ε)dη.

Details about the exact computations of this density are given in Appendix A.1. We let

σ1⋆ =
σ̃V σ̃U(Z)
σ(Z)

¿
ÁÁÀ1 +

q2
1(Z)σ̃2(Z)

σ̃2(Z) + ρ2
1(Z)

σ2⋆ =
σ̃V σ̃U(Z)
σ(Z)

¿
ÁÁÀ1 +

q2
2(Z)σ̃2(Z)

σ̃2(Z) + ρ2
2(Z)

µ1⋆ = −
σ̃V σ̃U(Z)
σ(Z)

ε(λ(Z)
σ(Z)

− q1(Z)ρ1(Z)
σ̃2(Z) + ρ2

1(Z)
)

µ2⋆ = −
σ̃V σ̃U(Z)
σ(Z)

ε(λ(Z)
σ(Z)

− q2(Z)ρ2(Z)
σ̃2(Z) + ρ2

2(Z)
) ,

where the definition of the other parameters is given in the Appendix, and the dependence on the

variable Z has been removed for simplicity.
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We obtain that

E [exp(−U)∣ε] =ω1(ε) exp(−µ1⋆ +
σ2

1⋆

2
)

1 −Φ (−µ1⋆σ1⋆ + σ1⋆)
Φ (τ1(Z)ε)

+ ω2(ε) exp(−µ2⋆ +
σ2

2⋆

2
)

1 −Φ (−µ2⋆σ2⋆ + σ2⋆)
Φ (τ2(Z)ε)

, (7)

where ωl(ε), with l = 1,2 are weights, such that ω1(ε)+ω2(ε) = 1, whose closed-form expression is

given in the Appendix. Finally, the mean technical efficiency (Lee and Tyler, 1978) can be obtained

as

E [exp(−U)] = E [E [exp(−U)∣ε]] ,

by the law of iterated expectations.

3. Simulations

We replicate a similar simulation scheme as in Amsler et al. (2017) and Centorrino and Pérez-

Urdiales (2021). We consider the following model

Yi = β0 +X1iβ1 +X2iβ1 + Vi −U0i exp (Z1iδ1 +Z2iδ2) ,

with β0 = 0 and β1 = β2 = 0.66074, δ1 = 0 and δ2 = 0 and where the random variables (X1i,X2i, Z1i)

are exogenous (i.e. fully independent of the composite error term), and Z2i is our endogenous

treatment variable. We consider two instruments (W1i,W2i), also fully independent of the error

term, and such that

Z2i = 1 (γ0 + γ1X1i + γ2X2i + γ3Z1i + γ4W1i + γ5W2i + η ≥ 0) ,

where 1 (⋅) is the indicator function, γ0 = −0.1, γ1 = γ2 = γ3 = γ5 = 0.31623, and γ6 = 1.

The exogenous variables (X1,X2, Z1,W1,R) are generated from a joint normal distribution with

mean equal to 0 and covariance matrix with diagonal elements equal to 1, and off-diagonal elements

equal to 0.5. W2 = 1(R > 0.5).
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We generate the pair (V, η) from the normal distribution

⎛
⎜
⎝

Vi

ηi

⎞
⎟
⎠
∼ N

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 0.5

0.5 1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
,

so that ρV = 0.5.

The stochastic inefficiency term is generated as

U0 = σU ∣ρUη +
√

1 − ρ2
U ε∣,

where σ2
U = π/(π − 2), and ε ∼ N(0,1).

We consider two simulation schemes that differ according to the value of the parameter ρU . In

Setting 1, U0 is independent of η (i.e. ρU = 0). In Setting 2, ρU = 0.5. Sample sizes are fixed to

n = {250,500,1000}, and we run 1000 replications for each scenario.

The implementation of our estimator is rather straightforward. The starting point is the log-

likelihood function from equation (6)

`n(θ) =
n

∑
i=1

⎡⎢⎢⎢⎢⎣
Z2i log

⎛
⎝ ∑j=1,2

Ψ1,j(Zi, θ)
1

σε,j(Zi)
φ(Yi −m(Xi, Zi, β)

σε,j(Zi)
)
⎞
⎠

+ (1 −Z2i) log
⎛
⎝ ∑j=1,2

Ψ0,j(Zi, θ)
1

σε,j(Zi)
φ(Yi −m(Xi, Zi, β)

σε,j(Zi)
)
⎞
⎠

⎤⎥⎥⎥⎥⎦
,

which is maximized numerically with respect to the parameter θ.

An essential step of numerical optimization procedures is to select a starting value. As far as the

parameters (β, δ) are concerned, an initial value can be chosen by estimating a stochastic frontier

model which does not account for endogeneity. Similarly, an initial value for the parameter γ can

be obtained by a Probit regression of Z2 on the instruments and all the other exogenous variables

included in the model. Regarding the parameters (ρV , ρU), their starting values are taken by

uniform draws from the interval [−1,1] × [0,1]. As convergence to a local maximum might be an

issue, we draw several random points around the starting value and initialize the search at every one

of these points. While computationally expensive, this procedure is more robust to local maxima.

In parametric models with endogeneity, it is also common practice to perform estimation in

two steps: first one obtains an estimator of the parameter γ from a Probit model, and then one
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estimates the remaining parameters by holding γ̂ fixed. While this procedure is computationally

more efficient, as it reduces the dimension of the parameters’ space, we recommend against it. First

of all, there is no guarantee that this procedure yields a numerically equivalent estimator to the

maximization of the log-likelihood with respect to the full parameters’ space. Moreover, standard

errors of the two-step procedure are invalid, and one still needs to obtain the numerical Hessian

matrix of the full likelihood to obtain valid standard errors. Our implementation is thus based on

the maximization of the log-likelihood with respect to the full parameter vector, θ.

We report results of these simulations in Tables 1 and 2 below. For each parameter, we report

the mean and standard deviation of the estimator computed over the simulated samples. As the

parameter ρU is constrained to be positive, we report its median rather than its mean in Setting 1.

According to our results, the sampling distribution of ρ̂U should have a mass at zero with probability

0.5, when ρU,0 = 0. Hence, the median should get closer to 0 as the sample size increases.

n = 250 n = 500 n = 1000

TRUE Location Std. Dev. Location Std. Dev. Location Std. Dev.
β0 0.0000 -0.1280 0.3557 -0.0553 0.2103 -0.0202 0.1259
β1 0.6607 0.6744 0.1126 0.6684 0.0768 0.6635 0.0524
β2 0.6607 0.6734 0.1138 0.6622 0.0768 0.6617 0.0516
δ1 0.0000 -0.0128 0.3456 -0.0065 0.0703 -0.0015 0.0414
δ2 0.0000 0.2783 2.7451 -0.0230 1.7010 0.0282 0.4486
σ2
U 2.7519 2.3015 1.2517 2.5231 0.8242 2.6500 0.5426
σ2
V 1.0000 1.1318 0.4058 1.0517 0.2439 1.0210 0.1514
ρU,η 0.0000 0.0019 0.2936 0.0018 0.2143 0.0031 0.1606
ρV,η 0.5000 0.5426 0.1810 0.5220 0.1255 0.5112 0.0810
γ0 -0.1000 -0.1033 0.1100 -0.1007 0.0782 -0.1015 0.0545
γ1 0.3162 0.3224 0.1390 0.3223 0.0929 0.3175 0.0670
γ2 0.3162 0.3354 0.1405 0.3203 0.0921 0.3214 0.0653
γ3 0.3162 0.3245 0.1359 0.3212 0.0913 0.3224 0.0651
γ4 0.3162 0.3305 0.1306 0.3220 0.0910 0.3191 0.0612
γ5 1.0000 1.0293 0.2482 1.0141 0.1786 1.0119 0.1219

Table 1. Location and Standard Deviation for Setting 1

Our estimator behaves as expected. We also notice a smaller finite-sample bias in Setting 2. This

is due to the slower rate of convergence of ρ̂U is Setting 1, which may affect the estimation of the

other parameters of the model.

Finally, we report summary statistics for our estimators of technical efficiency using the Battese-

Coelli formula provided in Equation 7. To give a reference point to the reader, in both simulation
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n = 250 n = 500 n = 1000

TRUE Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
β0 0.0000 -0.1216 0.3377 -0.0518 0.2027 -0.0153 0.1154
β1 0.6607 0.6647 0.1108 0.6659 0.0761 0.6627 0.0526
β2 0.6607 0.6670 0.1112 0.6603 0.0756 0.6603 0.0522
δ1 0.0000 -0.0084 0.2548 -0.0046 0.1025 0.0002 0.0379
δ2 0.0000 -0.0821 2.9661 0.0193 0.2742 0.0062 0.1238
σ2
U 2.7519 2.4028 1.3044 2.5898 0.9034 2.7088 0.6034
σ2
V 1.0000 1.1299 0.4208 1.0464 0.2533 1.0117 0.1583
ρU,η 0.5000 0.4753 0.3072 0.4670 0.2218 0.4871 0.1364
ρV,η 0.5000 0.5106 0.2194 0.5074 0.1456 0.5005 0.0932
γ0 -0.1000 -0.1029 0.1110 -0.1003 0.0787 -0.1011 0.0543
γ1 0.3162 0.3224 0.1381 0.3234 0.0929 0.3175 0.0668
γ2 0.3162 0.3342 0.1395 0.3204 0.0917 0.3213 0.0648
γ3 0.3162 0.3244 0.1349 0.3214 0.0901 0.3216 0.0645
γ4 0.3162 0.3324 0.1296 0.3212 0.0908 0.3205 0.0605
γ5 1.0000 1.0391 0.2496 1.0178 0.1768 1.0150 0.1219

Table 2. Mean and Standard Deviation for Setting 2

schemes the mean technical efficiency is equal to

E [exp(−U)] = 0.3847.

N = 250 N = 500 N = 1000

ρU = 0 ρU = 0.5 ρU = 0 ρU = 0.5 ρU = 0 ρU = 0.5

Min. 0.000 0.000 0.001 0.001 0.001 0.000
1st Qu. 0.285 0.285 0.267 0.266 0.257 0.255
Median 0.449 0.450 0.417 0.419 0.404 0.405
Mean 0.439 0.435 0.403 0.402 0.391 0.390
3rd Qu. 0.578 0.577 0.542 0.542 0.530 0.530
Max. 1.000 1.000 1.000 1.000 1.000 0.834

Table 3. Summary measures for the estimator of technical efficiency

4. Soil Conservation in El Salvador

4.1. Data and Model Specification. We consider data from the Programa Ambiental de El Sal-

vador or PAES, an environmental program promoting crop diversification and soil conservation

practices. The dataset consists of a sample of PAES participants and a control group of nonpar-

ticipating farmers. The dataset consists of a sample of PAES participants and a control group of

non-participating farmers.

The target population of this program was farmers with incomes below the poverty line and

producing mostly staple crops, such as corn and beans. The program consisted in promoting

soil conservation technologies among participants. The initial fieldwork took place in 2002, and
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a random sample of participants was re-surveyed in 2005, along with a sample of farmers who never

received PAES benefits. Figure 1 shows the cantons (administrative divisions in El Salvador) where

participants and non-participants are located (in black). For more details on the program and data

collection, see Bravo-Ureta et al. (2006).

Figure 1. El Salvador - Location of cantons

For this application, we consider the cross-section of farmers surveyed in 2005 and specify the

following model:

Yi = β0 +Xiβ1 +Z2iβ2 +XiZ2iβ1,2 + Vi −U0i exp(Z1iδ1 +Z2iδ2 +Z1iZ2iδ1,2), (8)

for i = 1, . . . , n, with β = (β′1, β′2, β′1,2)′, δ = (δ′1, δ′2, δ′1,2)′, and where Yi is the total value of production

(measured in dollars); Xi is a vector of inputs including, Labor (number of hired and household

laborers), Land (total area cultivated in manzanas where one manzana=0.7 has), Fertilizers (mea-

sured in dollars), Pesticides (measured in dollars) and Seeds (measured in dollars). Output and

inputs are expressed in logs. Zi = (Z1i, Z2i) is a vector of environmental factors, which is decomposed

into two sub-vectors: Z2i can act both as a frontier shifter as well as an inefficiency determinant,

while Z1i only contains inefficiency determinants. We consider Participation (dummy variable tak-

ing value 1 if the farmer is participating in PAES, 0 otherwise) as the frontier shifter, Z2i. Z1i,

instead, includes the log of Land ; a Tenure dummy equal to 1 if the farmer owns the entirety of the

cultivated land, and 0 otherwise; the interaction between the latter two variables; a Age dummy

equal to 1 if the farmer is 60 and older and 0 otherwise; Education (measured in years); a No

income dummy, equal to 1 if the farmer has no outside sources of income and 0 otherwise; a Foot
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Access dummy, equal to 1 that indicates whether farmers have only walking access to their plot; a

Car Access dummy equal to 1 that indicates whether farmers also have access by car to their plot;

and a risk diversification index, Risk div. This is a continuous index which compares the relative

diversification of each farmer with respect to the average farmer. A higher value of the Risk div

index implies higher risk diversification. Our indicator ranges over the entire real line.3 We allow

for first-order interaction terms between Z1 and Z2 to account for potential observed treatment

heterogeneity and also for potential observable differences between the control and the treatment

group, as alluded to in the Introduction. The reason to include the size of cultivated land into

the inefficiency determinant is that, given soil erosion, which is common in El Salvador because of

the frequent natural disasters, a larger plot requires the implementation of several soil conservation

measures which are more costly and time-consuming to implement. The ability of the farmer to

effectively implement these measures may also depend on the ownership structure. For this reason,

we interact the total size of the plot with Tenure.

Finally, Vi is the idiosyncratic error and U0i is the stochastic inefficiency term. Our goal is to

estimate the parameters {β, δ, σ2
V , σ

2
U , ρU , ρV , γ}. The total sample size is equal to n = 459.

As stated earlier, in this application, Participation is an endogenous binary treatment variable.

El Salvador was hit by a major earthquake in 2001 (the year prior to the beginning of the PAES

program). We use this as an exogenous shock to determine treatment assignment. We construct a

binary instrument, Dist Earthquake, which is equal to one if the log-distance (measured in kilome-

ters) from the epicenter of the earthquake in 2001 was higher than 3.5, and 0 otherwise.4 Our vector

of instruments, Wi, also includes: Electricity, the proportion of families in the farmer’s canton with

access to electricity; Bathroom, the proportion of families in the farmer’s canton with access to pri-

vate bathrooms; Wage Canton, the average hourly wage in the canton where the farmer is located;

and we also use three dummies for unobserved region characteristics that could have affected the

3We use the Ogive index of risk diversification in Wasylenko and Erickson (1978). The index is constructed as follows

Risk Div = − log
⎛
⎝

Ci

∑
j=1

(sj − s̄j)2
s̄j

⎞
⎠
,

where sj is the proportion of land devoted by the farmer to crop j, s̄j is the average sample proportion of land
devoted to crop j, and Ci is the total number of crops cultivated by farmer i.
4The density of Dist Earthquake is bimodal, with a mode around 1.5 and another one around 3.5. Since the percentage
of farmers for whom Dist Earthquake is lower than 2.5 is slightly above 10%, we choose 3.5 as our cutoff point.
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willingness of the farmer to participate in the program. In the following, we let W̃i = (Xi, Z1i,Wi),

to be the vector of included and excluded endogenous variables.

We test the specification of the assignment equation (the regression of the treatment variable on

all the other exogenous regressors) as a Probit model using the test in Wilde (2008). We are not

able to reject the null hypothesis that the error term follows a normal distribution at any standard

significance level, which indicates that our assignment equation is not misspecified (value of the

test statistic is 0.042, with a p-value equal to 0.979). Moreover, to assess the relevance of the

instruments, we construct a likelihood ratio test which compares the unrestricted Probit model,

with a Probit model where all coefficients associated with the instruments are set to zero. The null

hypothesis of the test is that the instruments do not jointly have a significant effect on participation.

The value of the likelihood ratio statistic is 128.76 which leads to a rejection of the null hypothesis

with a p-value equal to 0. The estimated coefficients for the first-stage equation are given in the

Appendix B.

When we ignore selection into treatment, we obtain the MLE assuming that (U0, V ) á (X,Z)

with V ∼ N(0, σ2
V ) and U0 ∼ N+(0, σ2

U). We remind the reader that the estimator which controls

for potential treatment endogeneity would reduce to the former setting when ρV = ρU = 0.

4.2. Results. Table 4 reports results for our empirical example. We report our point estimates

along the 95% confidence intervals. Confidence intervals for model that assumes exogeneity are

constructed using a profile-likelihood method (Cox and Hinkley, 1979). This is because the sample

size is relatively small and the normal approximation implicit in the more standard Wald-type

confidence intervals may fail to hold. For the estimator that controls for potential endogeneity, we

first perform a test for the absence of dependence between stochastic inefficiency and participation.

We find that the null hypothesis of no dependence, i.e., H0 ∶ ρU = 0, cannot be rejected either using

the LR test á la Andrews (2001) or the modified score test proposed by Bottai (2003) and Ekvall

and Bottai (2022). At the 10% level, the critical value of the LR test is equal to 1.853, and our

test statistic is numerically indistinguishable from 0, while the score test statistic is equal to 0 for a

critical value of 2.706. This implies that we can exclude any dependence between farmers’ stochastic

inefficiency and their participation in the program. Hence, we only report results for the endogenous

model when ρU is restricted to be equal to 0. When ρU is left unrestricted, point estimators of all
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Exogeneity Endogeneity, ρU = 0

Estimate CI Estimate CI
β0 3.7411 [3.0764 4.4057] 3.7137 [3.0045 4.2909]
βLand 0.2249 [0.1157 0.3379] 0.2438 [0.1444 0.3457]
βLabor 0.1934 [0.1191 0.2672] 0.1959 [0.1328 0.2568]
βFertilizer 0.1020 [0.0263 0.1772] 0.1045 [0.0412 0.1889]
βPesticides 0.0507 [-0.0111 0.1124] 0.0492 [0.0046 0.1038]
βSeeds 0.1332 [0.0764 0.1898] 0.1362 [0.0872 0.2021]
βLand×Z2

0.1197 [-0.0501 0.3557] 0.2127 [0.0670 0.3584]
βLabor×Z2

-0.1370 [-0.2433 -0.0304] -0.1512 [-0.2396 -0.0571]
βFertilizer×Z2

-0.1126 [-0.2377 0.0131] -0.1054 [-0.2217 0.0017]
βPesticides×Z2

0.1266 [0.0289 0.2242] 0.1389 [0.0570 0.2182]
βSeeds×Z2

0.0881 [-0.0126 0.1886] 0.1119 [0.0306 0.1906]
βZ2

0.6653 [-0.3423 1.6773] 0.2109 [-0.7217 1.1657]
δLand 0.0237 [-0.3282 0.4237] 0.0289 [-0.3754 0.3015]
δTenure -0.4883 [-1.5927 0.0953] -0.6085 [-1.4837 0.2488]
δLand×Tenure -0.1403 [-0.6168 0.4787] -0.0917 [-0.3940 0.5131]
δAge 0.4653 [-0.0001 1.2973] 0.4745 [-0.0023 1.0874]
δEduc -0.1750 [-0.4942 0.0573] -0.2197 [-0.5570 0.0074]
δNoincome 0.1079 [-0.3846 0.8403] 0.1810 [-0.3027 0.8214]
δFootaccess -1.0207 [-2.3106 -0.2441] -1.1837 [-2.1660 -0.6023]
δCaraccess -0.4876 [-1.2807 0.2038] -0.5814 [-1.2383 -0.0847]
δRiskdiv -0.2126 [-0.5129 0.0160] -0.2203 [-0.4150 -0.0189]
δLand×Z2

-0.2187 [-0.9204 1.2145] 0.2572 [-0.1642 0.6617]
δTenure×Z2

0.6209 [-0.3149 1.9683] 0.5870 [-0.3339 1.7936]
δLand×Tenure×Z2

0.3449 [-0.3869 1.0337] 0.3639 [-0.2355 0.8222]
δAge×Z2

-0.6115 [-1.5179 -0.0256] -0.6974 [-1.4997 -0.1376]
δEduc×Z2

0.2659 [-0.0097 0.6346] 0.2583 [-0.0101 0.6826]
δNoincome×Z2

-0.1531 [-0.9411 0.4498] -0.1997 [-0.9787 0.4204]
δFootaccess×Z2

0.7343 [-0.3806 2.1142] 1.0512 [0.4079 1.8286]
δCaraccess×Z2

0.4337 [-0.5857 1.4887] 0.9611 [0.4319 1.5592]
δRiskdiv×Z2

0.1211 [-0.1667 0.4449] 0.2663 [0.0265 0.5145]
δZ2

-0.7030 [-5.8932 0.8935] -1.9518 [-3.3784 -0.8608]
ρU,η 0.0000 [0.0000 0.0138]
ρV,η 0.3254 [0.1474 0.4922]
σ2
U 0.6925 [0.0564 6.4017] 0.7241 [0.0997 3.5055]
σ2
V 0.0978 [0.0777 0.1223] 0.1133 [0.0845 0.1338]

Table 4. Estimation of the efficiency frontier with and without accounting for endogeneity.

the other parameters are numerically indistinguishable. Since we assume that ρU,0 = 0, the 95%

confidence intervals in the endogenous setting are constructed by inverting the score test proposed

in Ekvall and Bottai (2022).

The first set of columns in Table 4 shows the estimation results assuming exogeneity(parameter

estimates and confidence intervals). We note that there is no significant shift in the production

frontier for participants. Also, for participants, the output elasticity of Labor is lower and that of

Pesticides is higher. Participation has a negative effect on inefficiency (i.e., improves efficiency),

although the estimator is not significantly different from zero at the 5% level, according to our profile

likelihood confidence intervals. Regarding the other efficiency determinants, we find substantially
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the same results for both participants and non-participants, though we do note that participation

seems to lead to a larger inefficiency reduction for older farmers.

The results controlling for endogeneity are reported in the last three columns of Table 4 (pa-

rameter estimates and confidence intervals). We observe that the qualitative results are broadly

consistent with the model assuming exogeneity. Thus, participation does not lead to any significant

shift in the production frontier, and for participants the output elasticity of Labor is lower and that

of Pesticides is higher. In contrast, in the model controlling for endogeneity the output elasticity for

Seeds is higher for participants. Also, in the model assuming exogeneity, Participation did not have

a significant effect on inefficiency, whereas in the model controlling for endogeneity the negative

effect on inefficiency is now significant at the 5% level. Some other differences between the models

with regard to inefficiency are also worth highlighting. For example, Car access had no effect on

efficiency in the model assuming exogeneity but reduces inefficiency on the endogeneity model. Sim-

ilarly, risk diversification (Riskdiv) had no effect on efficiency in the model assuming exogeneity but

improves efficiency in the endogeneity model. Interestingly, the positive effect of risk diversification

on efficiency is found to be lower for participants. Diversification therefore seems to be a good

strategy for improving efficiency, though this is more effective or important for non-participants.

Moreover, the endogenous model also detects a positive correlation between the idiosyncratic

component of the error term and Participation since ρ̂V = 0.325. This points out to the fact that

self-selection into this particular program may be related to a preference component rather than to

inefficiency considerations.

Finally, we report in Figure 2 a kernel density estimator of inefficiencies for non-participant

farmers (left panel) and participant farmers (right panel) using the models that do and do not

control for endogeneity. The dotted gray line is the density of inefficiencies for the model assuming

exogeneity, while the solid black line is the density of inefficiencies in the model controlling for

endogeneity. The Figure clearly illustrates that the model controlling for endogeneity detects larger

efficiency scores in the group of participants and slightly lower ones among non-participants. We

test for the difference between the distribution in the efficiency scores for participants and non-

participants using the first-order stochastic dominance test in Linton et al. (2005), which allows for

serial dependence in the observations. In particular, for participants, we wish to test whether the
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distribution of efficiency scores predicted by the exogenous model first-order stochastically dominates

the distribution of efficiency scores predicted by the endogenous model. That is, for a given value

of technical efficiency, the probability of being below that value is higher for the exogenous model

than for the endogenous one, which would imply that efficiency scores predicted by the endogenous

model are consistently higher for participants. Similarly, for non-participants, we wish to test that

the distribution of scores predicted by the endogenous model first-order stochastically dominates

the distribution of scores predicted by the exogenous model. The test in Linton et al. (2005) is

a Kolmogorov-Smirnov type-test. Under the null, there is no first-order stochastic dominance.

Critical values for the test are obtained by subsampling (Politis and Romano, 1994; Linton et al.,

2005). The value of the test statistic for participants is 2.796, and the value of the test statistic for

non-participants is 1.857. We choose a grid of several subsampling sizes, and, we obtain a median

critical value of 2.054 for participants and 1.792 for non-participants at the 5% level. The null of

no first-order stochastic dominance is therefore rejected in both cases. We can conclude that not

controlling for endogeneity in our application would lead to incorrect efficiency scores, with these

being overestimated for non-participants and underestimated for participants.

Non−participants
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0
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2
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Endogeneity Exogeneity

Figure 2. Density of estimated technical efficiency.
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5. Conclusions

In the framework of policies aimed at increasing agricultural productivity, Stochastic Production

Frontier Models can shed light on the effectiveness of programs targeting this goal. However,

controlling for potential endogeneity associated with voluntary program participation is crucial to

obtain an accurate estimate of the impact of the project.

In this paper, we propose a method to control for a binary endogenous treatment in Stochastic

Production Frontier Models. In particular, we provide a simple maximum likelihood estimator based

on distributional assumptions about the first and second-stage error terms. This estimator is in line

with a more traditional approach to Stochastic Frontier Estimation, where one is usually interested

in estimating the technical efficiency for each producer.

In the empirical application, we estimate Stochastic Production Frontiers for a sample of farmers

in El Salvador participating in a soil conservation program and a control group of non-participant

farmers. Our results show that the model assuming exogeneity does not detect any significant

association between participation in the program and inefficiency. However, when we implement our

methodology, we find that participation in the soil conservation program leads to an improvement

in the level of technical efficiency.

The main policy implication of our study is that policymakers wishing to perform program evalu-

ation in a Stochastic Frontier Model context should adequately control for endogeneity issues arising

from voluntary program participation. Failure to adequately account for endogeneity may gener-

ating misleading conclusions about the effectiveness of such programs to generate improvements in

productive efficiency. This is especially important in guiding future evidence-based policymaking

in which the best possible use should be made of scarce resources.

An extension of our maximum likelihood approach to panel data models is a potential avenue for

future research (Lai and Kumbhakar, 2018; Kutlu et al., 2019). In such a setting, the timing and

evolution of the treatment over time, along with the assumptions one imposes on the composite

error term, are paramount to understanding how our parametric approach applies, and whether it

can allow for richer dependence between treatment and unobservables.
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Appendix A. Technical derivations

A.1. Derivation of the likelihood function. We provide here the main steps for the calculation

of the conditional distribution of η given ε. Recall that the joint density of (ε, η) is given by

fε,η(ε, η) =
1

2πσ̃(Z)
{Φ(λ(Z)ρV σV η

σ̃(Z)
+ ρUσU(Z)η
λ(Z)σ̃(Z)

− λ(Z)ε
σ̃(Z)

)×

exp(−(ε − ρV σV η + ρUσU(Z)η)2

2σ̃2(Z)
− η

2

2
)

+Φ(λ(Z)ρV σV η
σ̃(Z)

− ρUσU(Z)η
λ(Z)σ̃(Z)

− λ(Z)ε
σ̃(Z)

)×

exp(−(ε − ρV σV η − ρUσU(Z)η)2

2σ̃2(Z)
− η

2

2
)} .

We analyze the kernel of the two components of this distribution separately.

(i) Let ρ1(Z) = ρV σV − ρUσU(Z). The kernel of the first component is equal to

1

σ̃2(Z)
(ε2 − 2ρ1(Z)εη + (σ̃2(Z) + ρ2

1(Z))η2)

= σ̃
2(Z) + ρ2

1(Z)
2σ̃2(Z)

(η2 − 2
ρ1(Z)εη

σ̃2(Z) + ρ2
1(Z)

+ ε2

σ̃2(Z) + ρ2
1(Z)

)

= σ̃
2(Z) + ρ2

1(Z)
2σ̃2(Z)

(η − ρ1(Z)
σ̃2(Z) + ρ2

1(Z)
ε)

2

+ ε2

2(σ̃2(Z) + ρ2
1(Z))

.

(ii) Let ρ2(Z) = ρV σV +ρUσU(Z). The kernel of the second component can be similarly written

as

1

2σ̃(Z)2
(ε2 − 2ρ2(Z)εη + (σ̃2(Z) + ρ2

2(Z))η2)

= σ̃
2(Z) + ρ2

2(Z)
2σ̃2(Z)

(η − ρ2(Z)
σ̃2(Z) + ρ2

2(Z)
ε)

2

+ ε2

2(σ̃2(Z) + ρ2
2(Z))

.

Therefore, we have that

fε,η(ε, η) =
1

2πσ̃(Z)
{Φ(λ(Z)ρV σV η

σ̃(Z)
+ ρUσU(Z)η
λ(Z)σ̃(Z)

− λ(Z)ε
σ̃(Z)

)×

exp
⎛
⎝
− σ̃

2(Z) + ρ2
1(Z)

2σ̃2(Z)
(η − ρ1(Z)

σ̃2(Z) + ρ2
1(Z)

ε)
2

− ε2

2(σ̃2(Z) + ρ2
1(Z))

⎞
⎠
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+Φ(λ(Z)ρV σV η
σ̃(Z)

− ρUσU(Z)η
λ(Z)σ̃(Z)

− λ(Z)ε
σ̃(Z)

)×

exp
⎛
⎝
− σ̃

2(Z) + ρ2
2(Z)

2σ̃2(Z)
(η − ρ2(Z)

σ̃2(Z) + ρ2
2(Z)

ε)
2

− ε2

2(σ̃2(Z) + ρ2
2(Z))

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

We would like to integrate out the random variable η. To do so, we rearrange the terms above as

follows

fε,η(ε, η) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ(q1(Z)η − λ(Z)ε
σ̃(Z)

) 1
√

2πσ2
η,1(Z)

exp
⎛
⎝
−
(η − µη,1(Z)ε)2

2σ2
η,1(Z)

⎞
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×

1
√

2πσ2
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exp
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− ε2

2σ2
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where
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σ2
ε,1(Z) =σ2

V + σ2
U(Z) − 2ρV σV ρUσU(Z),

q1(Z) =λ(Z)ρV σV
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.

and the normalizing factor τj(Z), with j = 1,2 comes from the fact that

Φ (τj(Z)ε) = ∫
∞

−∞

Φ(qj(Z)η − λ(Z)ε
σ̃(Z)

) 1
√

2πσ2
η,j(Z)

exp
⎛
⎝
−
(η − µη,j(Z)ε)2

2σ2
η,j(Z)

⎞
⎠
dη,

by Lemma 2.2. in Azzalini (2013, p. 26).

Each component of this density can be interpreted as the pdf of a bivariate skew-normal distri-

bution, properly rearranged into the product of a conditional and a marginal density (Azzalini and

Dalla Valle, 1996). Therefore, the full joint density is a mixture of two skew normal distribution

with equal weights, 0.5. To obtain the conditional cdf of η given ε, we need to integrate the above

expression appropriately. The following integral

Ψ0,j(Z, θ) =∫
−W̃γ

−∞

Φ(qj(Z)η − λ(Z)ε
σ̃(Z)

) 1
√

2πσ2
η,j(Z)

exp
⎛
⎝
−
(η − µη,j(Z)ε)2

2σ2
η,j(Z)

⎞
⎠
dη,

cannot be directly evaluated analytically. However, using the properties of the skew-normal distri-

bution, it can be expressed as the cdf of a bivariate normal distribution.

Let us define the fictitious random vector (η, κj), for j = 1,2, such that the conditional distribution

of (η, κj) given ε is a bivariate normal distribution. That is, we have

η−µη,j(Z)ε
ση,j(Z)

κj+qj(Z)µη,j(Z)ε−
λ(Z)ε
σ(Z)

√

1+q2j (Z)σ
2
η,j(Z)

ε
∣ε ∼ N

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 ρ∗j (Z)

ρ∗j (Z) 1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
,
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where,

ρ∗j (Z) = −
qj(Z)ση,j(Z)

√
1 + q2

j (Z)σ2
η,j(Z)

.

Let Φ2(⋅, ⋅;ρ∗(Z)), be the cdf of a standard bivariate normal distribution with correlation coefficient

equal to ρ∗(Z). We have that

∫
bj

aj
Φ(qj(Z)η − λ(Z)ε

σ̃(Z)
) 1
√

2πσ2
η,j(Z)

exp
⎛
⎝
−
(η − µη,j(Z)ε)2

2σ2
η,j(Z)

⎞
⎠
dη

=Φ2 (
bj − µη,j(Z)ε
ση,j(Z)

, τj(Z)ε;ρ∗(Z)) −Φ2 (
aj − µη,j(Z)ε
ση,j(Z)

, τj(Z)ε;ρ∗(Z)) .

This finally implies that

Ψ0,j(Z, θ) =Φ2 (
−W̃γ − µη,j(Z)ε

ση,j(Z)
, τj(Z)ε;ρ∗(Z)) ,

and

Ψ1,j(Z, θ) =Φ (τj(Z)ε) −Φ2 (
−W̃γ − µη,j(Z)ε

ση,j(Z)
, τj(Z)ε;ρ∗(Z)) .

Ultimately, these integrals only involve a bivariate normal cumulative distribution function, which

is readily available in any standard statistical software.

Therefore, the likelihood function is given by

L(θ) =
⎛
⎝ ∑j=1,2

Ψ1,j(Z, θ)
1

σε,j(Z)
φ( ε

σε,j(Z)
)
⎞
⎠

Z

×

⎛
⎝ ∑j=1,2

Ψ0,j(Z, θ)
1

σε,j(Z)
φ( ε

σε,j(Z)
)
⎞
⎠

1−Z

,

where φ(⋅) denotes the pdf of a standard normal distribution.

A.2. Proof of Proposition 2.1. By rearranging terms, we can write the likelihood function as

follows

L(θ) =
⎛
⎝

Ψ1,1(Z, θ)
¿
ÁÁÀ1 + 4ρV σV ρUσU(Z)

σ2
ε,1(Z)

exp
⎛
⎝
−2ε2ρV σV ρUσU(Z)

σ2
ε,1(Z)σ2

ε,2(Z)
⎞
⎠
+Ψ1,2(Z, θ)

⎞
⎠

Z

×
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⎛
⎝

Ψ0,1(Z, θ)
¿
ÁÁÀ1 + 4ρV σV ρUσU(Z)

σ2
ε,1(Z)

exp
⎛
⎝
−2ε2ρV σV ρUσU(Z)

σ2
ε,1(Z)σ2

ε,2(Z)
⎞
⎠
+Ψ0,2(Z, θ)

⎞
⎠

1−Z

×

1

σε,2(Z)
φ( ε

σε,2(Z)
) ,

in a way that the log-likelihood function is given by

`n(θ) =Z log

⎧⎪⎪⎨⎪⎪⎩
Ψ1,1(Z, θ)

¿
ÁÁÀ1 + 4ρV σV ρUσU(Z)

σ2
ε,1(Z)

exp
⎛
⎝
−2ε2ρV σV ρUσU(Z)

σ2
ε,1(Z)σ2

ε,2(Z)
⎞
⎠
+Ψ1,2(Z, θ)

⎫⎪⎪⎬⎪⎪⎭

+ (1 −Z) log

⎧⎪⎪⎨⎪⎪⎩
Ψ0,1(Z, θ)

¿
ÁÁÀ1 + 4ρV σV ρUσU(Z)

σ2
ε,1(Z)

exp
⎛
⎝
−2ε2ρV σV ρUσU(Z)

σ2
ε,1(Z)σ2

ε,2(Z)
⎞
⎠
+Ψ0,2(Z, θ)

⎫⎪⎪⎬⎪⎪⎭

− 1

2
log(σ2

ε,2(Z)) − ε2

2σ2
ε,2(Z)

=Z log (D1) + (1 −Z) log (D0) −
1

2
log(σ2

ε,2(Z)) − ε2

2σ2
ε,2(Z)

,

where the definition of the terms D0 and D1 should be apparent and we have omitted terms that

are constant with respect to θ. Notice that, when ρU = 0, then Ψj(Z, θ) = Ψj,1(Z, θ) = Ψj,2(Z, θ),

Dj = 2Ψj(Z, θ), and

∂Ψj,1(Z, θ)
∂ρU

= −
∂Ψj,2(Z, θ)

∂ρU
,

∂2Ψj,1(Z, θ)
∂ρ2

U

=
∂2Ψj,2(Z, θ)

∂ρ2
U

for j = 0,1.

To prove Part (i) of the Proposition (ρU is only identified up to a sign), we use the fact that the

log-likelihood function is an even function of ρU . That is, `n(θ1, ρU) = `n(θ1,−ρU). Therefore, for a

given θ1, the first partial derivative of the log-likelihood wrt ρU satisfies

∂`n(θ1, ρU)
∂ρU

= −∂`n(θ1,−ρU)
∂ρU

.

At the true parameter value, we therefore have that

E [
∂`n(θ1,0, ρU,0)

∂ρU
] = −E [

∂`n(θ1,0,−ρU,0)
∂ρU

] = 0.
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To prove Part (ii) (the derivative of the log-likelihood wrt ρU is identically equal to 0 for any

value of θ1), notice that by Rolle’s theorem if `n(θ1, ρU) = `n(θ1,−ρU), then there must exist a value

of r ∈ [−ρU , ρU ], such that,
∂`n(θ1, r)
∂ρU

= 0.

In particular, since the log-likelihood is continuous and symmetric about r = 0 as a function of ρU ,

using a limiting argument, we must have that ∂`n(θ1,0)
∂ρU

= 0 for any θ1.

We prove the result about the second derivative wrt ρU using direct computations. In the follow-

ing, we let SN(ξ, ω2, α, τ) be an extended skew-normal random variable with location parameter

ξ, scale parameter ω, slant parameter α, and extended parameter τ (see Azzalini, 2013, p. 36-37).

When τ = 0, this random variable reduces to a skew-normal. In that case, the last parameter is

simply omitted.

To simplify notations let

ζ =
¿
ÁÁÀ1 + 4ρV σV ρUσU(Z)

σ2
ε,1(Z)

exp
⎛
⎝
−2ε2ρV σV ρUσU(Z)

σ2
ε,1(Z)σ2

ε,2(Z)
⎞
⎠
. (9)

Thus we have that

∂ζ

∂ρU
= 1
√

1 + 4ρV σV ρUσU (Z)

σ2
ε,1(Z)

⎛
⎝

2ρV σV σU(Z)
σ2
ε,1(Z)

+
4ρ2

V σ
2
V ρUσ

2
U(Z)

σ4
ε,1(Z)

⎞
⎠

exp
⎛
⎝
−2ε2ρV σV ρUσU(Z)

σ2
ε,1(Z)σ2

ε,2(Z)
⎞
⎠

−
¿
ÁÁÀ1 + 4ρV σV ρUσU(Z)

σ2
ε,1(Z)

⎛
⎝

2ε2ρV σV σU(Z)
σ2
ε,1(Z)σ2

ε,2(Z)
− 2ε2ρV σV ρUσU(Z)

σ4
ε,1(Z)σ4

ε,2(Z)
∂σ2

ε,1(Z)σ2
ε,2(Z)

∂ρU

⎞
⎠
×

exp
⎛
⎝
−2ε2ρV σV ρUσU(Z)

σ2
ε,1(Z)σ2

ε,2(Z)
⎞
⎠
,

and

∂2ζ

∂ρ2U
= − 1

4(1 + 4ρV σV ρUσU (Z)
σ2
ε,1
(Z) )

3
2

(4ρV σV σU(Z)
σ2
ε,1(Z)

+ 8ρ2V σ
2
V ρUσ

2
U(Z)

σ4
ε,1(Z)

)
2

exp(−2ε2ρV σV ρUσU(Z)
σ2
ε,1(Z)σ2

ε,2(Z)
)

+ 1

2
√

1 + 4ρV σV ρUσU (Z)
σ2
ε,1
(Z)

(16ρ2V σ
2
V σ

2
U(Z)

σ4
ε,1(Z)

+ 32ρ3V σ
3
V ρUσ

3
U(Z)

σ6
ε,1(Z)

) exp(−2ε2ρV σV ρUσU(Z)
σ2
ε,1(Z)σ2

ε,2(Z)
)

− 1√
1 + 4ρV σV ρUσU (Z)

σ2
ε,1
(Z)

(4ρV σV σU(Z)
σ2
ε,1(Z)

+ 8ρ2V σ
2
V ρUσ

2
U(Z)

σ4
ε,1(Z)

)×
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(2ε2ρV σV σU(Z)
σ2
ε,1(Z)σ2

ε,2(Z)
− 2ε2ρV σV ρUσU(Z)

σ4
ε,1(Z)σ4

ε,2(Z)
∂σ2

ε,1(Z)σ2
ε,2(Z)

∂ρU
) exp(−2ε2ρV σV ρUσU(Z)

σ2
ε,1(Z)σ2

ε,2(Z)
)

−
¿
ÁÁÀ1 + 4ρV σV ρUσU(Z)

σ2
ε,1(Z)

(−4ε2ρV σV σU(Z)
σ4
ε,1(Z)σ4

ε,2(Z)
∂σ2

ε,1(Z)σ2
ε,2(Z)

∂ρU
− 4ε2ρV σV ρUσU(Z)

σ8
ε,1(Z)σ8

ε,2(Z)
∂2σ2

ε,1(Z)σ2
ε,2(Z)

∂ρ2U
)×

exp(−2ε2ρV σV ρUσU(Z)
σ2
ε,1(Z)σ2

ε,2(Z)
)

+
¿
ÁÁÀ1 + 4ρV σV ρUσU(Z)

σ2
ε,1(Z)

(2ε2ρV σV σU(Z)
σ2
ε,1(Z)σ2

ε,2(Z)
− 2ε2ρV σV ρUσU(Z)

σ4
ε,1(Z)σ4

ε,2(Z)
∂σ2

ε,1(Z)σ2
ε,2(Z)

∂ρU
)
2

×

exp(−2ε2ρV σV ρUσU(Z)
σ2
ε,1(Z)σ2

ε,2(Z)
) .

When ρU = 0, then ζ = 1, and

∂ζ

∂ρU
∣
ρU=0

=2ρV σV σU(Z)
σ2(Z)

(1 − ε2

σ2(Z)
) ,

∂2ζ

∂ρ2
U

∣
ρU=0

=
4ρ2

V σ
2
V σ

2
U(Z)

σ4(Z)
(1 − ε2

σ2(Z)
)

2

,

where the last expression follows from the fact that

∂σ2
ε,1(Z)σ2

ε,2(Z)
∂ρU

RRRRRRRRRRRρU=0

=(−2ρV σV σU(Z)σ2
ε,2(Z) + 2ρV σV σU(Z)σ2

ε,1(Z))
ρU=0

= 0.

Therefore, we finally have that

( ∂ζ

∂ρU
∣
ρU=0

)
2

= ∂2ζ

∂ρ2
U

∣
ρU=0

.

The first derivative of the log-likelihood can be written as

∂`n(θ)
∂ρU

= Z
D1

[
∂Ψ1,1(Z, θ)

∂ρU
ζ +Ψ1,1(Z, θ)

∂ζ

∂ρU
+
∂Ψ1,2(Z, θ)

∂ρU
]

+ 1 −Z
D0

[
∂Ψ0,1(Z, θ)

∂ρU
ζ +Ψ0,1(Z, θ)

∂ζ

∂ρU
+
∂Ψ0,2(Z, θ)

∂ρU
]

− σV ρV σU(Z)
σ2
ε,2(Z)

+ ε
2σV ρV σU(Z)
σ4
ε,2(Z)

.

Thus, when ρU = 0,

∂`n(θ)
∂ρU

∣
ρU=0

= Z

2Ψ1(Z, θ)
[Ψ1(Z, θ)

2ρV σV σU(Z)
σ2(Z)

(1 − ε2

σ2(Z)
)]

+ 1 −Z
2Ψ0(Z, θ)

[Ψ0(Z, θ)
2ρV σV σU(Z)

σ2(Z)
(1 − ε2

σ2(Z)
)]
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− σV ρV σU(Z)
σ2(Z)

+ ε
2σV ρV σU(Z)
σ4(Z)

=ρV σV σU(Z)
σ2(Z)

(1 − ε2

σ2(Z)
) − σV ρV σU(Z)

σ2(Z)
+ ε

2σV ρV σU(Z)
σ4(Z)

= 0,

which confirms the result shown above.

The second derivative of the log-likelihood is

∂2`n(θ)
∂ρ2

U

= − Z

D2
1

[
∂Ψ1,1(Z, θ)

∂ρU
ζ +Ψ1,1(Z, θ)

∂ζ

∂ρU
+
∂Ψ1,2(Z, θ)

∂ρU
]

2

+ Z

D1
[
∂2Ψ1,1(Z, θ)

∂ρ2
U

ζ + 2
∂Ψ1,1(Z, θ)

∂ρU

∂ζ

∂ρU
+Ψ1,1(Z, θ)

∂2ζ

∂ρ2
U

+
∂2Ψ1,2(Z, θ)

∂ρ2
U

]

− 1 −Z
D2

0

[
∂Ψ0,1(Z, θ)

∂ρU
+Ψ0,1(Z, θ)

∂ζ

∂ρU
+
∂Ψ0,2(Z, θ)

∂ρU
]

2

+ 1 −Z
D0

[
∂2Ψ0,1(Z, θ)

∂ρ2
U

ζ + 2
∂Ψ0,1(Z, θ)

∂ρU

∂ζ

∂ρU
+Ψ0,1(Z, θ)

∂2ζ

∂ρ2
U

+
∂2Ψ0,2(Z, θ)

∂ρ2
U

]

+
2σ2

V ρ
2
V σ

2
U(Z)

σ4
ε,2(Z)

−
4ε2σ2

V ρ
2
V σ

2
U(Z)

σ6
ε,2(Z)

.

Thus, when ρU = 0,

∂2`n(θ)
∂ρ2

U

∣
ρU=0

= − Z

4Ψ2
1(Z, θ)

[Ψ1(Z, θ)
∂ζ

∂ρU
∣
ρU=0

]
2

+ Z

2Ψ1(Z, θ)

⎡⎢⎢⎢⎢⎣
2
∂2Ψ1(Z, θ)

∂ρ2
U

+ 2
∂Ψ1(Z, θ)
∂ρU

∂ζ

∂ρU
∣
ρU=0

+Ψ1(Z, θ)
∂2ζ

∂ρ2
U

∣
ρU=0

⎤⎥⎥⎥⎥⎦

− 1 −Z
4Ψ2

0(Z, θ)
[Ψ0(Z, θ)

∂ζ

∂ρU
∣
ρU=0

]
2

+ 1 −Z
2Ψ0(Z, θ)

⎡⎢⎢⎢⎢⎣
2
∂2Ψ0(Z, θ)

∂ρ2
U

+ 2
∂Ψ0(Z, θ)
∂ρU

∂ζ

∂ρU
∣
ρU=0

+Ψ0(Z, θ)
∂2ζ

∂ρ2
U

∣
ρU=0

⎤⎥⎥⎥⎥⎦

+
2σ2

V ρ
2
V σ

2
U(Z)

σ4(Z)
−

4ε2σ2
V ρ

2
V σ

2
U(Z)

σ6(Z)

=1

4
( ∂ζ

∂ρU
∣
ρU=0

)
2

+ Z

Ψ1(Z, θ)
[∂

2Ψ1(Z, θ)
∂ρ2

U

+ ∂Ψ1(Z, θ)
∂ρU

∂ζ

∂ρU
∣
ρU=0

]

+ 1 −Z
Ψ0(Z, θ)

[∂
2Ψ0(Z, θ)
∂ρ2

U

+ ∂Ψ0(Z, θ)
∂ρU

∂ζ

∂ρU
∣
ρU=0

]
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+
2σ2

V ρ
2
V σ

2
U(Z)

σ4(Z)
−

4ε2σ2
V ρ

2
V σ

2
U(Z)

σ6(Z)

=
ρ2
V σ

2
V σ

2
U(Z)

σ4(Z)
(1 − ε2

σ2(Z)
)

2

+
2σ2

V ρ
2
V σ

2
U(Z)

σ4(Z)
−

4ε2σ2
V ρ

2
V σ

2
U(Z)

σ6(Z)

+ Z

Ψ1(Z, θ)
[∂

2Ψ1(Z, θ)
∂ρ2

U

+ ∂Ψ1(Z, θ)
∂ρU

2ρV σV σU(Z)
σ2(Z)

(1 − ε2

σ2(Z)
)]

+ 1 −Z
Ψ0(Z, θ)

[∂
2Ψ0(Z, θ)
∂ρ2

U

+ ∂Ψ0(Z, θ)
∂ρU

2ρV σV σU(Z)
σ2(Z)

(1 − ε2

σ2(Z)
)]

=
ρ2
V σ

2
V σ

2
U(Z)

σ4(Z)
(3 − 6ε2

σ2(Z)
+ ε4

σ4(Z)
)

+ Z

Ψ1(Z, θ)
[∂

2Ψ1(Z, θ)
∂ρ2

U

+ ∂Ψ1(Z, θ)
∂ρU

2ρV σV σU(Z)
σ2(Z)

(1 − ε2

σ2(Z)
)]

+ 1 −Z
Ψ0(Z, θ)

[∂
2Ψ0(Z, θ)
∂ρ2

U

+ ∂Ψ0(Z, θ)
∂ρU

2ρV σV σU(Z)
σ2(Z)

(1 − ε2

σ2(Z)
)]

We take the expectation wrt the joint density of (ε,Z, W̃ ). Because (ε, η) á W̃ and ε á Z ∣η, then

fε,Z,W̃ (e, z, w̃) =fε∣Z,W̃ (e∣z, w̃)P (Z = z∣w̃) fW̃ (w̃)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fε∣η≤−,W̃ (e∣η ≤ −w̃γ, w̃)Φ (−w̃γ) fW̃ (w̃)

= Fη∣ε (−w̃γ∣e) fε(e)fW̃ (w̃) if z = 0

fε∣η≥−W̃γ,W̃ (e∣η ≥ −w̃γ, w̃) (1 −Φ (−w̃γ)) fW̃ (w̃)

= [1 − Fη∣ε (−w̃γ∣e)] fε(e)fW̃ (w̃) if z = 1

Therefore, for any function g(ε),

E [Zg(ε)] = ∫
w̃
(∫

ε

Ψ1(1, θ)
Φ (τ(1)ε)

g(ε)fε,1(ε)dε) fW̃ (w̃)dw̃ = EW̃ [∫
ε

Ψ1(1, θ)
Φ (τ(1)ε)

g(ε)fε,1(ε)dε] ,

and

E [(1 −Z)g(ε)] = ∫
w̃
(∫

ε

Ψ0(0, θ)
Φ (τ(0)ε)

fε,0(ε)dε) fW̃ (w̃)dw̃ = EW̃ [∫
ε

Ψ0(0, θ)
Φ (τ(0)ε)

g(ε)fε,0(ε)dε] ,

with

fε,z(ε) =
2Φ (τ(z)ε)

σ(z)
φ( ε

σ(z)
) , z ∈ {0,1}.
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Therefore,

E

⎡⎢⎢⎢⎢⎣

∂2`n(θ)
∂ρ2

U

∣
ρU=0

⎤⎥⎥⎥⎥⎦
= E [

ρ2
V σ

2
V σ

2
U(Z)

σ4(Z)
(3 − 6ε2

σ2(Z)
+ ε4

σ4(Z)
)]

+E [ Z

Ψ1(Z, θ)
(∂

2Ψ1(Z, θ)
∂ρ2

U

+ ∂Ψ1(Z, θ)
∂ρU

2ρV σV σU(Z)
σ2(Z)

(1 − ε2

σ2(Z)
))]

+E [ 1 −Z
Ψ0(Z, θ)

(∂
2Ψ0(Z, θ)
∂ρ2

U

+ ∂Ψ0(Z, θ)
∂ρU

2ρV σV σU(Z)
σ2(Z)

(1 − ε2

σ2(Z)
))]

=E
⎡⎢⎢⎢⎢⎣

ρ2
V σ

2
V σ

2
U(Z)

σ4(Z)
⎛
⎝

3 −
6E [ε2∣η]
σ2(Z)

+
E [ε4∣η]
σ4(Z)

⎞
⎠

⎤⎥⎥⎥⎥⎦
(SD1)

+EW̃ [∫
ε
(∂

2Ψ1(1, θ)
∂ρ2

U

+ ∂Ψ1(1, θ)
∂ρU

2ρV σV σU(1)
σ2(1)

(1 − ε2

σ2(1)
)) 2

σ(1)
φ( ε

σ(1)
)dε] (SD2)

+EW̃ [∫
ε
(∂

2Ψ0(0, θ)
∂ρ2

U

+ ∂Ψ0(0, θ)
∂ρU

2ρV σV σU(0)
σ2(0)

(1 − ε2

σ2(0)
)) 2

σ(0)
φ( ε

σ(0)
)dε] . (SD3)

To treat the term is SD1, when ρU is equal to zero, we notice that the density of ε conditional

on η is a SN(ρV σV η, σ̃(z), λ(z)), which implies that

E [ε2∣η] =σ̃2(Z) + σ2
V ρ

2
V η

2 − 2

√
2

π
σU(Z)σV ρV η

=σ2(Z) + σ2
V ρ

2
V (η2 − 1) − 2

√
2

π
σU(Z)σV ρV η,

and

E [ε4∣η] =3σ̃4(Z) −
⎛
⎝

12

√
2

π
σ̃2(Z)σU(Z) − 4

√
2

π
σ3
U(Z)

⎞
⎠
σV ρV η + 6σ̃2(Z)σ2

V ρ
2
V η

2

− 4

√
2

π
σU(Z)σ3

V ρ
3
V η

3 + σ4
V ρ

4
V η

4

=3σ4(Z) + 3σ4
V ρ

4
V − 6σ2(Z)σ2

V ρ
2
V

−
√

2

π
(12σ̃2

V + 8σ2
U(Z))σV ρV ησU(z)

+ 6σ2(Z)σ2
V ρ

2
V η

2 − 6σ4
V ρ

4
V η

2 − 4

√
2

π
σU(Z)σ3

V ρ
3
V η

3 + σ4
V ρ

4
V η

4

=3σ4(Z) + ρ4
V σ

4
V (3 − 6η2 + η4) + 6σ2(Z)σ2

V ρ
2
V (η2 − 1)
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−
√

2

π
(12σ̃2

V + 8σ2
U(Z))σV ρV ησU(z)

− 4

√
2

π
σU(Z)σ3

V ρ
3
V η

3.

Therefore

3 −
6E [ε2∣η]
σ2(Z)

+
E [ε4∣η]
σ4(Z)

=3 − 6 − 6
σ2
V ρ

2
V (η2 − 1)
σ2(Z)

+ 12

√
2

π

σU(Z)σV ρV η
σ2(Z)

+ 3 +
ρ4
V σ

4
V

σ4(z)
(3 − 6η2 + η4) + 6

σ2
V ρ

2
V (η2 − 1)
σ2(z)

−
√

2

π
(12σ̃2

V + 8σ2
U(Z)) σU(z)ρV σV η

σ4(z)
− 4

√
2

π

σU(Z)σ3
V ρ

3
V η

3

σ4(z)

=
σ4
V ρ

4
V

σ4(Z)
[3 − 6η2 + η4] + 12

√
2

π

σU(Z)σ3
V ρ

3
V η

σ4(Z)

+ 4

√
2

π

σ3
U(z)ρV σV η
σ4(z)

− 4

√
2

π

σU(Z)σ3
V ρ

3
V η

3

σ4(z)
.

When Z = 0, the distribution of η∣η ≤ −W̃γ is a normal truncated above at −W̃γ. When Z = 1,

the distribution of η∣η ≥ −W̃γ is instead a normal truncated below at −W̃γ. Therefore, when Z = 0,

E [η∣η ≤ −W̃γ] = − φ(−W̃γ)
Φ(−W̃γ)

E [η2∣η ≤ −W̃γ] =1 + W̃γ
φ(−W̃γ)
Φ(−W̃γ)

E [η3∣η ≤ −W̃γ] = − 2
φ(−W̃γ)
Φ(−W̃γ)

− (W̃γ)2 φ(−W̃γ)
Φ(−W̃γ)

E [η4∣η ≤ −W̃γ] =3 + 3W̃γ
φ(−W̃γ)
Φ(−W̃γ)

+ (W̃γ)3 φ(−W̃γ)
Φ(−W̃γ)

,

and when Z = 1

E [η∣η ≥ −W̃γ] = φ(−W̃γ)
1 −Φ(−W̃γ)

E [η2∣η ≥ −W̃γ] =1 − W̃γ
φ(−W̃γ)

1 −Φ(−W̃γ)

E [η3∣η ≥ −W̃γ] =2
φ(−W̃γ)

1 −Φ(−W̃γ)
+ (W̃γ)2 φ(−W̃γ)

1 −Φ(−W̃γ)
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E [η4∣η ≥ −W̃γ] =3 − 3W̃γ
φ(−W̃γ)

1 −Φ(−W̃γ)
− (W̃γ)3 φ(−W̃γ)

1 −Φ(−W̃γ)
.

Thus, we finally have that,

SD1 =(
ρ6
V σ

6
V σ

2
U(1)

σ8(1)
−
ρ6
V σ

6
V σ

2
U(0)

σ8(0)
)EW̃ [(3W̃γ − (W̃γ)3)φ(−W̃γ)]

− 4

√
2

π
(
σ3
U(1)ρ5

V σ
5
V

σ8(1)
−
σ3
U(0)ρ5

V σ
5
V

σ8(0)
)EW̃ [((W̃γ)2 − 1)φ(−W̃γ)]

+ 4

√
2

π
(
σ5
U(1)ρ3

V σ
3
V

σ8(1)
−
σ5
U(0)ρ3

V σ
3
V

σ8(0)
)EW̃ [φ(−W̃γ)]

The first derivative of Ψ0(z, θ) wrt ρU when ρU = 0 is equal to

∂Ψj(z, θ)
∂ρU

∣
ρU=0

=Φ(−λ(z)(ε + W̃γρV σV
σ̃(z)

))φ(−σ(z)
σ̃(z)

(W̃γ + ρV σV
σ2(z)

ε))×

[σU(z)σ̃(z)
σ3(z)

ε + ρV σV σU(z)
σ(z)σ̃(z)

W̃γ]

+Φ
⎛
⎜
⎝

W̃γ − ρV
σV
ε

√
1 − ρ2

V

⎞
⎟
⎠
φ(− σU(z)

σV σ(z)
ε)
ρV σ

2
V

σ3(z)
ε

−
σ̃2
V

σ(z)
1

σ̃V
φ2,ρ∗(z) (−

σ(z)
σ̃(z)

(W̃γ + ρV σV
σ2(z)

ε) ,− σU(z)
σV σ(z)

ε) ,

where φ2,ρ∗(z) is the kernel of the standard bivariate normal density with correlation parameter

equal to ρ∗(z).

Its second derivative wrt to ρU is instead equal to

∂2Ψ0(z, θ)
∂ρ2

U

∣
ρU=0

= Φ(−λ(z)(ε + W̃γρV σV
σ̃(z)

))φ(−σ(z)
σ̃(z)

(W̃γ + ρV σV
σ2(z)

ε))×

{
ρV σV σ

2
U(z)

σ̃3(z)σ5(z)
[3ρ4

V σ
4
V − 5ρ2

V σ
2
V σ

2(z) + σ4(z)] ε −
σ2
U(z)

σ̃3(z)σ3(z)
[σ̃4(z) + ρ2

V σ
2
V σ

2
U(z)] W̃γ

+σ(z)
σ̃(z)

[W̃γ + ρV σV
σ2(z)

ε] [σU(z)σ̃(z)
σ3(z)

ε + ρV σV σU(z)
σ(z)σ̃(z)

W̃γ]
2⎫⎪⎪⎬⎪⎪⎭

+Φ
⎛
⎜
⎝

W̃γ − ρV
σV
ε

√
1 − ρ2

V

⎞
⎟
⎠
φ(− σU(z)

σV σ(z)
ε)

⎡⎢⎢⎢⎣
−
ρ2
V σU(z) (σ4

U(z) + 3σ2
U(z)σ2

V − σ4
V ) ε

σV σ5(z)
+
ρ2
V σ

3
V σU(z)
σ7(z)

ε3
⎤⎥⎥⎥⎦

+ σ̃(z)σV
σ(z)

1

σ̃V
φ2,ρ∗(z) (−

σ(z)
σ̃(z)

(W̃γ + ρV σV
σ2(z)

ε) ,− σU(z)
σV σ(z)

ε)×
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{
ρV (1 − ρ2

V )σU(z)σ2(z)
σ̃3(z)

+
ρ3
V (1 − ρ2

V )σ2
V σ

3
U(z)

σ̃3(z)σ2(z)

− ε2 ρV (1 − ρ2
V )σ2

V σU(z)
σ̃(z)σ4(z)

− W̃γε
(1 − ρ2

V )σV σU(z)
σ̃(z)σ2(z)

− (W̃γ)2 ρV (1 − ρ2
V )σ2

V σU(z)
σ̃3(z)

} ,

Thus

∫
ε

∂2Ψ0(z, θ)
∂ρ2

U

+ ∂Ψ0(z, θ)
∂ρU

2ρV σV σU(z)
σ2(z)

(1 − ε2

σ2(z)
)dε

=∫
ε
Φ(−λ(z)(ε + W̃γρV σV

σ̃(z)
))φ(−σ(z)

σ̃(z)
(W̃γ + ρV σV

σ2(z)
ε))×

{2 [
ρV σV σ

2
U(z)σ̃(z)

σ5(z)
ε +

ρ2
V σ

2
V σ

2
U(z)

σ3(z)σ̃(z)
W̃γ](1 − ε2

σ2(z)
)

+
ρV σV σ

2
U(z)

σ̃3(z)σ5(z)
[3ρ4

V σ
4
V − 5ρ2

V σ
2
V σ

2(z) + σ4(z)] ε −
σ2
U(z)

σ̃3(z)σ3(z)
[σ̃4(z) + ρ2

V σ
2
V σ

2
U(z)] W̃γ

+ σ(z)
σ̃(z)

[W̃γ + ρV σV
σ2(z)

ε] [σU(z)σ̃(z)
σ3(z)

ε + ρV σV σU(z)
σ(z)σ̃(z)

W̃γ]
2⎫⎪⎪⎬⎪⎪⎭

2

σ(z)
φ( ε

σ(z)
)dε

+ ∫
ε
Φ

⎛
⎜
⎝

W̃γ − ρV
σV
ε

√
1 − ρ2

V

⎞
⎟
⎠
φ(− σU(z)

σV σ(z)
ε){2

ρ2
V σ

3
V σU(z)
σ5(z)

(ε − ε3

σ2(z)
)

−
ρ2
V σU(z) (σ4

U(z) + 3σ2
U(z)σ2

V − σ4
V ) ε

σV σ5(z)
+
ρ2
V σ

3
V σU(z)
σ7(z)

ε3
⎫⎪⎪⎬⎪⎪⎭

2

σ(z)
φ( ε

σ(z)
)dε

+ ∫
ε

1

σ̃V
φ2,ρ∗(z) (−

σ(z)
σ̃(z)

(W̃γ + ρV σV
σ2(z)

ε) ,− σU(z)
σV σ(z)

ε) 2

σ(z)
φ( ε

σ(z)
)

{−2
ρV σV σ̃

2
V σU(z)

σ3(z)
(1 − ε2

σ2(z)
) +

ρV σV (1 − ρ2
V )σU(z)σ(z)

σ̃2(z)
+
ρ3
V (1 − ρ2

V )σ4
V σ

3
U(z)

σ̃(z)σ4(z)

− ε2 ρV (1 − ρ2
V )σ3

V σU(z)
σ5(z)

− W̃γε
(1 − ρ2

V )σ2
V σU(z)

σ3(z)
− (W̃γ)2 ρV (1 − ρ2

V )σ3
V σU(z)

σ̃2(z)σ(z)
}dε

=φ(−W̃γ)∫
ε
{2 [

ρV σV σ
2
U(z)σ̃2(z)
σ6(z)

ε +
ρ2
V σ

2
V σ

2
U(z)

σ4(z)
W̃γ](1 − ε2

σ2(z)
)

+
ρV σV σ

2
U(z)

σ̃2(z)σ6(z)
[3ρ4

V σ
4
V − 5ρ2

V σ
2
V σ

2(z) + σ4(z)] ε −
σ2
U(z)

σ̃2(z)σ4(z)
[σ̃4(z) + ρ2

V σ
2
V σ

2
U(z)] W̃γ

+ [W̃γ + ρV σV
σ2(z)

ε] [σU(z)σ̃(z)
σ3(z)

ε + ρV σV σU(z)
σ(z)σ̃(z)

W̃γ]
2⎫⎪⎪⎬⎪⎪⎭
×

2

σ̃(z)
Φ(−λ(z)(ε + W̃γρV σV

σ̃(z)
))φ(ε + W̃γρV σV

σ̃(z)
)dε (I)
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−Φ(−W̃γ)
√

2

π
∫
ε

Φ(− W̃γ
√

1−ρ2V

− ρV
√

1−ρ2V

ε
σV

)

Φ(−W̃γ)
1

σV
φ( ε

σV
)×

⎡⎢⎢⎢⎣

ρ2
V σU(z) (σ4

U(z) + 3σ2
U(z)σ2

V − 3σ4
V ) ε

σ6(z)
+
ρ2
V σ

4
V σU(z)
σ8(z)

ε3
⎤⎥⎥⎥⎦
dε (II)

− φ(−W̃γ)
√

2

π
∫
ε

1

σ̃V
φ(ε + W̃γρV σV

σ̃V
)

{−2
ρV σV σ̃

2
V σU(z)

σ4(z)
(1 − ε2

σ2(z)
) +

ρV σV (1 − ρ2
V )σU(z)

σ̃2(z)
+
ρ3
V (1 − ρ2

V )σ4
V σ

3
U(z)

σ̃(z)σ5(z)

− ε2 ρV (1 − ρ2
V )σ3

V σU(z)
σ6(z)

− W̃γε
(1 − ρ2

V )σ2
V σU(z)

σ4(z)
− (W̃γ)2 ρV (1 − ρ2

V )σ3
V σU(z)

σ̃2(z)σ2(z)
}dε (III)

We now treat each one each of these terms. Let

hε∣W̃γ(ε∣W̃γ) = Φ(−λ(z)(ε + ρV σV W̃γ

σ̃(z)
)) 2

σ̃(z)
φ(ε + W̃γρV σV

σ̃(z)
) ,

be the density of a SN(−W̃γρV σV , σ̃(z),−λ(z)). Therefore,

∫
ε
εhε∣W̃γ(ε∣W̃γ)dε = − W̃γρV σV −

√
2

π
σU(z),

∫
ε
ε2hε∣W̃γ(ε∣W̃γ)dε =σ̃2(z) + (W̃γ)2ρ2

V σ
2
V + 2

√
2

π
W̃γρV σV σU(z),

∫
ε
ε3hε∣W̃γ(ε∣W̃γ)dε = − 3σ̃2(z)W̃γρV σV − 3

√
2

π
σ̃2(z)σU(z) − (W̃γ)3ρ3

V σ
3
V

− 3

√
2

π
(W̃γ)2ρ2

V σ
2
V σU(z) +

√
2

π
σ3
U(z).

Thus, we have that

I =φ(−W̃γ)∫
ε
{2 [

ρV σV σ
2
U(z)σ̃2(z)
σ6(z)

ε +
ρ2
V σ

2
V σ

2
U(z)

σ4(z)
W̃γ](1 − ε2

σ2(z)
)

+
ρV σV σ

2
U(z)

σ̃2(z)σ6(z)
[3ρ4

V σ
4
V − 5ρ2

V σ
2
V σ

2(z) + σ4(z)] ε −
σ2
U(z)

σ̃2(z)σ4(z)
[σ̃4(z) + ρ2

V σ
2
V σ

2
U(z)] W̃γ

+ [W̃γ + ρV σV
σ2(z)

ε] [σU(z)σ̃(z)
σ3(z)

ε + ρV σV σU(z)
σ(z)σ̃(z)

W̃γ]
2⎫⎪⎪⎬⎪⎪⎭
hε∣W̃γ(ε∣W̃γ)dε

=φ(−W̃γ)
⎧⎪⎪⎨⎪⎪⎩
−(W̃γ)3 ρ

6
V σ

6
V σ

2
U(z)

σ8(z)
+
√

2

π
(W̃γ)2 [

3ρ7
V σ

7
V σ

3
U(z)

σ̃2(z)σ8(z)
−

4ρ5
V σ

5
V σ

3
U(z)

σ̃2(z)σ6(z)
]
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+ W̃γ [3
ρ5
V σ

5
V σ

2
U(z)

σ8(z)
− 3

ρ2
V σ

2
V σ

2
U(z)σ̃4(z)
σ8(z)

+ 6

π

ρ2
V σ

2
V σ

4
U(z)σ̃2(z)
σ8(z)

]

+
√

2

π
[−

3ρ7
V σ

7
V σ

3
U(z)

σ̃2(z)σ8(z)
+

4ρ5
V σ

5
V σ

3
U(z)

σ̃2(z)σ6(z)
−
ρV σV σ

5
U(z)σ̃2(z)
σ8(z)

]
⎫⎪⎪⎬⎪⎪⎭
.

Similarly,

hε(ε) =
Φ(− W̃γ

√

1−ρ2V

− ρV
√

1−ρ2V

ε
σV

)

Φ(−W̃γ)
1

σV
φ( ε

σV
) ,

is the density of an extended skew-normal distribution, SN(0, σV ,− ρV
√

1−ρ2V

,−W̃γ), which implies

that

∫
ε
εhε(ε) = −

φ(−W̃γ)
Φ(−W̃γ)

ρV σV

∫
ε
ε3hε(ε) = −

φ(−W̃γ)
Φ(−W̃γ)

[ρ3
V σ

3
V ((W̃γ)2 − 1) + 3ρV σ

3
V )

Thus,

II = −Φ(−W̃γ)
√

2

π
∫
ε

Φ(− W̃γ
√

1−ρ2V

− ρV
√

1−ρ2V

ε
σV

)

Φ(−W̃γ)
1

σV
φ( ε

σV
)×

⎡⎢⎢⎢⎣

ρ2
V σU(z) (σ4

U(z) + 3σ2
U(z)σ2

V − 3σ4
V ) ε

σ6(z)
+
ρ2
V σ

4
V σU(z)
σ8(z)

ε3
⎤⎥⎥⎥⎦
dε

=φ(−W̃γ)
√

2

π
[(W̃γ)2 ρ

5
V σ

7
V σU(z)
σ8(z)

−
ρ5
V σ

7
V σU(z)
σ8(z)

+
ρ3
V σV σ

7
U(z)

σ8(z)
+

4ρ3
V σ

3
V σ

5
U(z)

σ8(z)
] .

Finally, let

hε∣W̃γ(ε∣W̃γ) = 1

σ̃V
φ(ε + W̃γρV σV

σ̃V
) ,

be the density of a N(−W̃γρV σV , σ̃
2
V ). Therefore,

∫
ε
εhε∣W̃γ(ε∣W̃γ)dε = − W̃γρV σV

∫
ε
ε2hε∣W̃γ(ε∣W̃γ)dε =σ̃2

V + (W̃γ)2ρ2
V σ

2
V ,

and

III =φ(−W̃γ)
√

2

π
∫
ε
hε∣W̃γ(ε∣W̃γ){−2

ρV σV σ̃
2
V σU(z)

σ4(z)
(1 − ε2

σ2(z)
) +

ρV σV (1 − ρ2
V )σU(z)

σ̃2(z)
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+
ρ3
V (1 − ρ2

V )σ4
V σ

3
U(z)

σ̃(z)σ5(z)
− ε2 ρV (1 − ρ2

V )σ3
V σU(z)

σ6(z)

−W̃γε
(1 − ρ2

V )σ2
V σU(z)

σ4(z)
− (W̃γ)2 ρV (1 − ρ2

V )σ3
V σU(z)

σ̃2(z)σ2(z)
}dε

=φ(−W̃γ)
√

2

π
{−(W̃γ)2 ρ

5
V (1 − ρ2

V )σ7
V σU(z)

σ̃2(z)σ6(z)
+
ρV (1 − ρ2

V )σV σ5
U(z)

σ̃2(z)σ4(z)

+
ρ5
V (1 − ρ2

V )σ7
V σU(z)

σ̃2(z)σ6(z)
−
ρ3
V (1 − ρ2

V )σ3
V σ

5
U(z)

σ̃2(z)σ6(z)
}

Therefore

∫
ε
(∂

2Ψ0(z, θ)
∂ρ2

U

+ ∂Ψ0(z, θ)
∂ρU

2ρV σV σU(z)
σ2(z)

(1 − ε2

σ2(z)
)) 2

σ(z)
φ( ε

σ(z)
)dε

=φ(−W̃γ)
⎧⎪⎪⎨⎪⎪⎩
−(W̃γ)3 ρ

6
V σ

6
V σ

2
U(z)

σ8(z)
− (W̃γ)24

√
2

π

ρ5
V σ

5
V σ

3
U(z)

σ8(z)

+W̃γ
3ρ6

V σ
6
V σ

2
U(z)

σ8(z)
+ 4

√
2

π

ρ5
V σ

5
V σ

3
U(z)

σ8(z)
+ 4

√
2

π

ρ3
V σ

3
V σ

5
U(z)

σ8(z)

⎫⎪⎪⎬⎪⎪⎭
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Now, we have
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where the final result follows because

∫
ε

ε

σV
φ( ε

σV
)dε = 0,

∫
ε

ε3
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φ( ε
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)dε = 0,

by the properties of the pdf of a standard normal distribution. Thus, we can finally write
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which implies that
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and the final result follows from SD1 + SD2 + SD3 = 0. This concludes the proof.

A.3. Conditional density of U given ε. From Centorrino and Pérez-Urdiales (2021), we have

that
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We multiply the previous equation by the conditional density of U given (ε, η) to get
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in a way that the expression above can be rewritten as
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By integrating this joint conditional density with respect to η, we finally obtain

fU ∣ε (u∣ε) =
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which is a mixture of two half-normal densities, with weights given by
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Hence
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The final expression in (7) follows by the properties of the cdf of the univariate normal distribution.
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Appendix B. Additional material for empirical application

In this section, we provide some additional information about the empirical application.

Table 5 contains descriptive statistics from the main variables used in the analysis. The variables

are divided by category for convenience of the reader. Table 6 contains the MLE of the assignment

equation with their 95% confidence intervals.

Mean St.Dev. Min Max
Output 1198.647 964.018 26.000 6816.000

Inputs
Land 1.732 1.821 0.250 28.000
Labor 75.505 51.461 7.000 484.000

Fertilizers 209.037 159.201 9.000 1945.500
Pesticides 111.615 112.140 2.000 1116.600
Seeds 62.546 56.921 1.320 750.000

Environmental variables
Tenure 0.658 0.475 0.000 1.000
Age 0.257 0.438 0.000 1.000

Education 7.022 3.391 0.000 16.000
No Income 0.673 0.470 0.000 1.000
Foot access 0.488 0.500 0.000 1.000
Car access 0.466 0.499 0.000 1.000
Risk div 1.199 1.758 -5.828 5.513

Participation 0.468 0.500 0.000 1.000
Instruments

Dist Earthquake 0.756 0.430 0.000 1.000
Wage canton 4.060 0.987 0.000 6.000

Prop of families with electricity 0.820 0.232 0.000 1.000
Prop of families with bathroom 0.776 0.258 0.000 1.000

Table 5. Descriptive Statistics
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Estimate CI
γ0 -2.3912 [-4.2259 -0.7052]
γLand 0.2533 [-0.0217 0.5675]
γLabor -0.0076 [-0.1971 0.1926]
γFertilizer 0.0474 [-0.1482 0.2324]
γPesticides 0.0379 [-0.1399 0.2061]
γSeeds 0.1117 [-0.0428 0.2890]
γTenure 0.2303 [-0.1764 0.6603]
γTenure×Land -0.2096 [-0.5034 0.0411]
γAge 0.3106 [0.0203 0.6091]
γEduc 0.2021 [0.0768 0.3345]
γNoIncome 0.1490 [-0.1199 0.4328]
γFootAccess 0.2833 [-0.3062 0.8727]
γCarAccess 0.0490 [-0.5310 0.6455]
γRiskDiv -0.0221 [-0.1467 0.1099]
γDistEarthquake -0.8975 [-1.2014 -0.6175]
γWage 0.0637 [-0.0659 0.2036]
γFamElect 0.7387 [0.1938 1.4231]
γFamBath -0.4484 [-0.9240 0.0658]
γReg2 0.7886 [0.4113 1.1983]
γReg3 -0.1212 [-0.4182 0.1838]
γReg4 1.7186 [1.3361 2.1848]

Table 6. Estimation of the first-stage equation.
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