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Abstract. In this article, we introduce a new command spxtsfa for fit-
ting spatial stochastic frontier models in Stata. Over the last decades, an
important theoretical progress of stochastic frontier models is the incor-
poration of various types of spatial components. Models with the ability
to account for spatial dependence and spillovers have been developed for
efficiency and productivity analysis, drawing extensive attention from in-
dustry and academia. Due to the unavailability of the statistical packages,
the empirical applications of the new stochastic frontier models appear to
be lagging. The spxtsfa command provides a routine for estimating the
spatial stochastic frontier models in the style of Orea and Álvarez (2019)
and Galli (2022), enabling users to handle different sources of spatial de-
pendence. In the presented article, we introduce the spatial stochastic
frontier models, describe the syntax and options of the new command,
and provide several examples to illustrate its usage.

Keywords: stochastic frontier models, SFA, spatial dependence, technical
efficiency, spillovers

1 Introduction
Producers might fail in optimizing their production activities, causing deviation
from the maximum output or the minimum cost. Economic researchers pro-
posed the concept of technical efficiency, which measures how well a producer
is utilizing its resources to produce goods or services. A technically efficient
organization makes the maximum outputs given the amount of inputs or uses
the minimum amount of inputs to produce a given level of output. On the
contrary, technically inefficient organization produce fewer outputs given the
same inputs or uses more inputs than necessary to produce the same output.
Technical efficiency is important because it allows organizations or economies
to achieve their goals with the least amount of resources possible, which can
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lead to cost savings and increased profitability.
Aigner et al. (1977) and Meeusen and van Den Broeck (1977) introduced

stochastic frontier models for evaluating technical efficiency. The essential con-
cept behind these models is to divide the observed output of a production pro-
cess into two components, namely the ”frontier” output, signifying the maxi-
mum feasible output, given the inputs utilized in the production process, and
the ”residual” output, denoting the production process’s inefficiency. Following
these initial works, stochastic frontier models gained extensive use as a tool for
scrutinizing productivity and efficiency.

Methodologically, econometricians have expanded the horizons of stochas-
tic frontier models in various directions. To name a few, Battese and Coelli
(1995) incorporated the determinants of inefficiency. Wang (2003) developed
the stochastic frontier model with scaling properties to capture the shape of the
distribution of inefficiency. Greene (2005) extended the stochastic models with
the random effects and the “true” fixed effects. Belotti and Ilardi (2018), Chen
et al. (2014), and Wang and Ho (2010) circumvented the ”incidental parame-
ters problem” in the fixed effects stochastic frontier model through model trans-
formation. Karakaplan and Kutlu (2017) developed an endogenous stochastic
frontier model to control for the endogeneity in the frontier or inefficiency.

In recent years, stochastic frontier models have undergone further exten-
sion to account for spatial dependence and spatial spillover effects. Glass et al.
(2016) constructed a spatial Durbin stochastic model considering both global
and local spatial dependence. Kutlu et al. (2020) proposed a spatial stochas-
tic frontier model with endogenous frontier and environmental variables. Glass
et al. (2016) and Kutlu et al. (2020) combine the concepts of spatial economet-
rics and stochastic frontier analysis by including the spatial lag of the dependent
variable. On the other hand, Orea and Álvarez (2019) developed a new stochas-
tic frontier model with spatial correlation in both noise and inefficiency terms.
Galli (2022) integrated the two different modeling ideas to specify four different
sources of spatial dependence fully.

With the increasing demand in the last decades to analyze technical ef-
ficiency, Stata provides official commands frontier and xtfrontier for cross-
sectional and panel stochastic model estimation, respectively. Belotti et al.
(2013) developed sfcross and sfpanel commands accommodating more different
distribution assumptions and allowing fixed-effect and random-effect models
with the consideration of heteroscedasticity. Karakaplan (2017) introduced the
sfkk command for estimating endogenous stochastic frontier models. Karaka-
plan (2018) supplemented the xtsfkk command for fitting the endogenous panel
stochastic frontier model. Kumbhakar et al. (2015) provides a practitioner’s
guide to stochastic frontier analysis with a suite of Stata commands (including
sfmodel, sfpan, sf_fixeff, and sfprim).

In this article, we introduce spxtsfa, a new command for fitting spatial
stochastic frontier models in the style of Orea and Álvarez (2019) and Galli
(2022). The proposed spxtsfa command not only allows getting more accu-
rate inefficiency scores (see e.g. Orea et al. 2018) but also examining relevant
economic issues that a non-spatial stochastic frontier model tends to overlook.
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For instance, in microdata applications, the new command can be used to test
whether the production/cost function can be viewed as a purely deterministic
(engineering) process where the firm controls all the inputs (see e.g. Druska
and Horrace 2004). A distinctive feature of the spxtsfa command is that it al-
lows estimating a stochastic frontier model with cross-sectional correlation in
the inefficiency term, a specification that is useful in applications where some
firms benefit from best practices implemented in adjacent firms due to, for in-
stance, agglomeration economies, knowledge spillovers, technology diffusion or
R&D spillovers. This could especially be the case if (local) firms belong to com-
munitarian networks (e.g. cooperatives) or common technicians (consultants)
are advising all local firms. In practice, the proposed spxtsfa command can be
useful to capture a kind of behavioral correlation, for instance when firms tend
to “keep an eye” on the decisions of other peer firms trying to overcome the lim-
itations caused by the lack of information or they simply emulate each other. It
is finally germane to mention that the spxtsfa command also allows capturing
cross-sectional effects that might be caused by non-spatial factors (e.g., the reg-
ulation environment) if we define appropriately the so-called weight (W) matrix.
A proper definition of the W matrix might, for instance, allow us to examine
the existence of knowledge spillovers from supplier and user firms.

As Orea and Álvarez (2019) point out, the proposed spxtsfa command can
be implemented using macro-level data (e.g. data of countries, regions or indus-
tries) due to the abundant evidence of important feedback processes between
neighboring or non-distant regions justify the use of SAR and Durbin frontier
functions in macrodata applications. The spatial weight matrix specification
commonly adopted in regional economics is based on geographical distance.
However, as aforementioned, the weight matrix can be defined using a non-
spatial criterion. In this sense, Liu and Sickles (2023) state that the mode of
production in the world economy is characterized by the division of global value
chains (GVCs) and, hence, the spatial weight matrix should be constructed us-
ing the economic distance between industries within/across national economies.
In this case, the proposed spxtsfa command can be used to estimate spatial SAR
and Durbin frontier functions in order to examine the diffusion of knowledge
and technology among the participants in the international production network.
It is also makes sense to estimate a stochastic frontier model with cross-sectional
correlation in the inefficiency term using macrodata if we change the interpreta-
tion of the estimated correlation. In these applications, the spatial correlation
in the inefficiency term likely captures barriers and distortions to the efficient
allocation of resources across firms that are common to several regions, such
as regulation, labor market trends or common institutions (see e.g. Orea et al.
2023).

The remainder of this article unfolds as follows: Section 2 provides a brief
description of the models in Orea and Álvarez (2019) and Galli (2022); Section
3 explain the syntax and options of spxtsfa; Section 4 and 5 present simulated
data examples to illustrate the usage of the command; and section 6 concludes
the article.
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2 The model
In this section, we briefly describe the spatial stochastic frontier models devel-
oped by Orea and Álvarez (2019) and Galli (2022). The exposition here is only
introductory. Please refer to the cited papers for more technical details.

Based on the transposed version of Wang and Ho (2010) model, Orea and
Álvarez (2019) proposed a spatial stochastic frontier model which accommodates
spatially-correlated inefficiency and noise terms. The model is formulated as in
Eqs.(1)-(3), for i = 1, ..., N and t = 1, .., T :

Yit = X ′
itβ + ṽit − sũit (1)

ṽit = vit + γW vt
i ṽ.t (2)

ũit = uit + τWut
i ũ.t (3)

Eq.(1) describes the stochastic frontier function where Yit is the dependent
variable and Xit is a k × 1 vector of variables shaping the frontier; s = 1 for
the production function and s = −1 for the cost function; ṽit and ũit represent
idiosyncratic noise and inefficiency, respectively. In Eqs.(2) and (3), W vt

i =
(W vt

i1 , ...,W
vt
iN ) and W vt

i = (W vt
i1 , ...,W

vt
iN ) are two known 1×N cross-sectional

weight vectors depicting the structure of the cross-sectional relationship for id-
iosyncratic noise and inefficiency terms, respectively; ṽ.t = (ṽ1t, ..., ṽNt)

′ and
ũ.t = (ũ1t, ..., ũNt)

′; vit is a random variable following the distribution N(0, σ2
v)

and uit = h(Z ′
itδ)u

∗
t . h(Z ′

itδ) is the scaling function where Zit is a l × 1 vector
of variables affecting individuals’ inefficiency and u∗

t is a non-negative random
variable following the distribution N+(0, σ2

u). Using matrix notation, we can
rewrite Eqs.(2) and (3) as

ṽ.t = (IN − γW vt)−1v.t (4)

ũ.t = (IN − τWut)−1h(Z.tδ)u
∗
t = h̃.tu

∗
t (5)

where Z.t = (Z1t, ..., ZNt)
′;h̃.t = (IN − τWut)−1h(Z.tδ).

The above model captures the spatial correlation of the random error and
inefficiency terms with the spatial autoregressive (SAR) process 1. Referring
to Wang and Ho (2010), we can obtain the following log-likelihood function for
each period t:

lnLt =− N

2
ln(2π)− 1

2
ln |Π| − 1

2
ε̃.tΠ

−1ε̃.t

+
1

2

(
µ2
∗

σ2
∗

)
+ ln

[
σ∗Φ

(
µ∗

σ∗

)]
− ln

(
1

2
σu

) (6)

1Orea and Álvarez (2019) also considered a specification of the spatial moving average
process.
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where Π = σ2
v(IN − ρW yt)−1[(IN − ρW yt)−1]′; ε̃.t = (ε̃1t, ..., ε̃Nt)

′, ε̃it = s(Yit −
X ′

itβ), and

µ∗ =
−ε̃′.tΠ

−1h̃.t

h̃′
.tΠ

−1h̃.t + 1/σ2
u

(7)

σ2
∗ =

1

h̃′
.tΠ

−1h̃.t + 1/σ2
u

(8)

Galli (2022) further incorporated the spatial lags of the dependent variable
and the input variables into Orea and Álvarez (2019) model, which additionally
measures global and local spatial spillovers affecting the frontier function. The
model is expressed as

Yit = ρW yt
i Y.t +X ′

itβ +W xt
i X.tθ + ṽit + sũit (9)

where W yt
i = (W yt

i1 , ...,W
yt
iN ) and W xt

i = (W xt
i1 , ...,W

xt
iN ) are two known 1 × N

cross-sectional weight vectors 2; Y.t = (Y1t, ..., YNt)
′; X.t = (X1t, ..., XNt)

′. This
model gives rise to the following log-likelihood function for each period t:

lnLt =ln|IN − ρW yt| − N

2
ln(2π)− 1

2
ln |Π| − 1

2
ε̃.tΠ

−1ε̃.t

+
1

2

(
µ2
∗

σ2
∗

)
+ ln

[
σ∗Φ

(
µ∗

σ∗

)]
− ln

(
1

2
σu

) (10)

where ε̃.t = (ε̃1t, ..., ε̃Nt)
′, ε̃it = s(Yit −X ′

itβ − ρW yt
i Y.t −W xt

i X.tθ).
Summing the time-specific log-likelihood functions over all periods yields the

overall likelihood function for the whole sample, i.e., lnL =
∑T

t=1 lnLt. Then,
numerically maximize the overall log-likelihood function to obtain consistent
estimates of the parameters in the above models. Specifically, we use Stata ml
model routine with the method-d0 evaluator to program the spxtsfa command.
Following Gude et al. (2018), we parameterize ρ, γ, and τ as Eq.(11) to ensure
the standard regularity condition for the spatial autoregressive models.

η =

(
1

rmin

)
(1− p) +

(
1

rmax

)
p

0 ≤ p =
exp (δ0)

1 + exp (δ0)
≤ 1

(11)

where η stands for one of ρ, γ, and τ ; rmin and rmax are respectively the
minimum and maximum eigenvalues of the corresponding spatial weight matrix.

In summary, Galli (2022) provided a fully comprehensive specification of
four different types of spatial dependence: global spillovers of dependent vari-
able Yit, local spillovers of input variables Xit, cross-sectional correlation of
idiosyncratic noise vit and inefficiency uit. We term this full model ”yxuv-
SAR”. Some restrictions can be imposed on the specific parameters to generate

2We index W yt
i , Wxt

i , Wut
i , and W vt

i with superscript yt, xt, ut, and vt, respectively. This
indicates the spatial weight matrix can be time-varying and different across various spatial
components
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the following models (summarized in Table 1), which can be estimated by the
spxtsfa command.

Table 1: Specific models with restricted parameters
yuv xuv yv yu y xuv xv xu uv u v

ρ 0 0 0 0 0 0 0
θ 0 0 0 0 0 0 0
γ 0 0 0 0
τ 0 0 0 0

3 The spxtsfa command
spxtsfa estimates spatial stochastic frontier models in the style of Orea and
Álvarez (2019) and Galli (2022).

3.1 Syntax
Estimation syntax

spxtsfa depvar
[

indepvars
]

uhet(varlist)
[

noconstant cost wy(wyspec)
wx(wxspec) wu(wuspec) wv(wvspec) normalize(norm_method)
wxvars(varlist) initial(matname) mlmodel(model_options)
mlsearch(search_options) mlplot mlmax(maximize_options) nolog
mldisplay(display_options) level(#) lndetmc(numlist)
te(newvarname) genwxvars delmissing constraints(constraints)

]
Version syntax

spxtsfa , version
Replay syntax

spxtsfa
[

, level(#)
]

3.2 Options
uhet(varlist) specifies explanatory variables for technical inefficiency variance

function depending on a linear combination of varlist. It is required.
noconstant suppresses constant term.
cost specifies the frontier as a cost function. By default, the production function

is assumed.
wy(wyspec) specifies the spatial weight matrix for lagged dependent variable.

The expression is wy(W1 [W2...WT ] [,mata array]). By default, the weight
matrices are Sp objects. mata declares weight matrices are mata matrices.
If one weight matrix is specified, it assumes a time-constant weight matrix.
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For time-varying cases, T weight matrices should be specified in time order.
Alternatively, using array to declare weight matrices are stored in an array.
If only one matrix is stored in the specified array, the time-constant weight
matrix is assumed. Otherwise, the keys of the array specify time information,
and the values store time-specific weight matrices.

wx(wxspec) specifies the spatial weight matrix for lagged independent variable.
The expression is the same as wy(wyspec).

wu(wuspec) specifies the spatial weight matrix for lagged independent variable.
The expression is the same as wy(wyspec).

wv(wvspec) specifies the spatial weight matrix for lagged independent variable.
The expression is the same as wy(wyspec).

normalize(norm_method) specifies one of the four available normalization tech-
niques: row, col, minmax, and spectral.

wxvars(varlist) specifies spatially lagged independent variables.
initial(matname) specifies the initial values of the estimated parameters with

matrix matname.
mlmodel(model_options) specifies the ml model options.
mlsearch(search_options) specifies the ml search options.
mlplot specifies using ml plot to search better initial values of spatial depen-

dence parameters.
mlmax(maximize_options) specifies the ml maximize options.
nolog suppresses the display of the criterion function iteration log.
mldisplay(display_options) specifies the ml display options.
level(#) sets confidence level; default is level(95).
lndetmc(numlist) uses the trick of Barry and Kelley Pace (1999) to solve

the inverse of (IN − ρW ). The order of numlist is iterations, maxorder.
lndetmc(50 100) specifies that the number of iterations is 50 and the max-
imum order of moments is 100.

te(newvarname) specifies a new variable name to store the estimates of tech-
nical efficiency.

genwxvars generates the spatial Durbin terms. It is activated only when wxvars(varlist)
is specified.

delmissing allows estimation when missing values are present by removing the
corresponding units from spatial matrix.

constraints(constraints) specifies linear constraints for the estimated model.

3.3 Dependency of spxtsfa
spxtsfa depends on the moremata package. If not already installed, you can
install it by typing ssc install moremata.

4 Examples
In this section, we use simulated data to exemplify the use of the spxtsfa com-
mand. Referring to , we first consider the yxuv-SAR model specified by the
following data-generating process (DGP 1) with i = 1, ..., 300 and t = 1, .., 20,
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Yit = 0.3WiY.t + 2Xit + 0.3WiX.t + ṽit − ũit (12)

where ṽit and ũit are defined as in Eqs.(2) and (3) with γ = 0.3, τ = 0.3,
δ = 2, σ2

u = 0.2 and σ2
v = 0.2. All the spatial matrices for the four spatial

components are the same and time-invariant, created from a binary contiguity
spatial weight matrix. We generate the exogenous variables Xit and Zit from
the standard normal distribution, respectively. With the sample generated by
DGP 1, we can fit the model in the following syntax.

. use spxtsfa_DGP1.dta

. xtset id t
Panel variable: id (strongly balanced)
Time variable: t, 1 to 20

Delta: 1 unit
. * importing spatial weight matrix from spxtsfa_wmat1.mmat
. mata mata matuse spxtsfa_wmat1.mmat,replace
(loading w1[300,300])
. * fitting the model
. spxtsfa y x, uhet(z) noconstant wy(w1,mata) wx(w1,mata) wu(w1,mata) wv(w1,mata) wxvars(x) nolog
Spatial frontier model(yxuv-SAR) Number of obs = 6,000

Wald chi2(2) = 118937.24
Log likelihood = -1727.016 Prob > chi2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

frontier
x 1.993915 .0065251 305.58 0.000 1.981126 2.006704

W_x .4435823 .0373189 11.89 0.000 .3704386 .516726

uhet
z 2.000371 .0013412 1491.49 0.000 1.997742 2.002999

/lnsigma2_u -2.098104 .3163094 -6.63 0.000 -2.718059 -1.478149
/lnsigma2_v -1.637609 .018401 -89.00 0.000 -1.673674 -1.601544

Wy
_cons .6605993 .0317043 20.84 0.000 .5984599 .7227386

Wu
_cons .5806681 .0318346 18.24 0.000 .5182735 .6430627

Wv
_cons .5745429 .051903 11.07 0.000 .4728148 .676271

sigma2_u .1226888 .0388076 3.16 0.002 .0660027 .2280593
sigma2_v .1944444 .003578 54.34 0.000 .1875567 .2015851

rho .3187581 .0142397 22.39 0.000 .2905787 .3463849
tau .282414 .014646 19.28 0.000 .2534626 .3108598

gamma .2795936 .02392 11.69 0.000 .2320763 .3257792

The output shows that the command fits seven equations with ml model.
The frontier equation has two explanatory variables Xit and WiX.t. The scaling
function uhet() has one explanatory variable Zit. Two equations ( /lnsigma2_u
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and /lnsigma2_v) are constructed for the variance parameters σ2
u and σ2

v which
are transformed by the function exp(·). Three Equations (Wy, Wu, and Wv)
handle the spatial dependence parameters ρ, τ , and γ, which are parameterized
as Eq.(11). We directly include the spatial Durbin term WiX.t in the frontier
equation (represented as W_x) such that we do not need to fit a separate
equation. The bottom of the table reports the transformed parameters in the
original metric.

We consider the restricted model uv-SAR with time-varying spatial weight
matrices as the second example. The DGP 2 is described as

Yit = 1 + 2Xit + ṽit − ũit, i = 1, .., 300; t = 1, .., 10 (13)
where the other parameters are set the same as the DGP 1 except for Wut

i =
W vt

i = W t
i . The following syntax estimates the model alongside the results.

. use spxtsfa_DGP2.dta

. xtset id t
Panel variable: id (strongly balanced)
Time variable: t, 1 to 10

Delta: 1 unit
. * importing spatial weight matrices from spxtsfa_wmat2.mmat
. mata mata matuse spxtsfa_wmat2.mmat,replace
(loading w1[300,300], w10[300,300], w2[300,300], w3[300,300], w4[300,300],
w5[300,300], w6[300,300], w7[300,300], w8[300,300], w9[300,300])
. * fitting the model
. local w w1 w2 w3 w4 w5 w6 w7 w8 w9 w10
. spxtsfa y x, uhet(z) wu( ̀w ,́mata) wv( ̀w ,́mata) te(efficiency) nolog
Spatial frontier model(uv-SAR) Number of obs = 3,000

Wald chi2(1) = 43686.91
Log likelihood = -1336.482 Prob > chi2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

frontier
x 2.015288 .0096419 209.01 0.000 1.99639 2.034186

_cons .9415143 .0160786 58.56 0.000 .9100008 .9730278

uhet
z 2.000242 .0020671 967.66 0.000 1.99619 2.004293

/lnsigma2_u -2.006684 .4473506 -4.49 0.000 -2.883475 -1.129893
/lnsigma2_v -1.300024 .0260099 -49.98 0.000 -1.351002 -1.249045

Wu
_cons .582383 .0031549 184.59 0.000 .5761995 .5885666

Wv
_cons .5374655 .0601775 8.93 0.000 .4195198 .6554113

sigma2_u .1344337 .060139 2.24 0.025 .05594 .3230678
sigma2_v .2725253 .0070883 38.45 0.000 .2589806 .2867784

tau .2832028 .0014508 195.21 0.000 .2803569 .2860438
gamma .262419 .0280135 9.37 0.000 .206716 .3164261
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In the second example, we use option te(efficiency) to store the esti-
mated efficiency score in a new variable efficiency. To show the usage of the
delmissing option, we replace the first observation of Yit with missing value and
re-run the above codes which gives rise to error information ”missing values
found. use delmissing to remove the units from the spmatrix”. The inclu-
sion of the delmissing option addresses this issue and the generated variable
__e_sample__ records the regression sample.

. * replace the first observation of y with missing value

. replace y=. in 1
(1 real changes made)
. local w w1 w2 w3 w4 w5 w6 w7 w8 w9 w10
. * estimation is aborted
. cap noi spxtsfa y x, uhet(z) wu( ̀w ,́mata) wv( ̀w ,́mata) nolog
missing values found. use delmissing to remove the units from the spmatrix
invalid syntax

. * re-estimation with delmissing option

. local w w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

. spxtsfa y x, uhet(z) wu( ̀w ,́mata) wv( ̀w ,́mata) delmissing nolog
missing values found. The corresponding units are deleted from the spmatrix

Spatial frontier model(uv-SAR) Number of obs = 2,999
Wald chi2(1) = 43688.15

Log likelihood = -1336.2158 Prob > chi2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

frontier
x 2.01521 .0096414 209.02 0.000 1.996313 2.034106

_cons .9409358 .0160983 58.45 0.000 .9093837 .972488

uhet
z 2.000244 .0020675 967.48 0.000 1.996192 2.004296

/lnsigma2_u -2.006689 .4473506 -4.49 0.000 -2.88348 -1.129898
/lnsigma2_v -1.300032 .0260157 -49.97 0.000 -1.351022 -1.249042

Wu
_cons .5823337 .0031574 184.44 0.000 .5761453 .588522

Wv
_cons .5400995 .0602196 8.97 0.000 .4220712 .6581278

sigma2_u .134433 .0601387 2.24 0.025 .0559397 .3230661
sigma2_v .2725231 .0070899 38.44 0.000 .2589755 .2867794

tau .2831801 .0014519 195.04 0.000 .2803319 .2860233
gamma .2636448 .0280137 9.41 0.000 .2079367 .3176476

Missing values found
The regression sample recorded by variable __e_sample__

Finally, we consider another restricted model xuv-SAR with different spatial
weight matrices, one of which is time-varying, and the others are time-constant.
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The model is described as DGP 3:

Yit = 1 + 2Xit + 0.5W xt
i + ṽit + ũit, i = 1, .., 300; t = 1, .., 10 (14)

where the other parameters are set the same as the DGP 1 except for Wut
i = Wu

i

and W vt
i = W v

i . Different from DGP 1 and DGP 2, which set the production
function frontier, DGP 3 specifies a cost function. The estimation of the model
is shown as follows.

. use spxtsfa_DGP3.dta

. xtset id t
Panel variable: id (strongly balanced)
Time variable: t, 1 to 10

Delta: 1 unit
. * importing spatial weight matrices from spxtsfa_wmat2.mmat
. mata mata matuse spxtsfa_wmat2.mmat,replace
(loading w1[300,300], w10[300,300], w2[300,300], w3[300,300], w4[300,300],
w5[300,300], w6[300,300], w7[300,300], w8[300,300], w9[300,300])
. * fitting the model
. local w w1 w2 w3 w4 w5 w6 w7 w8 w9 w10
. mat b = (1,1,1,1,-1,-1,0.5,0.5)
. spxtsfa y x, uhet(z) wu(w2,mata) wv(w1,mata) wxvars(x) ///
> wx( ̀w ,́mata) cost init(b) genwxvars nolog
Spatial frontier model(xuv-SAR) Number of obs = 3,000

Wald chi2(2) = 57430.99
Log likelihood = -872.06794 Prob > chi2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

frontier
x 1.995734 .0083857 237.99 0.000 1.979298 2.012169

W_x .5065867 .0221169 22.90 0.000 .4632384 .549935
_cons .9916378 .0126993 78.09 0.000 .9667476 1.016528

uhet
z 1.99976 .0010759 1858.74 0.000 1.997652 2.001869

/lnsigma2_u -1.699017 .4472788 -3.80 0.000 -2.575668 -.822367
/lnsigma2_v -1.615448 .0260424 -62.03 0.000 -1.66649 -1.564406

Wu
_cons .6214083 .0008566 725.44 0.000 .6197294 .6230872

Wv
_cons .6001869 .0595911 10.07 0.000 .4833905 .7169833

sigma2_u .1828631 .0817908 2.24 0.025 .076103 .4393904
sigma2_v .1988017 .0051773 38.40 0.000 .188909 .2092123

tau .3010474 .0003894 773.04 0.000 .300284 .3018105
gamma .291369 .0272628 10.69 0.000 .2370726 .3438504

In the third example, we use cost option to specify the type of frontier.
The matrix b is used as the initial value for the maximum likelihood estimation.
The likelihood function of spatial stochastic frontier models is complicated, and
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generally difficult to obtain the optimal global solutions. Thus, good initial
values would be helpful for fitting spatial stochastic models. Practitioners might
fit the non-spatial stochastic models using fronteir and sfpanel commands
to obtain the initial values of the parameters involved in the frontier and the
scaling function and then use the mlplot option to search initial values for
spatially-correlated parameters.

5 Conclusion
Geospatial units are not isolated or separated but connected. For example, the
economic trade, social activities, and cultural exchange between different regions
affect each other. Such spatial interdependence challenges the traditional econo-
metric methods, which generally assume cross-sectional independence. Spatial
econometrics is developed to handle spatial correlation. Recently, researchers
combined stochastic frontier models with spatial econometrics to account for
various types of spatial effects in the field of efficiency and productivity analy-
sis (Galli 2022; Orea and Álvarez 2019). This article presented a community-
contributed command for fitting spatial stochastic frontier models with different
sources of spatial dependence. We hope the developed command can provide
some convenience to practitioners and reduce the difficulty of model applica-
tions, thereby promoting sound empirical research.
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