MORFOLOGIA Y SECUENCIA ERUPTIVA DEL CRÁTER EXPLOSIVO DE LA POSADILLA (CAMPO DE CALATRAVA, CIUDAD REAL)

I. INTRODUCCION; EVOLUCION VOLCANICA

El Campo de Calatrava es una unidad morfo-estructural del borde meridional de la Submeseta Sur, situada en el centro de la provincia de Ciudad Real, cuya extensión, de unos 2.763 km², está delimitada al N y NO por las estribaciones meridionales de los Montes de Toledo; en dirección meridional, lo cierran el Valle del Ojailén y de Alcudia, y al nordeste y levante La Mancha y la Cuenca alta del Jabalón respectivamente.

Desde el punto de vista morfológico, el rasgo más destacado es la presencia de un relieve volcánico que interiere y enmascara tanto el paisaje serrano paleozoico como el de las llanadas terciarias.

En cuanto a la actividad volcánica, cuyo desarrollo es discontinuo en el tiempo, se han distinguido hasta el momento dos períodos eruptivos generalizados: uno iniciado en el Miocene superior (de 8,5 a 6,5 mill. de años), de escasas dimensiones y de carácter ultrapotásico (leucitas olivínicas); y otro de mayor trascendencia morfológica que se prolonga desde el Plioceno inferior (4,5 mill. de años) hasta el Pleistoceno inferior-medio (ANCO-CHEA, 1983). Por nuestra parte, hemos distinguido dentro de la actividad volcánica, acaecida durante la sedimentación neógena, un total de tres etapas. Del primer episodio (EV1), que transcurre entre finales del Miocene superior y comienzos del Plioceno inferior, tenemos constancia de tal suceso merced a sus depósitos freatomagnéticos, pues no se conserva ninguna forma. Por el contrario, del segundo episodio (EV2), acontecido a finales del Plioceno inferior o en la transición de éste al Plioceno superior, se dispone de seis cráteres explosivos o maares (Las Higuuerelas, Benavente, Galiana, Cantarranas, Los Corrales y La Encomienda), que se caracterizan por disponer de depresiones labradas sobre calizas ruscimienas; y, por último, la tercera que se corresponde con el Villafraquense inferior-medio y cuyos mejores exponentes se encuentran en las dinámicas estrombolianas que edifican el Cabezo del Moro y Juan de la Puerta (PO-

BLETE, 1991). A éstas tendríamos que añadir finalmente la actividad eruptiva desarrollada durante el transcurso del Pleistoceno (EV4), que en el caso que nos ocupa se produce en torno al Pleistoceno medio-superior.

Dentro del relieve volcánico calatraveño las manifestaciones eruptivas de tipo freatomagnético constituyen, sin ambages, uno de los máximos exponentes de este tipo de dinámicas explosivas, tanto en el ámbito peninsular como insular, dadas sus peculiares condiciones hidrogeológicas.

Por ende, podemos señalar sin temor a equivocarnos que en esta zona se localiza el mayor número de aparatos de esta modalidad, esto es, de cráteres de origen freático o freatomagnético. Ahora bien, éstos se reducen aquí, desde el punto de vista morfológico, a cráteres explosivos o maares, sin presencia en ningún caso de tuff rings o tuff cones.

Al mismo tiempo dentro de los cráteres explosivos o maares calatraveños podemos diferenciar entre aquéllos que han experimentado una subsistencia volcánico-tectónica pericratérica y diatrómica, cráteres explosivos con borde anular de depósitos freatomagnéticos y cráteres sin borde anular. Los primeros se caracterizan por ser los centros volcánicos de mayor antigüedad, correspondientes al límite Plioceno inferior-superior, que carecen de orla de materiales freatomagnéticos y que además se han labrado sobre calizas ruscimienas. Estas calizas que conforman el borde cráterico presentan la peculiaridad de hallarse basculadas periclinalmente en derredor de la depresión cráterica y con buzamientos convergentes hacia el centro de la hondonada. Estas dislocaciones son el resultado de la subsistencia volcánico-tectónica del borde del cráter y del diatrem, como consecuencia de la distensión posteruptiva freatomagnética, que favorece la apertura de fracturas anulares, y de la deshidratación y compactación de las oleadas piroclásticas húmedas que sustentan la boca eruptiva y rellenan el conducto volcánico.

Por contra, los cráteres explosivos o maares con anillo y sin borde anular de materiales freatomagnéticos son de edad más reciente (fundamentalmente pleistocenos) y cuentan con mayores di-

---

1 Comunicación presentada a la VIII Reunión Nacional sobre Cuaternario (Valencia, 16-20 de septiembre de 1991).
mensiones. Se caracterizan por disponer de depresiones circulares, semicirculares o elípticas y de fondo llano o en embudo, labradas de 40 a 140 m por debajo de la superficie preeruptiva. Los maures de borde anular se forman fundamentalmente en las subcuencas terciarias debido a la menor resistencia de los materiales, lo que permite el desarrollo anular de la nube eruptiva; mientras que los cráteres sin borde anular son resultantes de erupciones freatomagmáticas producidas en cordales paleozoicos, donde las masas gasesosas explosivas suelen adoptar un desarrollo lateral o dirigido, por lo cual carecen de materiales freatomagmáticos dispuestos en forma anular.

En cuanto a los materiales volcánicos emitidos se caracterizan desde el punto de vista litológico por ser muy homogéneos, dada la falta de procesos de diferenciación magmática, con presencia exclusiva de productos ultrabásicos y básicos alcalinos, distribuidos espacialmente en torno a bandas. Así, por ejemplo, los basaltos ocupan una banda central dispuesta en dirección NNO-SSE, mientras que nefelinitas y melilititas se reparten en áreas laterales y marginales respectivamente (ANCOCHEA, 1983).

II. LOCALIZACION GEOGRAFICA

El cráter explosivo de La Posadilla está situado a 2,5 km al SSO de la población de Valverde, emportado concretamente en el cordal cuarúltico de la Sierra de Medias Lunas. Este conforma el flanco meridional del anticlinorium de Ciudad Real, que se extiende en dirección E-O desde Alcolea de Calatrava hasta Ciudad Real, constituyendo una de las principales macroestructuras hercínicas del sector central del Campo de Calatrava.

En concreto, la Sierra de Medias Lunas alberga uno de los principales conjuntos eruptivos de la comarca volcánica, puesto que en ella se localizan gran número de edificios volcánicos tales como Peñarroya, Peñas Negras y en especial aquéllos generados a partir de erupciones muy explosivas de tipo fráctico o freatomagmático, representados por la Laguna de Alcolea, Laguna de Medias Lunas, El Paso, La Posadilla y El Portillo. Estos mares están íntimamente asociados a una importante fractura de desgarre de componente E-O, de unos 12 km de longitud, que sesga de lado a lado la Sierra de Medias Lunas, asociándose a ésta otras secundarias transversas en dirección NO-SE, que originan el volcán lárvido de tipo castillejo de El Rasro.

De todos los edificios el conjunto La Posadilla-El Portillo es el más representativo, tanto desde el punto morfológico como volcanológico, por las variaciones que experimenta su comportamiento eruputivo a lo largo de la dinámica volcánica, habiendo sido estudiado por Francisco Hernández-Pachecho y divulgado por Solé Sabarís y Llopis Lladó en su Geografía Física de España (1952).

El nombre de La Posadilla lo recibe de la quintaría homónima en la que se encuentra enclaveado y que antaño sirvió de venta a los pastores trashumantes, siendo sus pastos descansadero para el ganado ovino procedente de Soria y Segovia, antes de proseguir viaje al Valle de Alcudia, previo pago del portazgo a los calatravos en el Puente de las Ovejas (Corral de Calatrava).

III. EVOLUCION MORFOERUPTIVA DEL EDIFICIO VOLCANICO DE LA POSADILLA

Las referencias bibliográficas de índole morfológica relativas al cráter de La Posadilla o de Fuenteillo (nombre por el que también es conocido) se reducen básicamente a las aportaciones llevadas a cabo en torno al primer tercio de siglo por Eduardo Hernández-Pacheco (1921) y Francisco Hernández-Pacheco (1932), transcurriendo más de cuatro décadas hasta las últimas realizadas por Eumenio Ancochea a comienzos de los ochenta.

Del trabajo de Eduardo Hernández-Pacheco (1921) destaca fundamentalmente el estudio estratigráfico del yacimiento paleontológico de Valverde I situado a 1,5 km al E de dicha localidad y fosilizado por materiales volcánicos procedentes de La Posadilla, puesto que a través de él establece una cronología relativa del comienzo de la actividad eruptiva.

El perfil estratigráfico descrito por Eduardo Hernández-Pacheco (1921) se encuentra a 12 m sobre el nivel del cauce del Guadiana y consta de tres niveles que, de techo a muro, son los siguientes: una capa de 2,3 m de lapillís, un estrato de calizas tobáceas laminadas que alcanzan 2,5 m de espesor y, por último, una formación aluvial de arenas y gravas de 1,5 m, donde se hallan fragmentos de Elephas meridionalis Nesti, Hippopotamus amphi- bius Linne, Equus caballus fossilis y Cervus sp. Estos restos fosilíferos fueron interpretados por él como correspondientes al segundo período interglacial, de ahí que estableciera que los materiales piroclásticos arrojados desde La Posadilla eran posteriores al Pleistoceno inferior.

Por su parte, Francisco Hernández-Pacheco (1932) realizó un amplio estudio tanto de la morfología vulcánica como de la actividad eruptiva. En concreto, para este autor el volcán de La Posadilla o de Fuenteillo, como él lo denomina, es resultante de una violenta explosión que edifica un cono piroclástico sobre el cordal cuarúltico de la Sierra de Medias Lunas, del cual con posterioridad se emiten dos coladas láticas en dirección septentrional, que llegan hasta la villa de Valverde. Al mismo tiempo hacia el Sur arroja otra potente colada que se detuvo en las inmediaciones del río Guadiana. Así pues, el volcán de La Posadilla sería, según su in-
Fig. 1. Esquema geomorfológico del cráter explosivo de La Posadilla.

terpretación genética, un edificio volcánico monogénico, es decir, resultante de una única erupción que tipifica como vulcaniana. Posteriormente, el cono piroclástico sería desmantelado por la acción erosiva conservándose únicamente el contorno del antiguo cráter.

Finalmente, Eumenio Ancochea (1983) incorpora La Posadilla, en su catálogo de edificios volcánicos, como un cráter explosivo o maar, es decir, resultante de una actividad eruptiva freetomagmática, pero sin entrar en consideraciones acerca de su evolución morfogenética.

Por nuestra parte, hemos podido comprobar en el volcán de La Posadilla dos hechos básicos para una correcta explicación de la secuencia morfo-eruptiva experimentada por este aparato. Por un lado, que los materiales volcánicos que se extienden desde el cráter de La Posadilla hasta Valverde e incluso la T+6 m del río Guadiana no constituyen lapillis (como suponía Eduardo Hernández-Pacheco, 1921) ni tampoco coladas lávicas (Francisco Hernández-Pacheco, 1932), sino que se trata de oceadas piroclásticas húmedas (Fig. 1). En concreto, el color pardo oscuro que ofrecen estos materiales puede hacer pensar, si no se lleva a cabo un análisis detenido, que se componen de lavas o de lapillis. No obstante, estas oceadas piroclásticas ofrecen el aspecto de mudflow, toda vez que son depósitos masivos constituidos mayoritariamente por fragmentos de rocas del sustrato paleozoico que alcanzan en torno a un 80-90%, mientras que los volcánicos apenas un 10-20%. El tamaño de los fragmentos es también muy heterométrico: desde fracciones arenosas que componen la matriz de la oleada, hasta bloques del orden de 40 a 50 cm de cuaritas, pizarra y esquistos. La morfometría de estos materiales es muy angulosa a excepción de los volcanicos, que se componen sobre todo de bombas redondeadas de tipo colifor, de 5 a 18 cm, que contienen abundantes xenolitos cuarcíticos y cristales de augita y anfibol de gran tamaño.

Una vez descartado que los materiales situados al Norte de La Posadilla sean lavas o piroclastos, las únicas coladas lávicas potentes y de gran extensión que restan son las que se encuentran situadas en la falda de la ladera meridional de Medias Lunas, a orillas de la margen derecha del río Guadiana.

De lo expuesto anteriormente cabe, en buena lógica, suponer que la emisión de los productos lávicos y la deposición de las oceadas piroclásticas húmedas corresponden a momentos o fases diferentes de la actividad eruptiva de este edificio volcánico, teniendo lugar primeramente la fase efusiva, esto es, el desalojo desde la cima de Malos Aires de las coladas lávicas. Téngase en cuenta que sería difícilmente explicable que después de lograda la apertura del cráter de La Posadilla, emplazado en la ladera septentrional de Medias Lunas, a más de 140 m de profundidad del borde meridional, éste pudie-
Fig. 2. Formación del volcán mixto de Malos Aires en la cima del cordal de Medias Lunas.

ra emitir coladas lávicas por encima de dicho desnivel, máxime cuando el margen septentrional del cráter apenas supone un obstáculo de 40 m de altura respecto al interior del mismo. Por lo que de haberse producido la emisión de coladas lávicas después de la formación del cráter éstas se habrían dirigido hacia Valverde.

Con posterioridad, la interacción del magma con agua produciría un giro espectacular en el comportamiento de la dinámica eruptiva pasando ésta de ser estromboliana a freatomagmática, originándose de este modo una gran explosión que supuso la destrucción de las formas del volcán mixto y la apertura de la depresión cráterica en la ladera septentrional del cordal de Medias Lunas.

Así pues, la interpretación morfoeruptiva de La Posadilla como cráter explosivo, engendrado a partir de una erupción freatomagmática, es correcta, pero debe acompañarse de una secuencia que englobe como mínimo cuatro fases fundamentales.

1. FORMACION DEL VOLCAN MIXTO DE MALOS AIRES

La actividad volcánica comienza, en efecto, en la cima del cordal cuarcítico de Medias Lunas, conocido por Malos Aires, por medio de una dinámica eruptiva de tipo estromboliano (Fig. 2). Concretamente, ésta se inicia con una explosión magmática que produjo la apertura de la boca eruptiva y, a través de ella, la expulsión de materiales de proyección aérea y de coladas lávicas. Entre los primeros abundan las bombas volcánicas y las escorias, con gran número de xenolitos de cuarcitas, que acumuladas en torno al punto de emisión originaron un cono piroclástico coronado por un cráter de pequeñas dimensiones. La fisonomía de este volcán mixto podría haber sido muy similar a la del actual edificio de Peñarroya, situado también en la cumbre de microconglomerados cuarcíticos del Cerro de las Loberas a 4 km al Oeste.

A través del cráter cimero se expulsaron al menos dos grandes coladas lávicas en forma de lengua, que se desplazaron por la ladera meridional hasta alcanzar la orilla de la margen derecha del río Guadiana.

La primera colada lávica es de naturaleza basáltica y se caracteriza por estar muy desmantelada y presentar un escarpe frontal muy desfigurado y suave (apenas 1,5 a 2 m). Se trata de una colada fluida de morfología superficial pahoehoe que engloba gran número de xenolitos cuarcíticos de pequeño tamaño (entre 1 y 4 cm) y de formas muy angulosas, que reposa por encima de margas y calizas ruscinienses de la pequeña subcuenca de Va-hondo. La presencia de tales enclaves cuarcíticos nos indica, que tras la explosión magmática, gran número de estos fragmentos quedaron esparcidos por las inmediaciones, siendo retomados e incorporados por los flujos lávicos al desplazarse por esta ladera. Por consiguiente, la emisión de esta colada aconteció tras la apertura de la boca eruptiva y la proyección de los primeros materiales piroclásticos.

El segundo nivel de colada lávica, superpuesto al anterior, presenta distinta composición litológica al tratarse de nefelinitas olivínicas. Esto refleja, por un lado, que proceden de un magma situado a mayor profundidad, tras la descarga y vaciamiento producido durante la primera emisión y, por otro, que entre la expulsión de ambas debió transcurrir cierto período de tiempo.

No obstante, esta colada lávica se caracteriza por ser también muy fluida, con formas superficiales predominantemente lisas y suaves, típicas de la-
vas pahoehoes, aunque en su borde occidental presenta morfologías de transición con superficies más rugosas y escabrosas. En cualquier caso, contiene también abundantes enclaves de cuarcitas de tamaño centimétrico y de bordes angulosos y reos. Cuenta además con un espesor muy considerable que supera los 20 m y configura dos frentes muy abruptos, presentando en el lóbulo oriental estructuras incipientes de tipo lenticular y esferoidal. Asimismo se localizan en este área dos importantes fisuras de distensión a través de las cuales la parte central de la colada lávica se ha desplomado ligera-mente, merced al asentamiento o acomodación de estas masas lávicas de gran espesor (Fig. 3).

Por encima del segundo nivel lávico se halla abundante material de proyección aérea con ejem-

plares de bombas volcánicas esferoidales y piriformes de tipo bipolar y unipolar de 50 cm y 1 m de longitud, que engloban numerosos xenolitos cuarcíticos. Así pues, el volcán mixto de Malos Aires es resultado de una típica dinámica de estilo estromboliano, puesto que al tiempo que emite coladas lá-

vicas arroja materiales piroclásticos, concluyendo precisamente con una pequeña fase explosiva en la que expulsa productos de proyección aérea.

Los dos niveles de colada lávica se asientan so-
bre margas y calizas pliocenas, situándose en sus proximidades el segundo nivel de glaciis de acumulación (G2) de Medias Lunas. No obstante, no se observa que estas coladas fosilicen dicho glaciis de acumulación, careciendo pues de pruebas concluyen-
tes para determinar con precisión la edad de este paroxismo volcánico estromboliano de Malos A-
ires. Es probable que tales coladas fuesen emitidas antes del modelado de dicho nivel G2, por lo que de ser así la erupción sería anterior al Pleistoceno medio.

2. APERTURA DEL CRÁTER EXPLOSIVO DE LA POSADILLA

Tras la definitiva edificación del volcán es-
stromboliano de Malos Aires aviene un giro brusco en su dinámica eruptiva desencadenando cambios morfológicos muy importantes. Efectivamente, un poderoso paroxismo explosivo de tipo freatomag-
mático destruye no sólo el cono piroclástico de Ma-
os Aires, sino también los crestones cuarcíticos del borde septentrional de la Sierra de Medias Lunas, labrando una depresión cráterica de grandes dimen-

siones (Fig. 4).

Tan violenta erupción freatomagmática es con-
secuencia de la interacción del magma durante su ascenso con agua. Al tratarse de un cordal paleozoi-
co es difícil suponer en principio que pudiera existir un manto freático. No obstante, la fractura desgarre que de Oeste a Este atraviesa el cordal es además de una línea de debilidad, a través de la cual ascien-
de el magma, una vía de penetración del agua hacia el interior del sustrato paleozoico. Asimismo debemos tener en cuenta que después de la emisión de las dos potentes coladas lávicas de la ladera meridional, el magma de Malos Aires procede de una zona cada vez más profunda por lo que su nivel de fragmentación pudo tener lugar por debajo de donde se hallaba confinado el agua, esto es, que la presión de la dispersión gas-partícula del interior del conducto fue inferior a la hidrostática y se produjese entonces la interacción explosiva entre ambos elementos.

De cualquier modo se trata de una reacción tardía justo al término de la edificación de Malos Aires, lo que implica, según Barberi (1985), que durante las fases eruptivas estrombolianas iniciales la presión del conducto fuera muy elevada sobreponiendo con creces la hidrostática, razón por la cual no tuvo lugar la interacción explosiva entre agua y magma. Por ende, sólo después de la descarga de las coladas lávicas y de la disminución de la presión del conducto el contacto magma-agua fue efectivo y explosivo. En efecto, como consecuencia de esa interferencia se produce, mediante la transmisión de calor por parte de la masa fundida silicatada, una eficaz transformación del agua en vapor y a la vez una mayor fragmentación del magma, produciéndose el confinamiento de éste y del vapor del agua hasta alcanzar la presión suficiente como para superar la resistencia del sustrato cuarcítico encajante. El resultado final fue una explosión freatomagnética muy potente y sumamente violenta en la que se propaga una nube eruptiva que no adopta una disposición anular como es habitual, sino lateral al encontrar en su margen meridional el obstáculo físico que suponía el cordal de 800 m de altitud de la Sierra de Medias Lunas, en cuya cima se había formado el volcán de Malos Aires. En efecto, la columna explosiva se desplazó 4 km encauzada, en dirección septentrional, por el paleovalle de Valverde hasta alcanzar la terraza aluvial +6 m del río Guadiana. La masa gaseosa tóxica, constituida por vapor de agua y otros gases, se trasladó a gran velocidad transportando en una corriente turbulenta y fluidizada una elevada cantidad de fragmentos del sustrato paleozoico, en especial cuarcitas, pizarras y esquistos precámbricos. Como resultado de la enorme energía cinética liberada durante la explosión fueron desalojados por la nube freatomagnética, según estimaciones propias, del orden al menos de 37 mill. de m³ de cuarcita armóncana del cordal de Medias Lunas, los cuales fueron depositados a lo largo del paleovalle de Valverde en forma de oledas piroclásticas húmedas.

La presencia de estos materiales freatomagnéticos nos indica que la razón agua-magma durante la erupción fue excesiva (probablemente entre 0.3 y 1), de ahí la menor efectividad en la vaporización del agua y en la transferencia de energía mecánica, al convertirse el agua en vapor a baja temperatura. Así pues, el emplazamiento de estas oledas piroclásticas tuvo lugar por debajo de la temperatura de condensación del vapor de agua, por lo que parte de éste se convirtió en agua durante el transporte.

Las oledas piroclásticas húmedas, que recubren por completo el paleovalle de Valverde a lo largo de 4 km de longitud, se caracterizan por ser depósitos masivos y caóticos, de color pardo oscuro (por lo que desde lejos parecen coladas lávicas alteradas), que asemejan a mudflows. Estas oledas están constituidas por fragmentos fíticos accidentales y heterométricos de cuarcitas, pizarras y esquistos con formas muy angulosas y rotas, además de material volcánico fundamentalmente bombas de tipo coliflor y armadas, con megacrístales de anfiboles y augitas y xenolitos cuarcíticos. Todo el conjunto se dispone de forma caótica y masiva compactado por una matriz fina de gravillas y arenas de cuarcitas y cuarzos, originadas en la explosión a partir de la pulverización de los bancos de cuarcita armóncana del cordal de Medias Lunas (Fig. 5).

Los depósitos freatomagnéticos, que fosilizan la terraza aluvial +6 m de la margen derecha del río Guadiana, situada a 1 km al ENE de Valverde, constituyen los materiales que Eduardo Hernández-Pacheco (1921) había interpretado como lapilis y cenizas y bajo los cuales descansaban los aluviones y el yacimiento paleontológico del Pleistó-
censo inferior. Por consiguiente, podemos aducir que la génesis del cráter de La Posadilla tuvo lugar en torno al Pleistoceno medio evolucionado o medio-superior.

El resultado morfológico de la explosión freatomagnética fue la apertura de una depresión cráterica o maar, de grandes dimensiones (cuyo diámetro es de aproximadamente 1 km) y forma circular con fondo llano, empotrado en la ladera septentrional de Medias Lunas (Fig. 6). Por esta razón, el cráter presenta una gran disimetría, respecto al interior de la hondonada, entre su borde meridional (cima del cordal) y septentrional (falda de la ladera). Así, mientras que la margen del mediodía del cráter presenta un escarpe muy abrupto y vertical con un desnivel de 120 m, el septentrional es muy suave y poco acentuado, pues sólo se halla a 40 m en relación con el fondo del cráter.

Otra de las características morfológicas de este maar es la carencia del borde anular freatomagnético, toda vez que la nube eruptiva se trasladó encuadrada hacia el valle del río Guadiana (depositando en esta dirección los materiales arrastrados) y, por ende, el reborde cráterico está constituido por las paredes de cuarcitas armonicanas del cordal donde se labra.

3. GENESIS DEL CRÁTER EXPLOSIVO
EL PORTILLO

A menos de 50 m al E de La Posadilla la cima del cordal cuarcítico de Medias Lunas aparece desportillado por una pequeña hendidura que, no obstante, se reconoce perfectamente desde las ilanadas de las subcuenca adyacentes.

La rotura del crestón cuarcítico, de 100 m de diámetro y unos 5 m de profundidad, responde se-
nificativa a no ser que contiene vacuolas rellenas de calcita.

En definitiva, se trata de un pequeño cráter explosivo cuya secuencia es inversa a la experimentada por La Posadilla, con una fase inicial de tipo freático de poca intensidad que deriva finalmente a una efusiva de relativa envergadura, si consideramos la magnitud del volumen de las coladas exputadas.

Finalmente, estimamos que la formación del cráter de El Portillo está estrechamente ligada al desplazamiento de la actividad volcánica de La Posadilla, por lo que aquí bien pudiera representar el comienzo de un segundo ciclo eruptivo, tratándose el conjunto de La Posadilla-El Portillo de un volcán poligénico.

4. EL DOMO EXÓGENO DE PEÑAS NEGRAS

Este nimio centro emisor, situado a menos de 300 m al norte de El Portillo y a 50 m al E de La Posadilla, inicia su actividad eruptiva con una pequeña proyección de bombas volcánicas unipolares y en huso de 50 a 80 cm de longitud y de escorias, sin presencia de xenolitos cuarcíticos, que se acumulan en las inmediaciones del borde oriental de La Posadilla. Por último, emite una reducida colada lávica de naturaleza viscosa que se solidifica y acumula en el punto de emisión, originando un pequeño hinchazón de lavas compactas y densas propias más bien de un domo exógeno de tipo cabezo.

La construcción de este edificio domático tiene lugar lógicamente tras el término de la apertura de las dos bocas crátericas explosivas, de lo contrario este pequeño aparato habría sido destruido. Por esta razón, nos parece que la formación de este pequeño domo exógeno representa el final de la actividad volcánica en este sector oriental de la serrata cuarcítica de Medias Lunas.

En suma, en el sector oriental del cordal cuarcítico de Medias Lunas, a resultas de la larga duración de la actividad eruptiva y de las variaciones de su comportamiento se labranformas volcánicas muy variadas. Destacan por sus dimensiones la depresión explosiva de La Posadilla y la escotadura de El Portillo en el cumbre del cordal, resultantes de episodios freatomagnéticos y freácticos respectivamente.

Por otro lado, en la ladera meridional de Medias Lunas se conservan dos lóbulos lávicos dispuestos de forma paralela. El más occidental se compone de dos coladas superpuestas desconectadas del volcán que las emitió al haber sido éste, Malos Aires, destruido durante la apertura del cráter de La Posadilla. Por su parte, la colada lávica oriental deriva y se prolonga hasta la misma escotadura de El Portillo.

En último término, en la ladera septentrional, aparte de la depresión de La Posadilla, se sitúa al repel del cordal la colada lávica expelida por El Portillo y próximo a éste el domo exógeno de Peñas Negras—MIGUEL ANGEL POBLETE PIEDRABUENA (Departamento de Geografía. Universidad de Oviedo).

BIBLIOGRAFÍA UTILIZADA

- BERGAMÍN, J.F. (1986): Interpretación geotectónica del área del Campo de Calatrava (Ciudad Real), basa-


- MARTI, J. et alt. (1986): “Mecanismos eruptivos del volcán de la Closa de Sant Dalmai (Girona)”, *Anales de Física*, vol. 82, pp. 143-153.


