
1. Introduction

In recent years, artificial neural networks have proved
their great usefulness in solving a significant number of
complex classification problems with many variables in-
volved. However, the cost reduction of the sensors with the
modernization of industrial factories has yielded a huge
volume of data that has to be processed and analyzed. It
seems reasonable to implement neural network-based appli-
cations where some kind of automatic classification of data
is required. The neural networks are well known in com-
puter vision and pattern matching areas. In this paper the
use of neural networks as blast furnace forecasting aids
using above burden temperature evolutions is proposed. Al-
though their use in the iron industry is not new, most au-
thors use neural networks to predict with a multilayer per-
ceptron (MLP)1–6) while others prefer a radial basis function
(RBF).7,8) Only a few references using neural networks 
to make a qualitative classification of data9) can be found
along with proposals to use them to recognize patterns in
the iron making process.

This paper explains how to create a temperature classifier
with a neural network which would serve as a visual aid to
the plant operator while speeding up data treatment. Section
2 describes the studied variables which are used in the
problem and their statistics. Next, the choice of the neural
network along with its properties, training and learned pat-
terns are detailed. Section 3 shows a graphical user inter-
face developed using a neural network. After that, the next
section presents the observed correlation between the pig
iron temperature and the top gas temperature class given by

the neural network, which would be useful for plant opera-
tors. Finally, the paper discusses the results and conclusions
obtained in this work.

2. Problem Statement

A blast furnace is a complex industrial system where a
large number of variables are monitored through hundreds
of sensors placed throughout the plant. In this case, the
variables in which we are interested are the above burden
and the pig iron temperatures. These variables have been
chosen because the obtaining of a proper profile of top gas
temperature determines the quality of the pig iron and pro-
vides an efficiency indicator of how the blast furnace is
working. Figure 1 shows the statistics of the top gas tem-
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Fig. 1. Data statistics of the top gas temperature profiles in a
blast furnace.



perature data. This temperature is measured each hour by
means of two probes, each containing twelve thermocou-
ples. The probes are identical and their anchorages are lo-
cated in the wall, describing a diameter of the blast furnace
section, so the expected behaviour would be a symmetrical
temperature profile. However irregularities in the feeding
processes, in the load composition and some other factors
like cooling yield asymmetric profiles. Besides that, a great
dispersion of the data, with many outlier samples, is con-
firmed. This dispersion (above all in the central thermocou-
ples) is due to the feeding rotational movement so the load
is not at the same level at every point. The cooling system
acts upon the central zone of the blast furnace if the tem-
perature exceeds 450°C, which may cause an M-profile like
that of Fig. 2 and contributes to the dispersion of the data.

Figure 3 shows the pig iron temperatures measured in
the blast furnace with their mean and standard deviation.
The pig iron temperature should remain over 1 450°C from
the time it leaves the blast furnace until it is processed in
the plant to make iron, this being due to the risk of undesir-
able reactions between compounds that would yield poor
quality iron. This is a big problem in the industry so a lot of
effort has been put into improving it.10)

The main objective of using a neural network is to supply
useful information to the plant operators. This information
must be displayed quickly and in an easy to understand for-
mat because an excessive amount of information is over-
whelming to plant operators, and therefore useless. In neu-

ral networks, each neuron learns a different pattern during
training, even if most of them are quite similar to others. In
order to avoid excessive information due to the use of a
high number of neurons it is necessary consult seasoned
plant operators, whose knowledge based on their experi-
ence serves to classify all these patterns into two or three
classes. Three classifications can be compared: one based
on the plant operators’ knowledge, the neural network clas-
sification and a third, based on the criteria detailed in Table
1, which is purely mathematical but real and commonly
used. In later sections we will demonstrate that the classifi-
cation made by the neural network helped by the plant op-
erator is the most powerful. Mathematical criteria turned
out not to be a good choice due to its inflexibility; the work-
ing process of a blast furnace cannot be modelled and clas-
sified by only a couple of rules. Its ability to generalize is
very limited.

These classes summarize the top gas temperature profiles
in 6 common blast furnace working situations :

Optimum: The blast furnace works smoothly. The burden
is well-balanced (the iron ore is located close to the wall
and the coke is located in the centre) which allows the at-
tainment of the highest temperature in the central zone of
the blast furnace. Moreover, the burden has sufficient
porosity to allow gases to keep zone temperatures between
300–450°C (see Fig. 4).

Near-optimum: The blast furnace works very well. The
highest temperature is still around 300–450°C. It is not in
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Fig. 2. M-profile caused by the cooling system.

Fig. 3. Pig iron temperatures.

Table 1. Mathematical classification criteria for the learned
patterns.

Fig. 4. Pattern of the class Optimum.



the central part but deviated towards the wall. The burden
feeding process has perhaps been asymmetric and abnormal
heating close to the wall is taking place (see Fig. 5).

Good: The blast furnace works well, with the highest
temperature in the central zone, although it is quite low
(300–200°C).

Not good: The blast furnace doesn’t work well. The bur-
den is placed close to the wall and the temperature is lower
than 300°C. It is time to set corrective actions into motion.

Regular: The blast furnace works badly. The temperature
is very low (�200°C) although highest in the centre. The
pig iron will have an inferior quality (see Fig. 6).

Poor: The blast furnace works really poorly; it is out of
control. Top gas temperature is under 200°C and there are
feeding problems that deviate the temperature peak. The
quality of the pig iron will be poor.

In general, coke must be loaded in the centre area in
order to reach a temperature around 450°C whereas the iron
ore must be loaded near to the wall. If the coke is placed
close to the wall, the highest temperature will be low and
the measurements made by those thermocouples nearest the
wall will increase.

According to this classification, the whole data histogram
used is showed in Fig. 7. As we can see, the highest number
of temperature profiles belongs to the ‘Optimum’ and
‘Near-optimum’ working situations. Only a very small

quantity of samples belong to malfunction situations; due
perhaps to technical problems, an incorrect feeding pattern
or to a scheduled shutdown cooling. This is important be-
cause the neurons may win with data from different classes,
making it possible to assign the “Optimum class neuron”
label if that class of data is found among its wins. As there
are many more “Optimum” than “Poor” class data, the
probability of having a neuron of this class (“Poor”) is
small. The solution to this problem is explained in Sec. 3.2.

3. Classification by Unsupervised Neural Network

The use of neural networks for forecasting is not new, al-
though its use in the ironmaking industry is quite limited.
On the one hand, the use of a multilayer perceptron (MLP)
as the neural network, trained with an empirical model in
order to forecast the values of some blast furnace vari-
ables2,3,6) is suggested. On the other hand, Mochón et al.9)

propose the use of a self-organized map (SOM)11) to clas-
sify the patterns obtained from the temperature profiles.

3.1. Choosing a Neural Network

There are many different neural networks: Dwarapudi et
al.1) use a MLP for the prediction, Xing et al.7) and Wei et
al.8) use a Radial Basis Function (RBF) as the suitable neu-
ral network while Mochón et al.9) prefer a SOM for this
purpose.

The next step is to translate these recognized patterns
into practical information for the plant operators. In this
paper a SOM network has been used because the self-or-
ganized maps work fine on non-supervised problems, which
is the case here. The number of patterns that can be learned
is the same as the number of neurons in the network.

These patterns change with the neural network topology
(a square grid in this case), the number and the order of the
samples and the number of epochs used for training it. De-
spite that, all the tests have demonstrated that results are
very similar; some common patterns are always obtained.

As seen in Fig. 7, the extremely unbalanced number of
samples of each class may cause serious problems during
the learning process so the training has been divided into
two different parts:

One auxiliary SOM subnet of 13�13 neurons was used
to extract and summarize the most important information
from the samples of classes “Optimum” and “Near-opti-
mum” by means of the 13�13 patterns they learned. Neu-
rons change their position during the training to adapt
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Fig. 5. Pattern of the class Near-optimum.

Fig. 6. Pattern of the class Regular.

Fig. 7. Histogram of the classified temperature profiles.



themselves to the samples so we can consider the set of the
13�13�169 neurons as a good example of the “Optimum”
and “Near-optimum” classes once the net is trained. As a
result, 169 artificial samples of these classes which deliver
more or less 5 500 data are obtained.

A second 10�10 neurons SOM network was used to rec-
ognize all the classes. The samples used as inputs were the
weights of the previous subnet neurons for the “Optimum”
and “Near-optimum” classes and the real samples for the
other classes.

3.2. Brief Outline of the SOMs

A SOM network is made of mathematical entities called
neurons that have two main properties: position (or weight)
and neighborhood. Two neighboring neurons will be neigh-
bors forever, even if the net is trained again or the training
method is changed. In addition, each neuron has a position
that is a vector of the same size as the data. In this case, the
position vector is a 24-tuple long (like the number of tem-
perature measurements in each temperature profile). Train-
ing a neural network is the most delicate stage of all. Sev-
eral SOMs with different number of neurons were trained,
with varying configurations and epochs in order to deter-
mine optimums. In addition, the order of the samples was
randomized so the learning order determines the final re-
sult.

It was necessary to divide the samples into two subsets:
test and validation. This is to avoid the risk of overfitting:
the neural network can learn the introduced patterns “by
heart” in which case it may be unable to generalize the re-
sults when unknown samples arrive. Training with the test
subset, and comparing the results of the trained network
with the validation subset, makes it possible to decide if the
neural network has been overtrained.

At the beginning, the neurons have a random position in
space. During training, a sample or a set of samples are
shown to the neurons. As a result, the neurons change their
position according to an algorithm to be near the samples.
In this way, once the SOM net is trained, the neurons have
been relocated to the zones with more samples, which
means the neurons have learned the training data. If the
samples are representative of all the data then the neurons
will be too. Considering now the notion of neighborhood,
two samples activating two neighbor neurons must be very
similar and vice versa. Moreover, if we use the experience
of the plant operators to label the neurons according to
work situations (see Table 1), when new data arrives and
activates a neuron, the data will be automatically classified
with the same label as the winner neuron (the closest neu-
ron to the data). Bhadeshia12) contains a good introduction
to the use and choice of neural networks for materials sci-
ence.

3.3. Training the SOM Subnet: Balancing the Data

The data balance is made by means of the auxiliary
13�13 SOM net. Due to the properties of the SOM net-
works, their neurons change their positions during training,
getting closer to the data in order to minimize error. That’s
why these neurons represent a well fitted average of the
data. Thanks to this, we can use them instead of the original
data, which results in a large reduction ofe data because the

SOM size is only 13�13�169 neurons. In Fig. 10, the ad-
dition of the two first classes yields 169 exactly which cor-
respond to the neurons instead of the approximately 5 500
data in Fig. 7. The distribution of the 169 neurons in these
two classes can be seen in Fig. 13. Figure 8 shows how im-
portant each neuron is in terms of learned patterns. For ex-
ample, a neuron which has won 100 times during the train-
ing has learned more than others with only 7 wins. That
means that there was a lot of data near the first neuron and
very little data close to the second one.

The Euclidean distances between the neurons showed in
Fig. 9 measure the data dispersion as well as the relative
spatial position of the patterns: if two neurons are distant
from each other, they have learned two very different pat-
terns.

3.4. Training the Final SOM Network

As explained above, the subnet to obtain a reduced sub-
set of “Optimum” and “Near-optimum” sample classes was
used. The histogram in Fig. 10 shows the samples that will
be the inputs for training the final SOM. They are still un-
balanced, but the limited number of samples makes it un-
likely that a perfectly balanced set of samples which yields
inaccurate results could be obtained. Even with a larger
number of samples in Fig. 11 it is observed that there are
four neurons which never won during training.

3.5. Pattern Recognition

Figure 12 shows the distribution of the 13�13 neurons
of the SOM subnet into the two classes used during train-
ing. The colours represent the classification of each neuron
according to the mathematical criteria in Table 1. As we can
see, the two classes are so mixed that it is difficult to sepa-
rate them by nearness criteria. In the same way, Fig. 13 de-
picts this classification in the neurons of the final SOM net-
work. It can be seen that similar patterns have different
colours in Fig. 14, demonstrating the poor classification
produced by the mathematical criteria. However, regroup-
ing the classes from Table 1 into 3 major and colour-based
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Fig. 8. Plot of the SOM subnet showing how many times each
neuron has won during training.
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Fig. 10. Histogram of the classified temperature profiles after
training the SOM subnet.

Fig. 11. Plot of SOM showing how many times each neuron has
won during training.

Fig. 12. Plot of the SOM showing how far each neuron is placed
from its neighbours after boarder training (Legend:
Black reflects far and Yellow shows near).

Fig. 13. Temperature patterns obtained by training the SOM sub-
net of 13�13 neurons (Legend: Red for “Optimum” and
Blue for “Near-optimum” classes).

Fig. 14. Temperature patterns obtained by training the 10�10
neuron SOM network (Colours of the graphs: Red for
“Optimum”, Blue for “Near-optimum”, Black for
“Good”, Cyan for “Not good”, Brown for “Regular” and
Magenta for “Poor” classes).

Fig. 9. Plot of the SOM subnet showing how far each neuron is
placed from its neighbours after training (Black repre-
sents distant and Yellow represents near).



classes, green, yellow and red, yields a clear result and
leads us to some observations:
• Green class: It collects the best classes of Table 1 (“Opti-

mum” and “Near-optimum”) so this colour indicates that
the blast furnace is working smoothly.

• Yellow class: It collects the intermediate classes (“Good”
and “Not good”) showing a slight malfunction in the
blast furnace.

• Red class: It collects the worst classes (“Regular” and
“Poor”). This colour would act as a warning to plant op-
erators that the blast furnace is not working properly.
The background of Fig. 14 depicts this new classifica-

tion. The borders of each class are clearly defined showing
a smooth transition between classes: from the left bottom to
the right top the neurons vary gradually, unlike the borders
established by the mathematical criteria.

4. Industrial Application

Once the SOM is trained and the patterns are classified
into the classes reworking the typical blast furnace working
process, it could be used to automatically classify any new
temperature profiles provided by new thermocouple meas-
urements.

4.1. Developed Software

A graphic user interface (GUI) program designed so the
plant operators don’t have worry about the variables, but
only to look at the screen to see changes in the temperature
profiles as soon as new data arrives from the thermocou-
ples, was used. In order to help them to keep the blast fur-
nace in the best working condition we propose a traffic
light-based alert method: the graphs vary from green (Opti-
mum) to red (Poor) colour according to their class. In this
manner only a quick glance is needed to see how the blast
furnace is doing, which allows quick action should the
plant operator consider it necessary. It is remarkable that
this software helps with decision making but is not an au-
tonomous control tool, making the presence and the experi-
ence of the plant operator necessary in order to close the
blast furnace control loop with this visual information. Fig-
ure 15, for instance, shows a green colour meaning that the
blast furnace is working perfectly, at its optimum point
without any problems. Figures 16 and 17 show malfunction
situations in the blast furnace. The plant operator can see
the name of the class placed at the title of the figures at any
moment.

5. Correlation between Pig Iron Temperature and
Temperature Profile Class

As seen in Sec. 2, there is a connection between the
above burden top gas and the pig iron properties, such as
temperature. Chen et al.13) used a neural network to predict
another property: the Si-content in the pig iron obtained in
a blast furnace. Due to the slow working process of the
blast furnace, we can consider that the pig iron temperature
that we will obtain a few hours later depends at all times on
the above burden temperature profile. The correlation hy-
pothesis test was used in order to clarify this relationship.
The correlation is given a numeric value that reflects the

linear relationship or dependence between two variables. It
can vary between �1 and 1; a correlation coefficient near
to zero means that the variables are statistically and linearly
uncorrelated or independent. In the hypothesis test, the p-
value is a statistical value that indicates the probability of
obtaining at least as significant as the obtained one if we ac-
cept the null-hypothesis: to consider that there isn’t any lin-
ear relationship between the variables because a correlation
of 0.1 could actually be zero. Figure 18 shows the correla-
tion coefficient and the associated p-values between the
class predicted by Table 1 (blue) and the SOM (red), and
the expected pig iron temperature depending on the delay.
As can be seen, the dynamics of the blast furnace are ex-
tremely slow because current actions will affect the work-
ings of the blast furnace for 15–18 h; assuming the null-hy-
pothesis, the p-value during the first 15 h is smaller than
0.05 which indicates that the probability of obtaining such a
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Fig. 15. Classification example of the blast furnace working
point made by the developed aid software.

Fig. 16. Classification example of the blast furnace working
point made by the developed aid software.

Fig. 17. Classification example of the blast furnace working
point made by the developed aid software.



result if the null-hypothesis is true is quite small (less than
5%) so we can say 95% confidence that the correlation is
not accidental. Moreover, the highest correlation corre-
sponds to an 8-h delay without depending on the classifica-
tion, revealing that the quality of the top gas temperature
profile will determine more or less 11% of the temperature
(and, as a result, its quality) of the pig iron obtained 8 h
later, which is useful information for the plant operator.
This delay is accepted as the average time that the load
needs to descend and to reach the zone where it begins to
melt. We want to remark that this discussion only takes into
account the linear relations between variables; there are cer-
tainly more complex non-linear relationships as well. The
coincidence between the correlation calculated with the
mathematical criteria and with the SOM demonstrate that it
use is valid and its results are correct. The p-value peak lo-
cated at 18 h, which is nearly 1, indicates that the probabil-
ity of obtaining a result like that by chance, assuming the
null-hypothesis is close to 100%, tells us at this moment
the linear relationship is no longer significant. The range
with a p-value smaller than 0.05 shows the length of the
correlation: during this time (15–18 h) a variable (the top
gas temperature profile) has a linear influence on the other
variable (the pig iron temperature). As we can see in Fig.
18, the SOM classification yields a clearer result than the
mathematical criteria.

6. Results Obtained

It is difficult to evaluate the results and the performances
of the SOM. In supervised problems, with MLP networks it
is easy to do so because both the true and the estimated
class are known so we can compare them and measure the
errors. Since SOM, an unsupervised network, was used, we
have no idea what the true class is; we would have to ask
the plant operators to know how well the SOM fits with re-
gard to the real world. The 100 patterns recognized by the
SOM show the bad performance of the mathematical classi-
fication because similar patterns can belong to two different
classes. In fact, the rigid division based on the maximum

temperature causes these problems. The SOM, however,
shows a slow variation in the profile of the patterns. It pre-
serves the nearness between samples and implements the
following idea: similar samples must have similar classes,
which can be demonstrated with the help of the plant opera-
tors.

Concerning the pig iron temperature, it can be said with
95% confidence that the above burden temperature profile
classified at all times by the SOM has at least a linear rela-
tionship with the pig iron temperature obtained 8 h later,
which is very interesting when considering quality control.

7. Conclusions

A neural network approach is put forward in this paper to
help the plant blast furnace operators in controlling the fur-
naces. The reason for using a self-organized map to auto-
matically classify the temperature profiles is that its appli-
cation is a non-supervised problem so the SOM fits per-
fectly due to the impossibility of making an accurate set of
rules describing blast furnace behaviour. The good results
obtained have permitted the development of a graphical
user interface which makes controlling the blast furnace
easier by means of a colour-based automatic classification
of temperature profiles, exempting the plant operator from
constantly analyzing each datum. In addition, the SOM has
revealed a significant linear relationship between the tem-
perature profile class and the pig iron temperature obtained
5 h later. These results allow us to conclude that the use of
neural networks in the iron making industry could improve
iron quality and the control of blast furnaces with greatly
reduced effort, that is, the training and tune time of the
SOM. Even if the working conditions of the blast furnace
change, the adjustment of the software to the new condi-
tions is very easy: it is only necessary to train a new SOM
with the new data.

REFERENCES

1) S. Dwarapudi, P. K. Gupta and S. M. Rao: ISIJ Int., 47 (2007), No. 1,
67.

ISIJ International, Vol. 50 (2010), No. 5

736© 2010 ISIJ

Fig. 18. Correlation coefficients and associated p-values of the non-correlation hypothesis (Blue: the mathematical clas-
sification; Red: the SOM classification).



2) J. Jiménez, J. Mochón, J. Sainz de Ayala and F. Obeso: ISIJ Int., 44
(2004), No. 3, 573.

3) R. Martín D., J. Mochón, L. F. Verdeja, R. Barea, P. Rusek and J.
Jiménez: Steel Res. Int., 80 (2009), No. 3, 185.

4) F. Nürnberger, M. Schaper, F. W. Bach, I. Mozgova, K. Kuznetsov, A.
Halikova and O. Perederieieva: Adv. Mater. Sci., (2009), 10.

5) Z. Lawrynowicz and S. Dymski: Adv> Mater. Sci., 8 (2008), No. 1,
94.

6) R. Martín D., J. Mochón, L. F. Verdeja, R. Barea, P. Rusek and J.
Jiménez: Steel Res. Int., 80 (2009), No. 3, 194.

7) C. Xing, H. Xiqin, W. Wenzhong, Z. Huaguang and Y. Xihuai:
IJCNN’99, 5 (1999), 3377.

8) Y. Wei, L. Ya-xiu, B. Bing-zhe and F. Hong-sheng: J. Iron Steel Res.
Int., 15 (2008), No. 2, 87.

9) J. Mochón, J. Jiménez, E. Faraci, H. Rausch, K. Heinäen, H. Saxen et
al., Above Burden and in Burden Probe Data Interpretation by a
Neural Network Based Model to Improve Blast Furnace Control,
Technical Steel Research Series, European Commission, (2003).

10) P. I. Yugov and A. L. Romberg: Metallurgist, 47 (2003), 62.
11) S. Haykin: Neural Networks. A Comprehensive Foundation, 2nd ed.,

Pearson Education, (2005).
12) H. K. Bhadeshia: ISIJ Int., 39 (1999), No. 10, 966.
13) J. Chen and H. Liu: IEEE, (2003), 532.

ISIJ International, Vol. 50 (2010), No. 5

737 © 2010 ISIJ


