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Blast furnace operators expect to get sinter with homogenous and regular
properties (chemical and mechanical), necessary to ensure regular blast fur-
nace operation. Blends for sintering also include several iron by-products and
other wastes that are obtained in different processes inside the steelworks.
Due to their source, the availability of such materials is not always consistent,
but their total production should be consumed in the sintering process, to both
save money and recycle wastes. The main scope of this paper is to obtain the
least expensive iron ore blend for the sintering process, which will provide
suitable chemical and mechanical features for the homogeneous and regular
operation of the blast furnace. The systematic use of statistical tools was
employed to analyze historical data, including linear and partial correlations
applied to the data and fuzzy clustering based on the Sugeno Fuzzy Inference
System to establish relationships among the available variables.

INTRODUCTION

The optimization of ore mixtures that are
employed in the sintering process plays a key role
in sinter quality and production levels. In the
sintering process,1–4 the physical, chemical, and
mineralogical properties of raw materials have a
relevant influence that should be considered, along
with their availability and cost.

Sinter productivity and quality requirements are
a function of the blast furnace requirements,5–14

which impose restrictions on sinter features such as
basicity, reducibility, strength, etc.

In daily plant operations, it is necessary to
address the actual availability of raw materials
and requirements for the blast furnace to reach an
optimal performance point. Iron ore features do not
always fit precise values; they may change for the
same ore deposit and even for the same ore stock.15

On the other hand, quality requirements can be
modified inside certain limits without impairing
blast furnace performance.

The main objective of this research was to obtain
the least expensive iron ore blend for the sintering
process (with a more effective use of raw materials
and energy), with homogenous properties and with
suitable chemical and mechanical properties (to
ensure a soft and regular blast furnace performance).

Blends for sintering include several iron by-
products and other wastes (mill scale, dust catcher
powder, etc.) that are obtained in ironmaking and
steelmaking factories. The supply of these materials
is not always consistent, but they should be con-
sumed in the sintering process (to save money and
recycle wastes). These materials change the chem-
ical and mechanical properties of the blends, so they
must be considered as restrictions in the optimiza-
tion of an iron ore blend.
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METHODOLOGY

Optimization techniques are used to find a set of
design parameters that can be defined as optimal
in a particular way (maximization or minimization
of a certain characteristic subjected to
restrictions).16

An efficient and accurate solution to this problem
is not only dependent on the size of the problems in
terms of the number of constraints and design
variables but also on the characteristics of the
objective function and constraints. For the present
case, the optimization problem to be tackled should
be considered as a nonlinear programing prob-
lem,17,18 particularly because some of the con-
straints involved are nonlinear functions. A
solution to a nonlinear programing problem gener-
ally requires an iterative procedure to establish a
search direction at each major iteration, which was
the approach to the problem that was used in this
work.

Methods of Data Analysis: Subtractive
Clustering

The systematic use of statistical tools was
employed to analyze historical data. These tools
included linear correlation and partial correlation
applied to the data and clustering based on the
Sugeno Fuzzy Inference System (FIS)19–21 to estab-
lish relationships among the available variables
(121,15). Sugeno method of fuzzy inference (also
known as Takagi–Sugeno–Kang) was introduced in
1985.15 It was developed as systematic approach to
generating fuzzy rules from a given input–output
dataset. A rule in a Sugeno fuzzy model is:6,15

if x1 is A and x2 isB then z ¼ f ðx1; x2Þ ð1Þ

where A and B are fuzzy sets in the antecedent,
while z ¼ f ðx1; x2Þ is a numerical function in the
consequent [typically f ðx1; x2Þ is a polynomial func-
tion of the entry variable]. The Sugeno Inference
System was used because it is effective for opti-
mization problems and is computationally
efficient.6

Once main relationships among iron ore and
sinter were established, a non-linear optimization
algorithm based on step-descent methods was
developed. Applied restrictions were related with
the conditions imposed on the sinter properties and
the use of iron ore and by-products.

The clustering of numerical data forms the basis
of many classification and system modeling algo-
rithms. The purpose of clustering is to identify
natural groupings of data from a large dataset to
produce a concise representation of a system’s
behavior,6 which can use the cluster information
to generate a Sugeno-type FIS that best models
the data behavior using a minimum number of
rules.

The advantage of using the subtractive clustering
algorithm is that the number of clusters does not
need to be a priori specified; instead, the method can
be used to determine the number of clusters and
their values.

The Subtractive Clustering method22,23 assumes
that each data point zj ¼ ðxj; yjÞ has assigned a
potential, Pj, according to its location to all other
data points. The potential, P�

i , at data point xi is
defined as:

P�
i ¼

Xn

i¼1

exp �
xi � xj
�� ��2

ra=2ð Þ2

 !
ð2Þ

where P�
i is the potential-value i-data as a cluster

center; ra is a positive constant called cluster radius
(a neighbor radius); and x is the data point. Hence,
the potential of a data point to be a cluster center is
higher when there are more neighboring data
points. The data point with the highest potential
(P�

k) is considered as the first cluster center (xc1).
The potential is then recalculated for all other
points (xi) excluding the influence of the first cluster
center as follows:

P�
i ¼ P�

i � P�
k � exp � xi � xc1k k2

rb=2ð Þ2

 !
ð3Þ

where rb is a positive constant which defines a
neighborhood that has measurable reductions in
potential value. After revising the potential value,
the next cluster center is selected as the point
having the greatest potential value. The process
continues until a sufficient number of clusters are
defined.

The generation of the FIS matrix, which is a
MATLAB object that contains all the FIS informa-
tion (including variable names, membership func-
tion definitions, etc.),24 is accomplished through
previous training, which is conducted prior to
building this matrix. Relationships between inputs
and outputs a priori are searched, and the data with
similar behavior are clustered, such that the num-
ber of rules has been reduced, being equal to the
number of clusters. Therefore, the FIS matrix has
an equal number of membership functions for each
input, as clusters have been found.25,26

The best cluster parameters for this system were
obtained using the trial and error method. Thus, the
cluster radius27 that was utilized is a function of the
amount of variables that were used. Higher number
of variables resulted in longer time required in the
calculus process. All processes (data introduction in
the software, the estimation process and the results
presentation) should not be longer than 60 min
(minimum time required for the iron ore blend for
reaching the blast furnace hopper feeders). Longer
calculus times (higher number of variables) suppose
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a better accuracy, although the problem would be
that the estimated values could not be relevant in the
factory control (because the results would be obtained
once the sinter was fed to the blast furnace), and the
quality control of the sinter that feeds the blast
furnace would definitely not be achieved.

Optimization of Ore Blends for Sintering

Data Collection

Two different sets of data were collected from a
European sinter factory plant. The first set covers a
period of 6 years and a total amount of 216 stock-
piles (15,000–30,000 tons of mineral).

A second set of data was collected during the early
months of the project, covering a period of
10 months and a total amount of 35 ore stockpiles.

To establish suitable relationships among iron ore
and the chemical properties of blends, the European
factory also supplied the results of the standard
chemical analysis that are employed on the raw
materials, which are used as other variables in the
optimization process.15

Data Analysis

Three steps were employed to perform the data
analysis: (1) simple data inspection and data pre-
treatment, including the removal of outliers and the
rejection of non-significant parameters; (2) a search
for a linear relationship among variables; and (3)
the study of partial correlation to elucidate the
mutual influence among variables.

Linear Correlation

Obtaining a simple correlation between variables
is the second step. This correlation was obtained by
means of the correlation coefficient calculated in a
standard way:

rxy ¼

P
N

xi � �xð Þ � yi � �yð Þ

P
N

xi � �xð Þ2 �
P
N

yi � �yð Þ2

� �1=2
ð4Þ

wherexi is the value ofx for observation i, �x is the mean
x value, yi is the value of y for observation i, and �y is the
meanyvalue. The following description will be focused
on the most significant results on linear correlation.
Therefore, the effort will be focused on the correlation
between plausible input variables and plausible out-
put variables. In the cases in which the existence of a
correlation between input variables could be noted,
the existence of co-linearity will also be indicated.

The correlation coefficient between iron content in
ore blend and sinter is approximately 0.55. Similar
results were achieved for FeO, although this vari-
able is known to be largely altered during the
sintering process. In fact, the FeO content in sinter
also presents some degree of negative correlation

with the sinter strand bed height and positive
correlation with the sinter strand speed. Moreover,
it has a negative correlation with coke and the total
amount of Fe that is present in sinter.

For CaO, there is not a significant correlation
between ore blend and sinter content, but a correla-
tion of 0.5 is found between CaO sinter content and
the additions of limestone and lime employed. MgO
content in sinter present a reasonable (� 0:55) cor-
relation with MgO content in ore blends and with the
additions of dunite. Al2O3 content in sinter is corre-
lated with coke, which provides an appreciable
amount of Al2O3 to the sinter, and with its initial
amount in the ore blend. No correlations are found for
SiO2, possibly because there is not significant varia-
tion of SiO2 content during the analyzed period.

Tumbler index [ISO 3271 (2015)] is a sinter quality
index used in the ironmaking industry that provides
a measure of the resistance of iron oxides to breakage
or degradation by impact and abrasion.12 The Tum-
bler index (%>6.3 mm) is positively correlated with
the bed height and negatively correlated with strand
speed, air temperature and lime addition.

RDI (Reduction Degradation Index) [ISO 4696-2
(2015)] is a sinter quality index used in the iron-
making industry that provides a measure of the
degradation of the sinter that could occur in the
upper section of the blast furnace after some
reduction (a high degree of reduction disintegration
generates fines in the top of the furnace that affects
the flow distribution within the blast furnace).12

RDI (Reduction Degradation Index) is positively
correlated with bed height and coke consumption,
while being negatively correlated with strand speed,
lime addition, CaO content and Mn content.

Apart from the stochastic aspects, there are
thermodynamic aspects that induce the use of a
partial correlation between variables.

Partial Correlation

The combined effect of input variables and their
possible interrelations cause problems when
attempting to carry out a conclusion from the
simple correlation obtained by the method described
above. Therefore, it is necessary to obtain the
correlation between two variables while avoiding
the effect of the rest,28 which is a known partial
correlation. To perform this, a new partial correla-
tion coefficient was employed as described below:

r̂xixj;R ¼ tjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2j þ n� k� 1

q ð5Þ

where n is the sample size, k is the degree of
freedom, and tj is defined as:

tj ¼
b̂j

ŝR
ffiffiffiffiffi
qjj

p ð6Þ
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b̂j represents the coefficient of variable xj in the

linear regression model of xi, ŜR would be the
variance non-explained with the linear regression
model and qjj will be the diagonal element ‘j’ of the
covariance matrix.

Although partial correlation was studied for every
variable, only the results concerning sinter proper-
ties will be presented here.

Some remarkable correlations are:
Tumbler index is positively correlated (among

others) with: variables that represent the ignition
furnace parameters, an index of gas consumption in
the ignition furnace, the temperature in the wind-
box at the end of the strand, and the coke content.

Tumbler index is negatively correlated with: Fe
content in the blend, MgO content in the blend and
strand speed.

In the RDI case, the strong influence of Alkalis
(K2O + Na2O) and Al2O3 that is observed is
remarkable.

As is well known, the influence of alkalis activates
the coke gasification kinetics (Boudouard
Reaction):29–31

Coke þ CO2 , 2CO(gÞ

Therefore, there is a maximum calorific power of the
coke reduction (total oxidation in excess of oxygen to
CO2) and the possibility of reaching maximum
temperatures in the sintering front. Consequently,
the Tumbler and RDI indexes decrease.

Fuzzy Inference Systems for RDI and Tumbler Index
Estimation

RDI and Tumbler indexes depend on a complex
method on the chemical properties of iron ores, as
well as the performance of the sinter strand.

To estimate the values for these sinter properties,
a FIS was developed. The employed model was a
Sugeno-type FIS, which was obtained by means of

the subtractive clustering algorithm.22 This algo-
rithm permits the modelling of data behavior, which
clusters the experimental data around some values
that are obtained during the modelling process.22

The model can be fitted by employing the cluster
radius.27 This parameter indicates the range of
influence of a cluster and must be specified before-
hand.27 Specifying a small cluster radius will typ-
ically yield many small clusters in the data.27

Specifying a large cluster radius will typically yield
a few large clusters in the data.27

In the case of RDI estimation, the input variables
were selected according to the results obtained in
the previous study using partial correlation.15 The
input variables selected were sinter Al2O3 content,
sinter Alkalis content, coke content, air tempera-
ture and bed height. A collection of 200 samples of
historical data was divided into two sets of 100
samples. The first set was employed for training,
and the second set was employed for validation. The
model was developed with a rather large value for
the cluster radius. Because RDI measurements are
often imprecise, the model should show only the
tendency of RDI.

The Tumbler index was modeled in a very similar
way.15 The input variables selected in this case
were: sinter SiO2 content, sinter CaO content, air
flow, air temperature, and coke content.

To evaluate the adjustment between the model
and real measures, a correlation coefficient was
used. The performance index in the training period
(this period helps to select the model and estimate
its parameters) was 0.934 for RDI and 0.702 for the
Tumbler index. The performance index in the
validation period (where the forecasted model is
tested to know if it functions properly) was 0.916 for
RDI and 0.832 for the Tumbler index.

The models for the RDI and Tumbler indexes are
included in the optimization process as two quality
elements, to ensure a material with the blast
furnace operator quality parameters.

Table I. Restrictions in the optimization process for sinter

Variable

Value

Maximum Minimum Exact

% Fe 56
% MgO 1.65
Basicity Index 1.70
% SiO2 5.40 5.30
% Al2O3 1.35
% Alkalis 0.11
% Phosphorus 0.04
Tumbler index (%) 74
RDI index (%) 33
%<0.125 mm 15.00
0.2 mm< %<0.7 mm 18.00
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Optimization Problem Definition

As a final goal, the optimization process, must
minimize the price of the ore blend to ensure the
minimum quality requirements (restrictions in the
optimization process can be read in Table I). To
reach a proper definition of the problem, it is
necessary to establish the relationship between
these restrictions and the ore blend properties and
to set their values.

The content in the sinter of the variables consid-
ered as restrictions in the European factory practice
is calculated as follows:

%XðSÞ ¼

P
i

%XðiÞ �MðiÞ
P
i

RSðiÞ �MðiÞ � 100 ð7Þ

where X(S) is the X phase content in the sinter, X(i)
is the X phase content in the ore i, M(I) is the mass
of ore (i) that should be employed in the blend and
RS(i) is the ore-sinter yield for ore (i). This last
variable is obtained by subtracting the losses due to
humidity, calcinations, de-sulfuration and de-
alkalization.

The results are:

– Iron content (>56%): The results of operation
show that the work point is typically far beyond
this limit, mainly because Fe content has a
negative influence on the sinter strength. There-
fore, its content may not be far beyond the lower
limit imposed.

– MgO (1.65%): Data obtained from the last
6 months show that the results are close to this
value (mean: 1.65, deviation 0.15).

– Basicity Index (1.7): The results that were
obtained show a mean value of 1.69 with a
standard deviation of 0.10.

– SiO2 content (5.3–5.4%): The results that were
obtained show a mean value of 5.03 with a
standard deviation of 0.24. These results lead to
a review of the way in which this restriction is
imposed, not only because the mean value is out
of range but also because the allowed interval
width is narrower than the actual standard
deviation of data.

– Al2O3 (<1.35%): The results show a mean value
of 1.12 with a deviation of 0.06. In fact, the upper
bound is hardly ever crossed.

– Alkalis (<0.11%): To estimate the alkalis content
in the sinter, the de-alkalization process
(%dealk) must be taken into account. Therefore,
the equation in this case is:

Fig. 1. Features of the optimum blend obtained from stockpile number 30.
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%AlkðSÞ ¼

P
i

%AlkðiÞ �MðiÞ 1 � %dealk
100

� �

P
i

RSðiÞ �MðiÞ � 100 ð8Þ

%dealk has been established at 40%. Data on
alkali content show a mean value of 0.022 with a
standard deviation of 0.0035 and, thus, do not
appear to be an important restriction.

– Phosphorus (<0.04%): Data for P content show a
mean value of 0.046 with a standard deviation of
0.003.

MATLAB Software Tool

With all that has been previously mentioned, a
program was developed in MATLAB to conduct
price and quality optimization for the iron ore
blends that are used in a European sinter plant.
To analyze the performance of the optimizer, blends
employed in the past were reproduced.

A reduction in the price per ton of sinter of
approximately 0.15 € [original 23.38 €/t sinter
(Fig. 1), optimizer tool 23.22 €/t sinter (Fig. 2), in
the case of the stockpile 30] was predicted. In a
sinter plant of 2.5 Mt, the cost savings would be

approximately 375,000 €. The software shows the
optimum mix of iron ore, recycled products, slag-
forming elements, fluxes, etc. that satisfies the
restrictions described in previous sections.

CONCLUSION

During this work, data from a European sinter
plant were collected and studied by means of
statistical tools to establish the relationship among
variables (chemical and mechanical properties of
both blends and sintered products, and sintering
process variables). Non-linear relationships were
found; therefore, non-linear optimization was
proposed.

The RDI and Tumbler indexes were considered as
restrictions of the process. As a consequence of their
relationship with other variables, fuzzy programing
(Sugeno’s inference model) was used with the
purpose of predicting them.

The goal was to obtain a mixture that fulfilled the
conditions imposed on sinter quality, while also
obtaining the least expensive mixture. This objec-
tive was reached by means of the development of a
MATLAB optimizer, which obtained an iron ore
blend that was less expensive than that previously
used and contained quality parameters that
ensured homogeneous and consistent operation in
the blast furnace.

Fig. 2. Features of the optimum blend obtained from stockpile number 30 fixing set points to their actual limits.
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