

Características generales en el PIC16F877

Ocho canales de conversión.

Cinco pines de PORTA y los tres de PORTE.

Convierte la señal analógica en un número digital de 10 bits.

Tensión de referencia seleccionable por software.

Puede ser $V_{\rm DD}$ o la tensión aplicada en los pines RA2 y/o RA3.

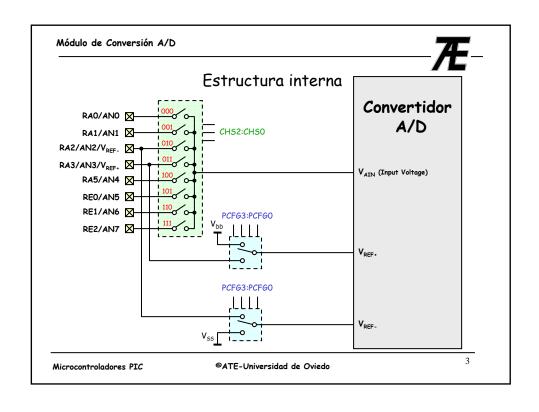
Posibilidad de seguir funcionando cuando el PIC está en modo SLEEP.

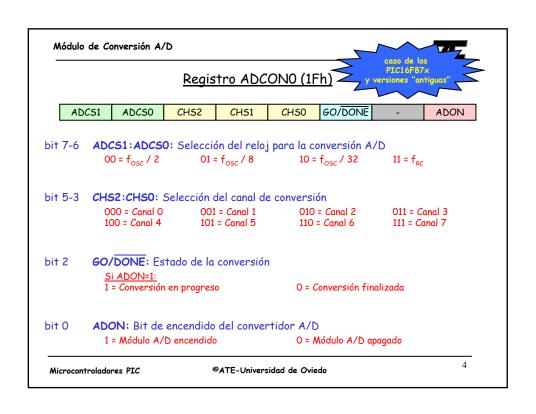
Hay 11 registros asociados a este periférico.

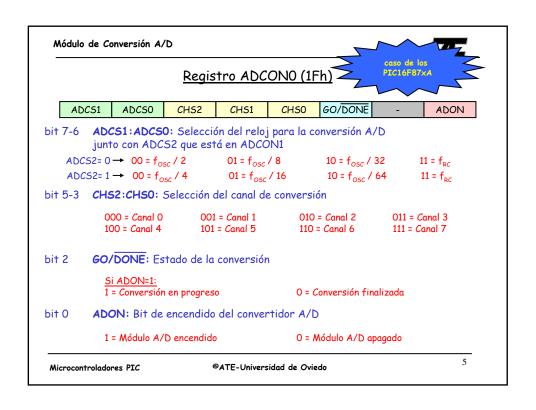
Definición de pines de entrada

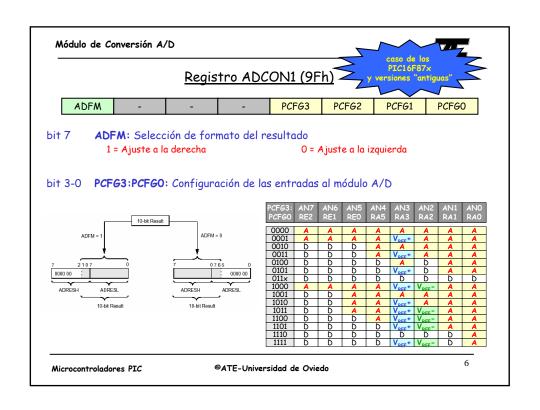
TRISA - PORTA - TRISE - PORTE

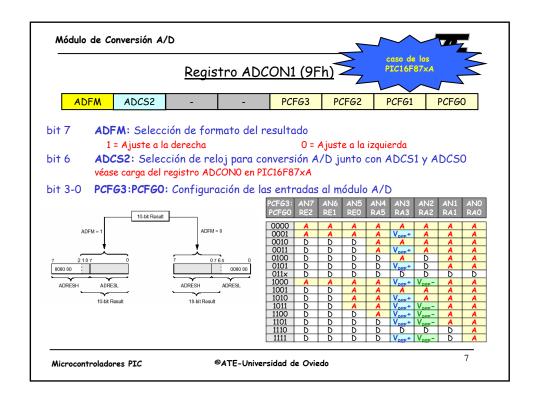
Manejo de interrupciones

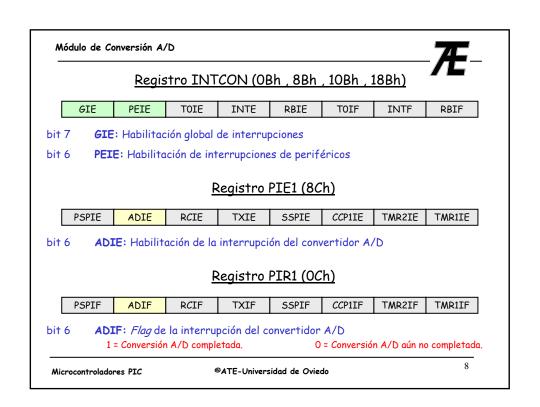

INTCON - PIE1 - PIR1


Control del conversor A/D


ADCONO - ADCON1 - ADRESH - ADRESL


Microcontroladores PIC


©ATE-Universidad de Oviedo



Pasos en una conversión A/D

1. Configurar el módulo A/D.

- Definir entradas analógicas y tensión de referencia. (ADCON1)
- Seleccionar el canal de la conversión. (ADCONO)
- Seleccionar el reloj de la conversión. (ADCONO)
- Encender el módulo A/D. (ADCONO)

2. Configurar la interrupción por conversión A/D.

- Bajar el flag ADIF. (PIR1)
- Habilitar la interrupción del convertidor A/D. (PIE1)
- Habilitar las interrupciones de los periféricos. (INTCON)
- Habilitar la máscara global de interrupciones. (INTCON)

3. Esperar a que transcurra el tiempo de adquisición.

- Tiempo necesario para capturar el valor analógico a convertir.
- Los valores típicos del tiempo de adquisición son del orden de $20\mu s$.

Microcontroladores PIC

@ATE-Universidad de Oviedo

9

Módulo de Conversión A/D

4. Comenzar la conversión.

- Poner a "1" el bit GO/DONE. (ADCONO)

No activar este bit a la vez que se enciende el convertidor A/D

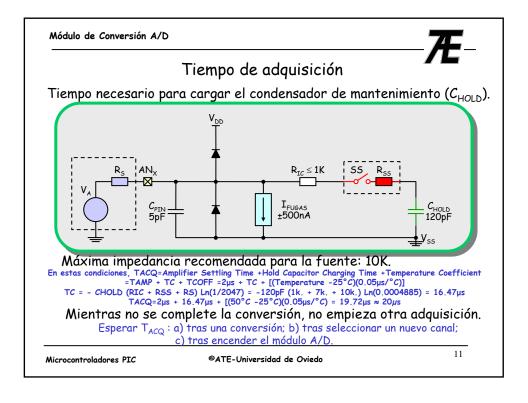
5. Esperar a que se complete la conversión A/D.

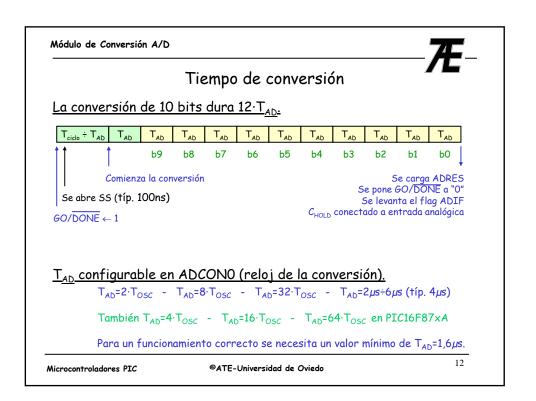
- a) Controlando cuándo el bit GO/DONE se pone a "0".
- b) Esperando a que llegue la interrupción del convertidor.

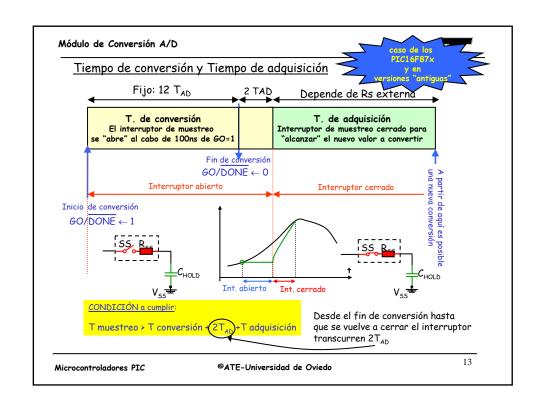
6. Leer el resultado de la conversión.

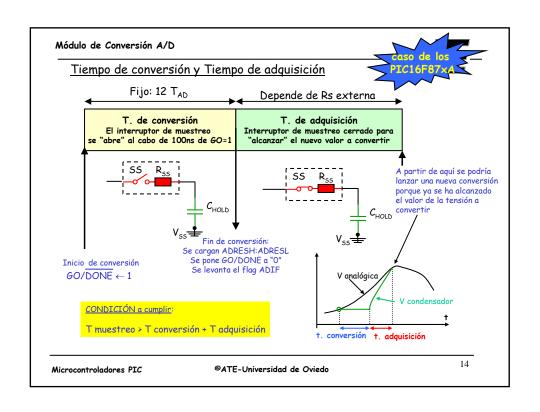
- Disponible en los registros ADRESH: ADRESL.
- Bajar el flag ADIF si se están usando interrupciones.

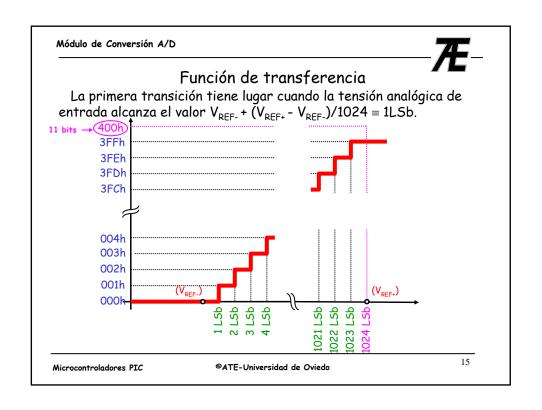
7. Llevar a cabo la siguiente conversión.

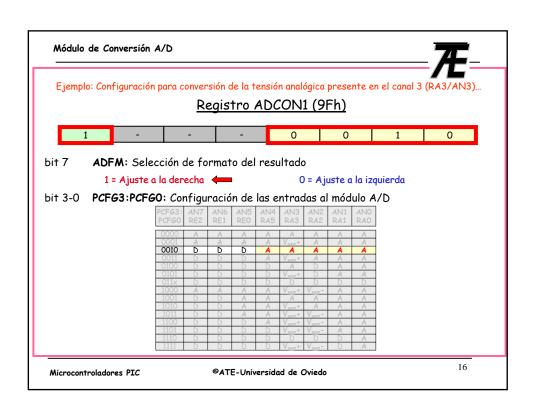

- Volver al paso 1 ó 2, según convenga.
- Espera mínima antes de empezar la siguiente adquisición: 2·TAD

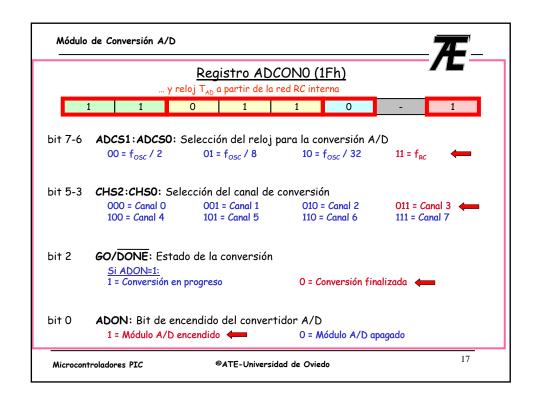

(Esta espera no es necesaria en el caso de los PIC16F87xA porque el interruptor de captura se "cierra" en cuanto se obtiene el resultado)


T_{AD}: Tiempo necesario para la conversión de un bit.


Microcontroladores PIC


@ATE-Universidad de Oviedo





Módulo A/D durante el modo SLEEP

El módulo A/D puede funcionar durante el modo dormido si se selecciona como reloj para la conversión el RC interno (ADCS1:ADCSO = 11). Cuando se escoga como reloj el RC, el módulo A/D espera 1 ciclo de instrucción antes de iniciar la conversión. Esto permite que se ejecute la instrucción SLEEP, lo cual elimina todo posible ruido de conmutación (debido al paso de normal a dormido) en la conversión. Cuando se haya completado la conversión, el bit GO/DONE se pone a "O" y el resultado se carga en los registros ADRES. Si la interrupción del conversor A/D está habilitada (ADIE y PEIE a "1") el dispositivo se "despertará". Si no estuviera habilitada, el módulo A/D se apagará aunque el bit ADON siga a "1".

Si la fuente de reloj para la conversión no es la RC interna, una instrucción SLEEP provocará que la conversión que se este ejecutando se aborte y que el módulo A/D se apague aunque el bit ADON siga a "1".

Microcontroladores PIC

@ATE-Universidad de Oviedo

Efectos de un RESET sobre el módulo A/D

Un RESET del dispositivo provoca que los registros del módulo A/D se inicialicen a los valores indicados en la tabla. Por tanto, un RESET provoca que el módulo A/D se apague y que cualquier conversión que se estuviera realizando cuando se produce el RESET se aborte. Todos los pines asociados al módulo A/D pasan a ser entradas analógicas. Los valores acumulados en ADRESH:ADRESL no se modifican por un Power-On-Reset. El valor que contendrán los registros ADRESH:ADRESL tras un POR serán desconocidos inicialmente.

nte.	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on MCLR, WDT
	OBh,8Bh,	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 0000

										BOR	WDT
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
1Eh	ADRESH	A/D Result Register High Byte								xxxx xxxx	uuuu uuuu
9Eh	ADRESL	A/D Result Register Low Byte								xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM	-	_	-	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000
85h	TRISA	_	_	PORTA	Data Directio	11 1111	11 1111				
05h	PORTA	_	-	PORTA	Data Latch v	0x 0000	0u 0000				
89h ⁽¹⁾	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	0000 -111	0000 -111		
09h ⁽¹⁾	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu

Microcontroladores PIC

@ATE-Universidad de Oviedo

19

Módulo de Conversión A/D Ejemplo sencillo de uso del modulo A/D (1 solo canal e interrupciones) ; Rutina de interrupción A/D: muestra valor en los leds del PORTB Este es un programa e jemplo de uso del conversor A/D en un PICIGF877, donde se usa un solo canal (CHO) y se usan interrupciones El conversor A/D se confrigura como sigue: Vref = 5V interna. A/D Osc. = RC interna Canal A/D s E-CHO btfss PIRI,ADIF : ¿Interrupcion del modulo A/D2 retfie : Si no retornamos movef ADRESH,W : Cojo los 8 bits altas de la conver movef PORTB : los muestro en los LEDS del POR bef PIRI,ADIF : Reseto el flog call SetupDelay : Delay de adquisición : mayor de 20 us f ADCOND,60 : lanza cua nueva conversión ¿ EInterrupcion del modulo A/D? Si no retornomos ; Cojo los 8 bits altos de la conversión ; Comuestro en los LEDS del PORTB ; Reseteo el flag ; Delay de adquisción ; mayor de 20 us ; lanzo una nueva conversión ; retorno, habilito GIE Se puede usar como Hardware para probar este ejemplo la tarjeta PT.CEM IT. El programa convierte el valor del potenciometro conectado a RAO en 10 bis, de los que los 8 bits más significativos se muestran en los leds conectados al PORTB. InitializeAD, inicializa el modulo A/D. Selecciona CHO a CH3 como entradas analógicas, reloj RC y lee el CHO. include <P16F877,INC> bsf STATUS,RP0 movlw B'00000100' movwf ADCON1 ; Banco 1 ; RAO,RA1,RA3 entradas analogicas RAO,RAI,RAS entradas analogicas ; Justificado a la izquierda . 8 bits mas significativos en ADRESH ; Habilitamos interrupciones A/D . 3 Banco 0 ; Oscilador RC, Entrada analógica CHO : Modulo A/D en funcionamiento ; Limpio flag interrupción ; Habilito interrupciones y Habilito interrupciones globales ; Habilito interrupciones globales ORG 0x00 ; Vector de Reset mown AUCONI : 0 bits mas. bef PELADIE | 50 bits mas. bef STATUS PPO | 10 bits mas. bef STATUS PPO | 10 bits mas. bef STATUS PPO | 10 bits mas. mowle Oct. | 10 cecledor P | 10 bits mas. bef PERADIE | 10 bits mowle Oct. | 10 bits mowle goto start org 0x04 ; Vector de interrupción goto service_int org 0x10 ; PORTB = 11111111b org 0x10 movwk 0FFB movwf PORTB : PORTB : 11111111b movwf PORTB sf STATUS,RPO movwf TRISA : PORTA son entradas clif TRISB : PORTB son salida bcf STATUS,RPO call InitializeAb call SetupDelay bcf ADCONO,60 ; Inicia conversión A/D goto loop ; Carga Temp con 3 SetupDelay ; Bucle de retardo END Microcontroladores PIC @ATE-Universidad de Oviedo