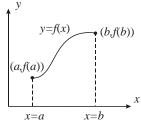

Áreas planas

Si y = f(x) es integrable en [a, b]

(a) Si
$$f(x) \ge 0$$
, $\forall x \in [a, b]$:
$$A = \int_a^b f(x) dx$$

(b) Área entre dos curvas y=f(x), y=g(x) : $A=\int_a^b|f(x)-g(x)|dx$

(c) Si f(x) cambia de signo en [a, b]: $A = \int_a^b |f(x)| dx$

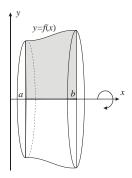

Nota: Para que el área sea positiva el intervalo de integración debe tomarse siempre creciente.

Longitud de un arco de curva

Si y = f(x) es una curva con f'(x) continua $\forall x \in [a, b]$, el valor

$$L = \int_a^b \sqrt{1 + \left[f'(x)\right]^2} \, dx$$

representa la longitud del arco de curva y = f(x) limitada por los puntos (a, f(a) y (b, f(b)).



Nota: Para que la longitud sea positiva el intervalo de integración debe tomarse siempre creciente.

Áreas y Volúmenes de cuerpos de revolución

Consideremos el cuerpo de revolución engendrado por el trapecio curvilíneo limitado por la curva y=f(x), el eje Ox y las rectas x=a, x=b al girar alrededor del eje Ox.

Volumen =
$$\pi \int_a^b [f(x)]^2 dx$$

Área = $2\pi \int_a^b f(x) \sqrt{1 + [f'(x)]^2} dx$

Nota: Para que el área y el volumen sean positivos el intervalo de integración debe tomarse siempre creciente.