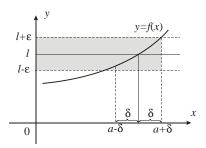
Definición de límite

Definición de límite según Cauchy

Sea $f(x): A \to \mathbb{R}$ y a un punto de acumulación de A.

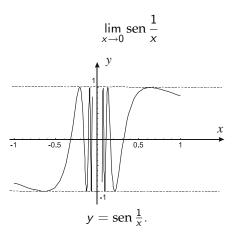
$$\lim_{x\to a} f(x) = I$$

$$si \ \forall \varepsilon > 0, \exists \delta(\varepsilon) > 0 \ / \ \forall x \in A, \ 0 < |x - a| < \delta \Longrightarrow |f(x) - I| < \varepsilon$$



No existencia de Límite

► Ejemplo:



Propiedades de los límites

Propiedades de los límites de funciones

Si existen los límites $\lim_{x\to a} u(x)$ y $\lim_{x\to a} v(x)$ se verifica:

$$i) \lim_{x \to a} [u(x) \pm v(x)] = \lim_{x \to a} u(x) \pm \lim_{x \to a} v(x)$$

$$ii) \lim_{x \to a} [u(x).v(x)] = \lim_{x \to a} u(x).\lim_{x \to a} v(x)$$

$$iii) \lim_{x \to a} \frac{u(x)}{v(x)} = \frac{\lim_{x \to a} u(x)}{\lim_{x \to a} v(x)}; \quad (si \lim_{x \to a} v(x) \neq 0)$$

Límites de uso frecuente

$$(1)\lim_{x\to 0}\frac{\operatorname{sen} x}{x}=1$$

$$(2)\lim_{x\to\infty}(1+\frac{1}{x})^x=\lim_{\alpha\to 0}(1+\alpha)^{1/\alpha}=e=2,71828...$$

$$(3) \lim_{x \to 0} \frac{\log_a(1+x)}{x} = \log_a e \ \left(\begin{smallmatrix} a > 0 \\ a \neq 1 \end{smallmatrix} \right) \Rightarrow \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$(4)\lim_{x\to 0} \frac{a^{x}-1}{x} = \ln a, \ (a>0) \Rightarrow \lim_{x\to 0} \frac{e^{x}-1}{x} = 1$$

Límites laterales

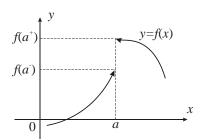
Límites laterales

Límite por la derecha de f(x) cuando $x \rightarrow a$

$$I = f(a^+) = \lim_{x \to a^+} f(x)$$

Límite por la izquierda de f(x) cuando $x \rightarrow a$

$$I = f(a^-) = \lim_{x \to a^-} f(x)$$



Límites laterales y existencia de límite

$$\lim_{x \to a} f(x) = \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x)$$

Infinitésimos

Infinitésimos

Se dice que f(x) es un infinitésimo cuando $x \rightarrow a$ si

$$\lim_{x\to a} f(x) = 0$$

Propiedades de los Infinitésimos

- i) La suma y el producto de un número finito de infinitésimos cuando $x \rightarrow a$ es un nuevo infinitésimo cuando $x \rightarrow a$.
- ii) El producto de un infinitésimo cuando $x \rightarrow a$ por una función acotada cuando $x \rightarrow a$, es un nuevo infinitésimo cuando $x \rightarrow a$.

Infinitésimos

Comparación de Infinitésimos

Sean f(x) y g(x) dos infinitésimos cuando $x \rightarrow a$. Si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \begin{cases} 0 & \text{f es de orden superior a g, y se denota } f = o(g) \\ \infty & \text{f es de orden inferior a g, y se denota } g = o(f) \\ l & \text{f y g son del mismo orden } (l \in \mathbb{R} - \{0, 1\}) \\ 1 & \text{f y g son equivalentes y se denota por } f(x) \sim g(x) \end{cases}$$

Orden de un Infinitésimo

Sean f(x) y g(x) dos infinitésimos cuando $x \rightarrow a$. Si

$$\lim_{x \to a} \frac{f(x)}{[g(x)]^n} = I$$

con $0 < |I| < \infty$ se dice que la función f es un infinitésimo de orden n respecto de g(x).

Infinitésimos

Principio de Sustitución

Si en una función sustituimos un factor o un divisor infinitésimo por otro equivalente, el valor del límite de la función no varía. Es decir si f(x) y g(x) son infinitésimos cuando $x \to a$ y si $\alpha(x) \backsim f(x)$ y $\beta(x) \backsim g(x)$, entonces

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\alpha(x)}{\beta(x)}$$
$$\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} \alpha(x) \cdot \beta(x)$$

Infinitésimos Equivalentes

$$\operatorname{sen} f(x) \sim f(x) \sim \operatorname{tg} f(x)$$

$$\operatorname{arc} \operatorname{sen} f(x) \sim f(x) \sim \operatorname{arc} \operatorname{tg} f(x)$$

$$1 - \operatorname{cos} f(x) \sim \frac{f(x)^2}{2}$$

$$\log_a (1 + f(x)) \sim \log_a e.f(x)$$

$$\ln (1 + f(x)) \sim f(x)$$

$$a^{f(x)} - 1 \sim \ln a.f(x)$$

$$e^{f(x)} - 1 \sim f(x)$$

$$(1 + f(x))^p - 1 \sim pf(x); \ p \in \mathbb{R}$$

Infinitos

Infinitos

Se dice que la función f(x) es un infinito cuando $x \rightarrow a$ si

$$\lim_{x\to a} f(x) = \infty$$

Comparación de infinitos

Sean f(x) y g(x) dos infinitos cuando $x \to a$. Se tienen los siguientes casos según el valor del límite del cociente

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \left\{ \begin{array}{ll} \infty & \text{f es de orden superior a g, y se denota } f = O(g) \\ 0 & \text{f es de orden inferior a g, y se denota } g = O(f) \\ I & \text{f y g son del mismo orden } (I \in \mathbb{R} - \{0,1\}) \\ 1 & \text{f y g son equivalentes y se escribe } f(x) \sim g(x) \end{array} \right.$$

Infinitos

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \sim a_n x^n$$

$$\ln (a_n x^n + a_{n-1} x^{n-1} + \dots + a_0) \sim \ln x^n, \quad (a_n > 0)$$

Infinitos equivalentes.

$$\log_a x$$
 \ll x^k \ll a^x \ll x^{bx}

Jerarquía de infinitos.

Casos de indeterminación

$$\infty - \infty$$
 $\infty \cdot 0$ $\frac{\infty}{\infty}$ $\frac{0}{0}$ 1^{∞} ∞^0 0^0

Resolución de Indeterminaciones

a) Límites de la forma: 0 · ∞

$$f(x) \cdot g(x) = \frac{f(x)}{1/g(x)} = \frac{g(x)}{1/f(x)}$$

▶ b) Límites de la forma: $\infty - \infty$

$$f(x) - g(x) = f(x) \left[1 - \frac{g(x)}{f(x)} \right]$$

▶ c) Límites de la forma 1^{∞} , ∞^0 y 0^0

$$L = e_{x \to a}^{\lim g(x) \ln f(x)} = e_{x \to a}^{\lim g(x)(f(x)-1)}$$