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This paper examines the applicability of the Ritz method to multi-objective optimiza-
tion of hydro-thermal systems. The algorithm proposed is aimed to minimize an objec-
tive functional that incorporates the cost of energy losses, the conventional fuel cost and
the production of atmospheric emissions such as NO, and SO, caused by the opera-
tion of fossil-fueled thermal generation. The formulation includes a general layout of
hydro-plants that may form multi-chains of reservoir network.

Time-delays are included and the electric network is considered by using the active
power balance equation. The volume of water discharge for each hydro-plant is a given
constant amount from the optimization interval. The generic minimization algorithm,
which is not difficult to construct on the basis of the Ritz method, has certain advantages
in comparison with the conventional methods.

Keywords: Multi-objective optimization; Economic dispatch;
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1. INTRODUCTION

The electric power systems are traditionally operated in such a way
that the total fuel cost is minimized regardless of the emissions
produced [1-4]. Recently, some papers present environmental dis-
patch algorithms [5] or combined optimizations for hydro-thermal
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systems [6] but they use very simple models and great simplifications.
The increasing requirements to the environmental protection give rise
to the need for alternative strategies. This paper presents an algorithm
[7] of multi-objective dispatch in a hydro-thermal system and discusses
the problem of minimization of three objectives that include the usual
minimum total quadratic fuel cost objective, the minimum SO, and
NO, emissions objective in quadratic form and the cost of energy
losses. The loss objective and the reduction of emissions are expressed
in monetary units to be compatible with the fuel objective of the
dispatching problem. The algorithm is constructed with the use of the
Ritz method.

The form of the emission function model depends (among other
things) on the emission type. It is generally acknowledged that for
SO, the emissions are proportional to the thermal unit’s fuel consump-
tion. As a result, the sulfuric emission function will be of the same
form as that of the fuel cost function used in the economic dispatch.
The NO, emissions function is less straightforward to represent
because these emissions are highly nonlinear in P. Several models have
been used to represent the emission levels: the sum of a quadratic and
an exponential term, a second order polynomial, a combination of a
straight line and an exponential term, etc. We take for the function
E(P) the second order polynomial, E(P) =e&P + o P*, where the param-
eters are computed via the least square criteria from several tests. Also,
the choice of a factor which converts transmission losses to equivalent
thermal generation cost is a crucial aspect of the process and we use an
approach to calculate the value of this factor.

In this work, we apply the Ritz method for the actual computer imple-
mentation of the optimal strategies in this hydro-thermal scheduling
(HTS) problem of short range. The hydro-network is assumed to have
several chains of hydro-plants on different streams. The volume of
water discharge for each hydro-plant is a prespecified constant amount
over the optimization interval, and we consider the river transport
delay. Finally, the algorithm developed for this problem has been suc-
cessfully applied to one real system; these results are presented below.

2. MATHEMATICAL OPTIMIZATION TECHNIQUES

In this Section, we discuss the problem of minimization of a quadratic
functional [8]. Let F be a heterogeneous quadratic functional over a
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domain D(F)C H, where H is a Hilbert space. The functional F(x)
assumes its minimum value Fy at x*. We seek an element x to approx-
imate Fy. A simple and efficient method of approximate solution of
this problem was proposed by Ritz.

Let g(u) be a homogeneous quadratic functional corresponding to
the bilinear symmetric form G(u, v), over the same domain D(F) and
such that g(u)=G(u,u). Let /() be a linear (that is, additive and
homogeneous, but not necessarily bounded) functional such that its
domain is D(F). Let F be the functional: F(x)=g(x)— 2Ix, and let us
assume that the functional g is positive, that is: g(x) =0 for x#0,
x € D(F).

LEMMA 1 If the homogeneous quadratic functional g is positive
definite, that is, there exists a constant mg > 0 such that: g(x) > mg|| x|
and the functional | is bounded, then the functional F is bounded from
below.

In this case the problem of minimization of F makes sense. Let us
introduce now the following concept.

A sequence {x"}°°, of D(F) is called minimizing for the functional
Fif: F(x™) — Fy=inf F(x).

It is easy to prove that the Ritz approximate solutions form a
minimizing sequence. Now we describe the Ritz process. We take the
coordinate elements {u;};o, in D(F), and will assume that every finite
set of coordinate elements is linearly independent. Then we introduce
the subspaces: H™ = L(uy, . ..,u,) € D(F). We shall also use the fol-
lowing lemma.

LEMMA 2 The functionals g(x) and Ix are continuous in each space
H™ and the functional g(x) is positive definite in each space H™, that
is, there exist positive constants m,, such that:

g(x) > m, |x|* (x € H®).

Let F,=inf, ¢ gy F(x). Then Yn in H ™ there exists only one element
where F=F,,.

The Ritz method consists in seeking the minimum of F not in H but
in H™, the n-dimensional subspace spanned by {u;};,. In other
words, xe H™ can be written as x = Soi, aiu; where ay,...,a, are
constants, and we thus seek the minimum of the function of n
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variables, F(3"% , aiu;) = F(ay, . .., ay). In this case

n n
Fla,...,a,) = Z a;ia;G(u;, uj) — ZZailui.
=1

i,j=1

As is easy to see, to minimize F amounts to solving the system of
equations, 0= 0F/da;. If we take for the (a;);_, the solution of the
latter system, then the elements x™, depending on the coordinate
elements (uq,...,u,), will be called the Ritz approximate solutions of
the basic optimization problem and (a;);, will be called the Ritz
coefficients. It is worth noting that the approximate solution does not
change if the functional is of the general form F(x)=g(x) —2Ix+c,
where ¢ is a constant.

Let us now consider the problem of determining the minimum of
the functional

F(x) = (Ax,x) —2(¥*,x) (x € D(4)),

which is called the energy functional. Later on, it will be our cost
functional. The next sections will be devoted to its construction. The
following is supposed: (a) the operator A4 is symmetric, that is, Vi, v €
D(A) we have (Au, v) = (u, Av); (b) the operator 4 is positive definite,
that is, there exists a constant myg >0 such that Yu € D(4) (Au,u) >
mo||ul|%; () y* € R(A). Let us assume that D(F)=D(A), G(u,v)=
(Au,v), lu=(u, y*) for u,ve D(F), then the energy functional can be
written as F(x)=g(x) — 2/x.

We now make use of the following construction [8]. Define a new
scalar product (the scalar energy product) setting

[u,v] = (Au,v) for u,v € D(A4),

and the new energy norm|u| =[u, ul.

Let us complete D(A) with respect to this norm |x|. It is not difficult
to verify that in the result of this completion D(4) becomes a new
Hilbert space H, which is called the energy space. Moreover, if
u; € D(A), which is dense in H 4, we obtain H™ c D(4) C H,4. We thus
arrive at the following theorem.
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THEOREM If the coordinate system is complete in H 4, then x™ con-
verges in H and in H 4 to the element x* which yields the minimum of F.

3. HYDRO-THERMAL SYSTEM MODELS

The aim of this section is to present some fundamental aspects of
modeling various parts of the electric power system. An electric power
system with m thermal plants and (r — m) hydro-plants is studied. The
following models are considered [1,2,7].

(1) Cost fuel model: For economy operation problems fuel cost of
the thermal plants is approximated by:

F(Py(t)) = oy + BiPsi(t) + 1P4(2).

Here o, §; and «y; are known constants for each plant and Pg;(%) is the
power generation of this plant.

(2) Emission function model: For the emissions we use a function
E(P) (8/h) of total NO,, and SO, emissions which is assumed to be a
second order polynomial:

E(Pg(1)) = &;Ps(t) + 0:P(1),

where the parameters were calculated via the least square criterion
from several tests [7] in thermal plant of Abofio (Spain) and with the
use of European penalty cases for pollution emissions.

(3) The transmission losses: The transmission losses Py(f) are
assumed to be represented by the model of Kirchmayer with the
following loss equation:

n n n
PL(I) = Kio+ Z Bi()P,'(l) + Z Z Pi(t)Biij(t),

=0 i=1 =1
where K o, Bjp and B;; are known parameters of system and P;(¢) is the
generation power. The choice of a factor ¢ which converts transmis-
sion losses to equivalent thermal generation cost is a crucial aspect of
the process [6]. We calculate ¢ as the incremental cost of generation
given by:

B+ 2P

| = i=1,2,...,m.
¢l 1'—2BijPi, l s~y ,m
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The average value of ¢ is given by the average of ¢; over all time
instants.

(4) Electric network model: The generation schedule must satisfy the
active power balance equation:

n
> Pi(1) = Pp(2) + PL(0).
i=1
denoted by APBE. Here Pp(?) is the system power demand.

(5) Hydro-network model: The hydro-network is assumed to have
several chains of hydro-plants on different streams as well as hydrau-
lically isolated plants. Let us denote by Ry, the set of all hydro-plants in
the system. We assume that the rate of discharge at the upstream plant
affects the behavior at the downstream plants. We say that the
hydraulic system has hydraulic coupling. The time delay of water dis-
charge between two consecutive plants is assumed to be a constant 7.

The variables of the system are: ¢;(¢), rate of water discharge by i
plants; 7, time delay of water between i and downstream reservoir;
Q:(?), volume of water discharge by i plants. The hydraulic power is

Prmyi(t) + AM+i(t)4m+i(t) + Bm+iqm+i(t)Qm+i(t) + Cm+,-qf,,+,-(t) =0
(i € RhCA)-

Phmti(t) + Amsi(8)gm+i(t) — Bmyigm+i(2) Z Yj(t9 Tj)
JER;

+ Bm+iqm+i(z)Qm+i(t) + Cm+iqfn+i(t) = 0; (i € RhID)-

where Rpca is the set of all upstream and isolated plants and Rymp
is the set of intermediate, and downstream hydro-plants. The param-
eters A,;4i(f), Bmi+i and C,,; are known for hydro-plants and
the function Y,(z, 7;) is

_ (1, 7) for0<t<m .
Y(t,m) = { (75, 15) + Qj(t — 1) formy <t =< Ty J & Ru
where
1=7;
Ui(t,15) = / gj(x)dx, j€ Ry, t<T
-7

Finally, it is assumed that the volume of water discharge b; for each

hydro-plant is a given constant amount from the optimization interval
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[0, T, and is given by:

Ty
/ qi(t) dt = b;
0

4. STATEMENT OF THE PROBLEM

An electric power system with m thermal plants and (» —m) hydro-
plants in w chains of hydro-plants on different streams is considered.
In order to simplify the formulation, let us consider only one chain,
and the results are generalized easily. The problem is to determine the
power generation of each plant in order to minimize a combined
objective in the optimization interval [0, T%]:

T; m
J= /0 {m Z(ai + BiPsi(t) + %Pﬁi(t))

i=1

+K22 €iPsi(1) + a1 P%( +/~:3¢ZB,,P2(1 }dz

i=1

Here k., k3, and ks, (k; <1, K1+ Ko+ k3 =1) are weighing constants
assigning relative values to the three cost components. The problem is
to be solved under the following conditions:

Kio+ ZZP )ByP;(t) + i(B,-o —1)P,(t) + Pp(1) =
i=0

i=1 j=1
qm—i—i(t) - Qm+i(t) =0; (i € Rh)-

Pomti(t) + Amti(t)Gm1i(2) + BmriGm+i(t)Qmi(2)
+ Cm+iqfn+i(t) =0; (i € RhCA)-
th+i(t) + Am+i(t)qm+i( ) m+tQm+1 E Y t TJ)
]ERhl
+ Bt iGm+i(t) Qm+i(2) + Cm+i‘13,+i(t) =0; (i € Rup)-

\I’f(n, 7) + Q7 (1 — 1)

\IJ?(I ) for0<t<m,
Y (t,7)
+2%(75,7)Q(t — ;) for 1; <t < Tr.
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Furthermore, the water discharge at each hydro-plant has to satisfy
the following constraint on the volume of water used, which is taken
from the optimization interval:

Ty
/ qi(?)dt = b;
0

To satisfy these constraints, we introduce the unknown functions of
time [(t), my(t), ni(f), and r;(f) which correspond to the previous
constraints and the unknown constant factor y; for the constraint of
the volume of water. These unknown functions, the constants y;, and
some suitable conditions have to be included in the cost functional
forming the augmented cost functional:

J= /0 {m ;(ai + BiP(1) + viP5(1))

+ Ky Z(EiPsi(t) + O’,'Pszi(t)) + I€3¢Z B,',‘P?(t)

i=1

+ (1) [KLQ + Z ZP B,]P + i(BiO - I)Pi(t) + PD(I):I

i=1 j=1 i=0
+ Z mm+t [qm+t ) - Qm-H'(l)]
I€ERy,
+ Z nm+i(t)[th+i(t) + Am+i(t)qm+i(t)

i€RncA

+ Bm+iqm+i(t)Qm+i(t) + Cm—H'qy%;_H'(t)]

£ 3 i) Ponis(0) + A (D)

i€ Rnip

— Botigm+i(t) Z Yi(t,75) + Bprigm+i(t) Om+i(t) + Cm+iqr2n+i(t)]
JER;

+ 3 Zn(x)l@?(m)}dr > [Mnweienar
ER}.]D I€Ry;

I€Ryp IERp;

_ / rj(t)[ 215, 17) + QF (1 — 7)) + 2;(7, 1) Oy — )}

tGRhID I€Ry;

Ty
+ /0 Z Pom+igmi(t) At — Z P+ ibmi-

i€Ry i€Ry
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This cost functional can be written in matrix form. Let us define the
control vector, u(f) = col[P(t) W(t)], where P(¢) is a column vector of
all active power generations, and W(¢) = col[W;(¢): i € Ry].

Each of the hydro-plants offers a subvector W;(¢), and each of the
hydro-subvectors has a dimension and a definition that depend on the
category of the plant. Thus we have:

. Qi(1)
Wi(t) = [%((tt))J i € Ruca; Wi(t) = L‘Zl(éz)] i € Ryp

with Yiw(l) =col [Yj(t, Tj)ije Rhi]: i € Ryip.
With the above preliminary definitions, the problem is readily
formulated as:

Tr Ty
Ju(t)] = /o [ () B(t)u(1)] dt+/0 [LT()u(t)) dt +c,

where the matrix B(?), the vector L(¢), and the constant ¢ are defined
and calculated in Bayon [7]. Let us define:

Gluyu) = (Au, ) = /0 [T () B(u(0)] d,

T
l-u=/0 [LT(£)u(r)] ds; c:—z,u,;bi.

i€ERy
The cost functional can be written as:
F(u) = (Au,u) —2lu+c (u € D(A)).

With these preliminaries at hand, we conclude that the problem is
ready for casting as a problem of the minimum of a quadratic func-
tional. In considering the problem formulated, we will have the follow-
ing assertion which is a simple consequence of the definitions given;
see, for example [1]:

(1) g(u): symmetric and positive definite functional.
(ii) /(u): linear and bounded functional.
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Under the above conditions every minimizing sequence for the
functional F(u) converges in H, to the element which yields the
minimum of F(u). Let us choose the energy space: L3[0, Tt] = Hy.
The vector u(?) is considered as an element of the Hilbert energy space
of n vector-valued square-integrable functions defined on [0, 7¢], whose
inner product is given by:

Ty
(0), ()] = (Av,u) = /0 7 (1) B(e)u(t)] dr.

The question of a rational choice of the coordinate functions plays
a fundamental role in the present work. For the sake of simplicity,
we choose as the coordinate functions the system {¢'};5,, which satisfy
the required boundary conditions. It is not difficult to verify [8] that
the above-formulated conditions are satisfied. That is, the elements
are linearly independent and form a complete system in the energy
space H 4, which completes the study of the questions related to the
construction of approximate solutions and verification of their
convergence.

The approximate solutions are usually constructed as the linear
combination of two or even one coordinate function.

5. OPTIMAL SOLUTION

In this section, we present a solution of the basic optimization problem
under the above-formulated assumptions. The Ritz method consists in
seeking the minimum of F not in H ,, but in H®, the n-dimensional
subspace spanned by {w;}}_,. In other words, x € H ™ can be written as:

n
X = E aw;.
i=1

Let us now consider the approximations to our control variables.
We note here that the augmented and modified cost functional [7]
depends only on two control variables: the thermal power generation
Pg;(2), and the rate of water discharge by hydro-plants g;(z).
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In general, with the coordinate functions w;(f), the approximations
are given by:
S
Py(f) = Pu(0) + > _diw(r) i=1,2,...,m,
1_1f |
Gmii(D) = gmii(0) + Y/ Mwi(t) i=1,2,...,n—m,
=1
where f is the number of coordinate functions and the dimension of
the subspace H™.

The results of computational experiments with a number of algo-
rithms and samples show a very fast convergence of the minimizing
sequence to the exact solution. In order to avoid instability of the Ritz
process, and for simplicity on calculations, we choose the system of
coordinate functions w;(f) = {¢'}, and take for the approximate Ritz
representation (solution) only one coordinate function. Under this
assumption, we have:

Psi(t) = Ps,(O) + d;(l) i=1,2,...,m,
gm+i(t) = gmi(0) + ¢ (1) i=1,2,...,n—m.

Now, we adopt a variational calculus approach that employs
Lagrange multipliers /( j) and p;. This approach simply transforms the
constrained problem into a nonlinear unconstrained problem, where
the function depends of the n X fx g Ritz coefficients (f for each

thermal or hydro-plant of the system and one for each node). We now
consider the problem of the minimum of the function of » variables:

J=Fay,...,anrq, 1(1),...,0(q);, tmsis---stn)-
The set of equations defining the optimality can be obtained simply by
setting the gradients of the augmented cost J with respect to the

unknowns equal to zero. The nonlinear system of equations is:
OF

adi
OF
Ber
OF
20)
OF
6/”'m+i

0, i=12,....m [=12,....f, j=12,...,q,
i=12,...,n—m; I=1,2,....f, j=1,2,...,q,

=0; j=12,...,q,

=0, i=1.2,...,n—m.
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We know that Newton’s method for solving nonlinear equations has
an unfortunate tendency to wander off into the wild blue yonder if the
initial guess is not sufficiently close to the root. A global method is the
one that converges to a solution from almost any starting point.

To resolve this system we will develop an algorithm that combines
the rapid local convergence of Newton’s method with a globally conver-
gent strategy that will guarantee some progress towards the solution at
each iteration. The classic algorithm [9] is close to the quasi-Newton
method of minimization and it is called the line searches and back-
tracking (LSB) method.

6. A NUMERICAL EXAMPLE

A computer program (Fortran 77) [7] was written to apply the results
obtained in this paper to practical power system. The units for the
coefficients of the thermal plants are: o in (§/h); 8 and € in ($/h - MW);
v and o in ($/h- MW?), the transmission loss coefficients B; are in
(1/MW) and the initial power P(0) in (MW). The data of the
thermal plants and hydro-plants are summarized in Tables I and II
respectively.

The units for the coefficients of the hydro-plants are: the efficiency
G in (ft*/h- MW), the restriction on the volume b in (ft%), the loss
coefficients B in (1/MW), the natural inflow i in (ft*/h), the initial
volume S(0) in (E9-ft’), the coefficients By in (E—8-ft™2-h), the
coefficients By in (E — 12 - ft2), the time delay 7 in (h) and ¢(0) in (ft*/
h). The reader is referred to Suarez [2] for the relation between S(0), i,
Brand By with the coefficients 4, B and C.

The system consists of three thermal plants and six hydro-plants
and the hydro-network is as shown in Fig. 1. The system’s power demand
is shown in Fig. 2, and the variation of relative error with iterations is

TABLE I Thermal plant’s coefficients

a B vy € 4 B P(0)
Plant 1 0 4.2 0.0014 0.16 0.0004 0.00016 31.58
Plant 2 0 4.1 0.0013 0.17 0.0005 0.00010 66.98
Plant 3 0 4.0 0.0012 0.18 0.0006 0.00016 87.73
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FIGURE 1 Sample hydro-system.
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FIGURE 2 Power demand.

also shown in Fig. 3. Finally, the computed optimal active power
generations for the sample system are shown only for two plants: in
Fig. 4 for the thermal plant number 2 and in Fig. 5 for the hydro-plant
number 4. In two cases, four studies are presented: minimization of
fuel cost (k, = 1), of pollution emissions (k, = 1), of transmission losses
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FIGURE 3 Variation of relative error.
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FIGURE 4 Optimal thermal power (plant 2).

(k3= 1), and multi-objective optimization (k; =0.6; k; =0.2; k3 =0.2).
The rest of plants is not presented, because it will be very extensive.

The algorithm of LSB accounts for many advantages. First of all, to

run the method one does not have to start from specially selected
initial values. The process leads to an optimal solution even if the
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FIGURE 5 Optimal hydro-power (plant 4).

initial values were chosen as general as:

o _bi. o _p+rat

qz q s si 2 4
O ~g; u@~10"% forallj=1,2,...,q.

Moreover, it shows a rapid convergence to the optimal solution (in the
example, it happened to be sufficient to perform 10 iterations to
acquire the prescribed error) and due to the simplicity of the opera-
tions which one has to perform in this method, the realization of the
method does not take much time.

7. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, a new formulation of the economic operation of hydro-
thermal electric power systems is given. The optimal solution for the
problem is introduced with the use of the Ritz method. The formula-
tion includes a general layout of hydro-plants that may form multi-
chains of reservoir network. Time-delays are included and the electric
network is considered by using the active power balance equation. The
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volume of water discharge for each hydro-plant is a given constant
amount from the optimization interval. A computer program was
written to solve the nonlinear system of optimal equations. The pro-
gram used the above-mentioned LSB method.

The main merits of the method are the following: this is a general
method which can be applied to various models of hydro-thermal
systems; it permits one to eliminate the variables associated with the
transport delay and it can be easily applied to combined optimizations.
In conclusion, this iterative technique shows a rapid convergence for
such complex problems and the LSB method is sure to converge to a
solution from almost any initial approximation.

However the principal merit of this method consists in the fact that
this is a general method which deals with any model of the hydraulic
net without any substantial modification. Hence we could easily take
into account restrictions formulated in the form of inequalities

p?lax > Di > p;nin; q:jnax > qr > q::nin_
To this end we will make use of the Kuhn—Tucker conditions or
penalty functions. And also, we will be able to substitute (to perform
the same steps) the APBE by the exact equations of the load flow:

N
Py ="y ex(e/Gy +/iBy) +/i(fiGij — ¢Biy);
=

N
Ok =Y file;Gi; +/iBy) — ex(fiGij — ¢Biy),
j=1
with the classic parameter defined in Suarez [2] or EI-Hawary [1].
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