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A new algorithm for the optimization of a simple
hydrothermal problem
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Abstract

This paper falls within the scope of studies concerning the optimization of the functioning of hydro-

thermal systems. We have developed a much simpler theory than previous ones that resolves the problem of

minimization of a functional
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F ðzÞ ¼
Z T

0

Lðt; zðtÞ; z0ðtÞÞdt
within the set of piecewise C1 functions (bCC1) that satisfy zð0Þ ¼ 0; zðT Þ ¼ b and the constraints
06Hðt; zðtÞ; z0ðtÞÞ6 PdðtÞ 8t 2 ½0; T �

In particular, we have established a necessary condition for the stationary functions of the functional.

This theorem allows us to elaborate the optimization algorithm that leads to determination of the optimal
functioning of the hydroplant and of the whole hydrothermal system. Finally, we present a example em-
ploying the algorithm realized to this end with the ‘‘Mathematica’’ package. The program developed is very
simple and easy to use.
� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A hydrothermal system is made up of hydraulic and thermal power plants that must jointly
satisfy a certain demand in electric power during a definite time interval. Thermal plants generate
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power at the expense of fuel consumption (which is the object of minimization), while hydraulic
plants obtain power from the energy liberated by water that moves a turbine; there being a limited
quantity of water available during the optimization period. In prior studies [1,2], it was proven
that the problem of optimization of the fuel costs of a hydrothermal system with m thermal power
plants without transmission losses may be reduced to the study of a hydrothermal system made up
of one single thermal power plant, called the thermal equivalent. In the present paper, we consider
a simple hydrothermal system with one hydraulic power plant and m thermal power plants
without transmission losses that have been substituted by their thermal equivalent. Under these
conditions, we present the problem from the Electrical Engineering perspective to then go on to
resolve the mathematical problem thus formulated. We will call this problem: the H1–T1 problem.
2. Hydrothermal statement of the H1–T1 problem

The problem consists in minimizing the cost of fuel needed to satisfy a certain power demand
during the optimization interval ½0; T �. Said cost may be represented by the functional
F ðPðtÞÞ ¼
Z T

0

WðP ðtÞÞdt
where W is the function of thermal cost of the thermal equivalent and PðtÞ is the power generated
by said plant. Moreover, the following equilibrium equation of active power will have to be
fulfilled
P ðtÞ þ Hðt; zðtÞ; z0ðtÞÞ ¼ PdðtÞ 8t 2 ½0; T �
where PdðtÞ is the power demand and Hðt; zðtÞ; z0ðtÞÞ is the power contributed to the system at the
instant t by the hydraulic plant, being: zðtÞ the volume that is discharged up to the instant t
(in what follows, simply volume) by the plant, and z0ðtÞ the rate of water discharge of the plant at
the instant t.
Taking into account the equilibrium equation, the problem reduces to calculating the minimum

of the functional
F ðzÞ ¼
Z T

0

WðPdðtÞ 
 Hðt; zðtÞ; z0ðtÞÞÞdt
If we assume that b is the volume of water that must be discharged during the entire optimization
interval, the following boundary conditions will have to be fulfilled
zð0Þ ¼ 0; zðT Þ ¼ b
Traditional studies dealing with hydrothermal optimization employ concrete models both for the
function of thermal cost W, as well as for the function of effective hydraulic generation H . Hence,
if the model changes, the algorithms obtained are not valid. The study of optimal conditions for
the functioning of a hydrothermal system constitutes a complicated problem that has attracted
significant interest in recent decades. Several techniques have been applied to solve this problem,
such as functional analysis techniques [3] or Ritz�s method [4]. Such a variety of mathematical
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models forces us to undertake a general study of the problem. The algorithms obtained with this
study should be extensible to a large set of hydrothermal problems.
One of the main contributions of this paper is that the method is valid for any model of power

plants, since we will try to consider the functions Pd, W and H as general as possible without any
restrictions, except those that are natural for problems of this type. For the sake of convenience,
we assume throughout the paper that they are sufficiently smooth and are subject to the following
additional assumptions:
Function of thermal cost. Let us assume that the function of thermal cost W : Rþ ! Rþ satisfies:

W0ðxÞ > 0 8x 2 Rþ and thus is strictly increasing. This restriction is absolutely natural: it reads
more cost to more generated power. Let us assume as well that W00ðxÞ > 0 8x 2 Rþ and is
therefore strictly convex. The models traditionally employed meet this restriction.
Function of effective hydraulic generation. Let us assume that the hydraulic generation

Hðt; z; z0Þ : XH ¼ ½0; T � � Rþ � Rþ ! Rþ is strictly increasing with respect to the rate of water
discharge z0, that is Hz0 > 0. Let us also assume that Hðt; z; z0Þ is concave with respect to z0, that is
Hz0z0 6 0. The suppositions we have made guarantee the fulfilment of the following inequalities:
Lz0z0 ðt; z; z0Þ > 0; Lz0 ðt; z; z0Þ < 0.
The real models meet these two restrictions; the former means more power to a higher rate of

water discharge. We see that we only admit non-negative thermal power P ðtÞ and we will solely
admit non-negative volumes zðtÞ and rates of water discharge z0ðtÞ, therefore we may expound the
mathematical problem in the following terms.
3. Variational statement of the H1–T1 problem

We will call H1–T1 the problem of minimization of the functional
F ðzðtÞÞ ¼
Z T

0

Lðt; zðtÞ; z0ðtÞÞdt
with L having the form
Lðt; zðtÞ; z0ðtÞÞ ¼ WðPdðtÞ 
 Hðt; zðtÞ; z0ðtÞÞÞ
over the set Hb
fz 2 bCC1½0; T �=zð0Þ ¼ 0; zðT Þ ¼ b; 06Hðt; zðtÞ; z0ðtÞÞ6 PdðtÞ 8t 2 ½0; T �g

We also suppose that
Hðt; b; z0ðtÞÞ6Hðt; zðtÞ; z0ðtÞÞ6Hðt; 0; z0ðtÞÞ 8z 2 Hb
These suppositions are fulfilled in all real hydrothermal problems, and bearing in mind the weak
influence of zðtÞ, (Hðt; b; z0Þ ’ Hðt; z; z0Þ ’ Hðt; 0; z0Þ), it is reasonable to substitute the restriction
06Hðt; zðtÞ; z0ðtÞÞ6 PdðtÞ ð1Þ
by others of the type
06Hðt; b; z0Þ; Hðt; 0; z0Þ6 PdðtÞ ð2Þ
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Fig. 1. Boundary and interior arcs.
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The solution to the problem with restrictions (2) will be very close to that obtained with re-
strictions (1), the advantage being that the mathematical treatment of those of type (2) is much
simpler that those of type (1) (see [5]). So the problem involves non-holonomic inequality con-
straints. Recently, a general optimization problem with inequality constraints has been studied [6–
8] using diverse techniques. In the present paper, we have developed a simple theory that solves
the hydrothermal H1–T1 problem. The development is hence self-contained and extremely basic
and also enables the construction of the optimal solution.
If we did not have the restrictions 06Hðt; zðtÞ; z0ðtÞÞ6 PdðtÞ, we could use the shooting method

to resolve the problem. In this case, we would use the integral form of Euler�s equation (Du Bois–
Reymond equation) 8t 2 ½0; T �
Z t

0

Lzðs; zðsÞ; z0ðsÞÞds
 Lz0 ðt; zðtÞ; z0ðtÞÞ ¼ 
Lz0 ð0; zð0Þ; z0ð0ÞÞ ¼ K > 0
Varying the initial condition of the derivative z0ð0Þ (initial flow rate), we would search for the
extremal that fulfills the second boundary condition zðT Þ ¼ b (final volume). However, we cannot
use this method in our case, as due to the restrictions, the extremals may not admit bilateral
variations, i.e. they may present boundary arcs.
The following questions arise: Do all the interior arcs (C1 and C3 in Fig. 1) have the same

constant K in the Du Bois–Reymond equation? At what moments does the boundary have to be
penetrated and be abandoned? In the following section, we shall develop the theory needed to
respond to these questions.
4. The main coordination theorem

We shall use Pontryagin�s maximum principle as the basis for demonstrating this theorem,
setting out our problem in terms of optimal control in continuous time, with the Lagrange-type
functional. Prior to this, we define the following function:

Definition 1. Let us term the coordination function of q 2 Hb the function in ½0; T �; defined as
follows



• if

• if
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YqðtÞ ¼
Z t

0

Lzðs; qðsÞ; q0ðsÞÞds
 Lz0 ðt; qðtÞ; q0ðtÞÞ
Theorem 1 (The main coordination theorem). If q 2 bCC1 is a solution of problem H1–T1, then 9K
such that

ii(i) If 0 < Hðt; qðtÞ; q0ðtÞÞ < PdðtÞ (t is not a boundary point) ) YqðtÞ ¼ K.
i(ii) If Hðt; b; q0ðtÞÞ ¼ 0) YqðtÞ6K.
(iii) If Hðt; 0; q0ðtÞÞ ¼ PdðtÞ ) YqðtÞPK.

Proof. We present the problem considering the state variable to be zðtÞ, the control variable uðtÞ,
and the state equation z0 ¼ u: The optimal control problem is thus:
min
uðtÞ

Z T

0

Lðt; zðtÞ; uðtÞÞdt with

z0 ¼ u
zð0Þ ¼ 0; zðT Þ ¼ b
06Hðt; b; uÞ ^ Hðt; 0; uÞ6 PdðtÞ

8<
:

We shall term the optimal control uopt, which we see in our case is the optimal flow rate q0ðtÞ,
therefore the optimal state will be q. Let �h be the Hamiltonian associated with the problem
�hðz; u; k; tÞ ¼ Lðt; z; uÞ þ k � u

In virtue of Pontryagin�s principle, there exists a piecewise C1 function kopt (co-state variable) that
satisfies the two following conditions:
k0
optðtÞ ¼ 
 o�h

oz
¼ 
L0

zðt; qðtÞ; uoptðtÞÞ ð3Þ

�hðqðtÞ; uoptðtÞ; koptðtÞ; tÞ6 �hðqðtÞ; u; koptðtÞ; tÞ 8u; 06Hðt; b; uÞ
Hðt; 0; uÞ6 PdðtÞ

�
ð4Þ
From (3) it follows that
koptðtÞ ¼ 

Z t

0

L0
zðs; qðsÞ; uoptðsÞÞdsþ K
From (4) it follows that for each t, uoptðtÞ minimizes the function

F ðuÞ ¼ Lðt; qðtÞ; uÞ þ koptðtÞ � u on fuj06Hðt; b; uÞ ^ Hðt; 0; uÞ6 PdðtÞg
Hence, in accordance with the Kuhn-Tucker theorem, for each t there exists two real non-negative
numbers, a and b, such that uoptðtÞ is a critical point of
F �ðuÞ ¼ Lðt; qðtÞ; uÞ þ koptðtÞ � uþ a � ðHðt; 0; uÞ 
 PdðtÞÞ 
 b � Hðt; b; uÞ
it being verified that:
Hðt; 0; uoptðtÞÞ 
 PdðtÞ < 0, then a ¼ 0

Hðt; b; uoptðtÞÞ > 0, then b ¼ 0:
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We hence have
F �0ðuoptðtÞÞ ¼ L0
uðt; qðtÞ; uoptðtÞÞ þ koptðtÞ þ a � H 0

uðt; 0; uoptðtÞÞ 
 b � H 0
uðt; b; uoptðtÞÞ ¼ 0
and the following cases:

Case 1: 0 < Hðt; qðtÞ; uoptðtÞÞ < PdðtÞ:
In this case, a ¼ b ¼ 0 and hence
L0
uðt; qðtÞ; uoptðtÞÞ þ koptðtÞ ¼ 0

L0
uðt; qðtÞ; uoptðtÞÞ 


Z t

0

L0
zðs; qðsÞ; uoptðsÞÞdsþ K ¼ 0) YqðtÞ ¼ K
Case 2: Hðt; b; uoptðtÞÞ ¼ 0:
In this case, Hðt; 0; uoptðtÞÞ 
 PdðtÞ < 0 and hence a ¼ 0:
L0
uðt; qðtÞ; uoptðtÞÞ þ koptðtÞ 
 b � H 0

uðt; b; uoptðtÞÞ ¼ 0
Bearing in mind now that b P 0 and H 0
uðt; b; uoptðtÞÞP 0, we have
L0
uðt; qðtÞ; uoptðtÞÞ 


Z t

0

L0
zðs; qðsÞ; uoptðsÞÞdsþ K ¼ b � H 0

uðt; b; uoptðtÞÞP 0) YqðtÞ6K
Case 3: Hðt; 0; uoptðtÞÞ 
 PdðtÞ ¼ 0:
In this case, Hðt; b; uoptðtÞÞ > 0 and hence b ¼ 0:
L0
uðt; qðtÞ; uoptðtÞÞ þ koptðtÞ þ a � H 0

uðt; 0; uoptðtÞÞ ¼ 0
Bearing in mind now that a P 0 and H 0
uðt; 0; uoptðtÞÞP 0, we have
L0
uðt; qðtÞ; uoptðtÞÞ 


Z t

0

L0
zðs; qðsÞ; uoptðsÞÞdsþ K

¼ 
a � H 0
uðt; 0; uoptðtÞÞ6 0) YqðtÞPK �
The constant K will be termed the coordination constant of the solution q.

Note 1.With the hypothesis Lz0z0 ðt; z; z0Þ > 0 (see [9]), the solution may also be guaranteed to be
of class C1.
5. Construction of the optimal solution

We have already mentioned the fact that if we did not have inequality restrictions, the solution
could be constructed by means of the shooting method. We use the same framework in the present
case, but the variation of the initial condition for the derivative, which now need not make sense,
is substituted by the variation of the coordination constant K.
The problem will consist in finding for each K the function qK which satisfies qK ¼ 0 and the

conditions of the main coordination theorem, and from among these functions, the one which
generates an admissible function ðqKðT Þ ¼ bÞ.
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We will denote by M the rate of water discharge at the instant t ¼ 0 that is necessary for
the hydraulic power station to satisfy the power demand: Hð0; 0;MÞ ¼ Pdð0Þ and we will denote
by m the rate of water discharge at the instant t ¼ 0 that is necessary for Hð0; 0;mÞ ¼ 0. We also
set
Km ¼ 
Lz0 ð0; 0;mÞ; KM ¼ 
Lz0 ð0; 0;MÞ
We observe that 8x 2 ðm;MÞ (with the hypothesis Lz0z0 ðt; z; z0Þ > 0) we have
KM < 
Lz0 ð0; 0; xÞ < Km
To construct qK , we proceed by the following steps:
[Step 1] (the first arc)

ii(i) If K PKm, we set qKðtÞ ¼ xðtÞ, the solution of the differential equation
Hðt; b;x0ðtÞÞ ¼ 0 with xð0Þ ¼ 0
in the maximal interval ½0; t1�, where
K PYxðtÞ ¼
Z t

0

Lzðs;xðsÞ;x0ðsÞÞds
 Lz0 ðt;xðtÞ;x0ðtÞÞ 8t 2 ½0; t1�
(The thermal power station generates all the power demanded in ½0; t1�).
i(ii) If K 6KM , we set qKðtÞ ¼ xðtÞ, the solution of the differential equation
Hðt; 0;x0ðtÞÞ ¼ PdðtÞ with xð0Þ ¼ 0
in the maximal interval ½0; t1�, where
K 6YxðtÞ ¼
Z t

0

Lzðs;xðsÞ;x0ðsÞÞds
 Lz0 ðt;xðtÞ;x0ðtÞÞ 8t 2 ½0; t1�
(The hydraulic power station generates all the power demanded in ½0; t1�.)
(iii) KM < K < Km (9x such that K ¼ 
Lz0 ð0; 0; xÞÞ:

qK will be the arc of the interior extremal (with qKð0Þ ¼ 0) which satisfies Euler�s equation in its
maximal domain ½0; t1� and therefore the coordination equation
K ¼ YqK ðtÞ ¼
Z t

0

Lzðs; qKðsÞ; q0KðsÞÞds
 Lz0 ðt; qKðtÞ; q0KðtÞÞ 8t 2 ½0; t1Þ
[i-th Step] (i-th arc)
(A) If qK has an interior arc in ½ti
1; ti�, there are two possibilities:
(I) If Hðti; b; q0KðtiÞÞ ¼ 0, we consider the maximal interval ½ti; tiþ1� such that, 8t 2 ½ti; tiþ1�
K P
Z ti

0

Lzðs; qKðsÞ; q0KðsÞÞdsþ
Z t

ti

Lzðs;xðsÞ;x0ðsÞÞds
 Lz0 ðt;xðtÞ;x0ðtÞÞ
xðtÞ being a solution of the differential equation
Hðt; b;x0ðtÞÞ ¼ 0 with xðtiÞ ¼ qKðtiÞ
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If this is the case, we set qKðtÞ ¼ xðtÞ 8t 2 ½ti; tiþ1�.
(II) If Hðti; 0; q0KðtiÞÞ ¼ PdðtiÞ, we consider the maximal interval ½ti; tiþ1� such that, 8t 2 ½ti; tiþ1�
K 6

Z ti

0

Lzðs; qKðsÞ; q0KðsÞÞdsþ
Z t

ti

Lzðs;xðsÞ;x0ðsÞÞds
 Lz0 ðt;xðtÞ;x0ðtÞÞ
xðtÞ being a solution of the differential equation
Hðt; 0;x0ðtÞÞ ¼ PdðtÞ with xðtiÞ ¼ qKðtiÞ
If this is the case, we set qKðtÞ ¼ xðtÞ 8t 2 ½ti; tiþ1�.
(B) If ½ti
1; ti� is the boundary interval, we consider the maximal interval ½ti; tiþ1� such that,

8t 2 ½ti; tiþ1�
K ¼
Z ti

0

Lzðs; qKðsÞ; q0KðsÞÞdsþ
Z t

ti

Lzðs;xðsÞ;x0ðsÞÞds
 Lz0 ðt;xðtÞ;x0ðtÞÞ ð5Þ
xðtÞ being an interior arc of the extremal, with xðtiÞ ¼ qKðtiÞ, which satisfies Euler�s equation in its
maximal domain ½ti; tiþ1� and therefore satisfies the coordination equation (5). Now, we set
qKðtÞ ¼ xðtÞ 8t 2 ½ti; tiþ1�.
From the computational point of view, the construction of qK can be performed with the same

procedure as in the shooting method, with the use of a discretized version of Eq. (5). The ex-
ception is that at the instant when the values obtained for z and z0 do not obey the restrictions, we
force the solution qK to belong to the boundary until the moment when the conditions of leaving
the domain (established in the main coordination theorem) are fulfilled.
6. A numerical example

A program was elaborated using the Mathematica package that resolves the optimization
problem and was then applied to a hydrothermal system made up of the thermal equivalent and a
hydraulic plant.
For the fuel cost model of the equivalent thermal plant, we use the quadratic model
WðPðtÞÞ ¼ a þ bPðtÞ þ cPðtÞ2
The units for the coefficients are: a in ($/h); b in ($/hMw); c in ($/hMW2).
The hydro-plant�s active power generation is given by
PhðtÞ ¼ 
AðtÞz0ðtÞ 
 Bz0ðtÞzðtÞ 
 Cz0ðtÞ2
where the coefficients A, B and C are
AðtÞ ¼ 
1
G

ByðS0 þ t � iÞ; B ¼ By

G
; C ¼ BT

G

We consider that the transmission losses for the hydro-plant are expressed by Kirchmayer�s
model, with the following loss equation: bl � ðPhðtÞÞ2. So,



Table 1

Coefficients of the thermal and hydraulic plants

a b c

0 4 0.001

G i S0 BT By bl

526 315 10 190 000 200� 109 581.740� 10
10 149.5� 10
12 0.0002
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HðtÞ ¼ PhðtÞ 
 bl � ðPhðtÞÞ2
The units for the coefficients of the hydro-plant are: the efficiency G in (m4/hMw), the restriction
on the volume b in (m3), the loss coefficient bl in (Mw
1), the natural inflow i in (m3/h), the initial
volume S0 in (m3), the coefficients BT in (m


2 h) and the coefficients By in (m

2) (parameters that

depend on the geometry of the tanks).
The data for the thermal and hydraulic plants are summarized in Table 1.
The values of the power demand (in MW) were adjusted to the following curve:
PdðtÞ ¼ 1000þ 3ð1þ 2Sin½4pt=24� 
 tð24
 tÞ2Cos½4pt=24�Þ

Firstly, an optimization interval of 24 h. was considered, and a final volume b ¼ 30� 106 m3.
Fig. 2 presents the plots of power demand (Pd), thermal power (P ) and effective hydraulic power

(H ). We can see that from 9 h until 15 h, corresponding to the hours of lowest power demand (i.e.
with the most pronounced trough), the hydraulic plant stops functioning and the thermal plant
assumes all the power demand. This is done to reserve water for when power demands are very
high, which corresponds to the peaks that can be seen in the figure. In this case, the cost is
$120 848.
However, if we take a larger final volume, b ¼ 300� 106 m3, the solution is that depicted in

Fig. 3. Here we see that as there is sufficient water, the hydraulic plant does not stop functioning at
any time whatsoever, though the thermal plant shuts off in the most pronounced trough, i.e. from
11 h until 13 h. In this case, the fuel cost is $51265.50, which logically is considerably lower.
4 8 12 16 20 24
t (h)

250

500

750

1000

1250

1500

P (Mw)

HPPd

Fig. 2. Optimal solution with b ¼ 30� 106 m3.
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Fig. 3. Optimal solution with b ¼ 300� 106 m3.
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7. Conclusions and future perspectives

From the Engineering perspective, one of the main contributions of this paper is that the
implemented algorithm is independent of the models used both for thermal and for hydraulic
power plants, in contrast to the majority of methods in this field, which use concrete models. What
is more, we have obtained a very simple method that enables us to find an optimal solution in the
presence of inequality constraints and which requires very little computational effort.
From the mathematical point of view, we have also obtained notable results. The main con-

tribution of this paper is a property of the extremals in variational problems with non-holonomic
constraints. Said property permits the solution to be constructed by means of a method inspired
by the shooting method that is much simpler than those employed up until now for resolving this
type of problem.
The algorithm presents a series of advantages. First of all, one does not have to start from

specially selected initial values in order to run the method. Moreover, it shows a rapid conver-
gence to the optimal solution, and its realization does not take much time due to the simplicity of
the operations to be performed in this method.
As far as future perspectives are concerned, it would be most interesting to apply this method

when the system is made up of n hydraulic power plants.
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