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Abstract

In this paper the authors present a necessary condition for minimum of a functional J(z) := fOT L(t,z(t), 7/ (1)) dt
in the case in which the function L is continuous but not of class C'. This situation arises in problems of optimization
of hydrothermal systems with pumped-storage plants. In such problems, the function L/ (t, z, -) is discontinuous in
7/ =0, which is the borderline point between the power generation zone (z' > 0) and the pumping zone (7' < 0). The
problem can be naturally formulated in the framework of nonsmooth analysis, using the generalized (or Clarke’s)
gradient.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many problems in pure and applied mathematics deal with nondifferentiable data. In this paper, we
present a necessary condition for minimum of a functional J:

T
J(2) ::/ L(t,z(t), 7' (t)) dt, (1.1)
0

where the Lagrangian L(-,-,-) : [0,T] x R x R — Rand L.(-, -, -) are the class CY and the function
L, (t, z, ) is piecewise continuous.
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This situation arises in a variety of problems of hydrothermal optimization [3] in which the hydroplants
have a pumping capacity [1]. The problem consists in minimizing the cost of fuel needed to satisfy a certain
power demand during the optimization interval [0, T']. Said cost may be represented by the functional

T
J(2) = / P[Py(t) — H(t,z(t), 7 (¢))]dt (1.2)
0
on
Q:={z€ AC[0, T]|z(0) =0 A z(T) = b}.

For AC[0, T] we denote the set of absolutely continuous functions from [0, T'] to R, Py is the power
demand, H is the function of effective hydraulic generation, z(¢) the volume that is discharged up to the
instant 7 by the hydroplant, z’(¢) the rate of water discharge at the instant ¢ by the hydraulic plant, b is the
volume of water that must be discharged during the entire optimization interval and ¥ is the cost function
of the equivalent thermal plant [2].

In this kind of problem, the derivative of H with respect to z’ (H,/) presents discontinuity at 7/ = 0,
which is the point at which a sudden change of H is produced, as it is the border between the power
generation zone (positive values of z') and the pumping zone (negative values of 7).

By classical results of Calculus of Variations, if L € C! then a minimizer ¢ € C' (strong or weak)
satisfies, V¢ € [0, T'], the Euler-Lagrange equation

1
L, (t,q(1t), q'(t)) = Const. + / L.(x,q(x),q'(x))dx.
0

It is natural to extend classical necessary conditions for minimizers to the case with integrands having
low regularity. Over the last quarter century there has been remarkable progress in the theoretical analysis
of nonsmooth functions, primarily motivated by optimization. Clarke’s introduction of his generalized
gradient in 1973 (see [4]) pioneered a rapid development, recently presented in detail in Loewen and
Rockafellar [5].

Here we show that our problem can be naturally formulated in the framework of nonsmooth analysis.
The main contribution of our work is the introduction, by the first time, of a necessary condition for
minimum for the resolution of the problem of hydrothermal optimization, using the Clarke’s gradient.
Moreover, we have developed a simple algorithm for resolving the problem. Said algorithm was imple-
mented using the Mathematica package and as an example of its practical application, we resolve a real
problem of hydrothermal optimization that involve pumped-storage plants.

2. Statement of the problem

Consider a function f(x) : R" — R and a point x € R". The classical gradient of f at x is defined
only when f'is differentiable at x, but nondifferentiable objective functions arise naturally and frequently
in optimization problems.

We introduce some preliminary ideas of a new generalized theory of differentiation, the main ideas of
which are inspired by the work of Clarke [4].

The nonsmooth analysis works with locally Lipschitz functions that are almost everywhere differen-
tiable (the set of points at which f fails to be differentiable is denoted Q). Let f(x) : R" — R be
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Lipschitz near x, and suppose S is any set of Lebesgue measure 0 in R". Consider any sequence x; con-
verging to x while avoiding both S and points at which fis not differentiable, and such that the sequence
of the gradients V f(x;) converges.

The generalized (or Clarke’s) gradient © f can be calculated as a convex hull of (almost) all converging
sequences of the gradients

o0f(x) =coflim Vf(x;):x; — x,x; ¢S5, x; € Qr}. 2.1

It is essential that at the points of smoothness of f(x) the generalized gradient coincides with gradient,
and for a convex function with its subgradient.

We now extend that study to integral functionals, which will be taken over the o-finite positive measure
space (T, 3, ) = [0, T'] with Lebesgue measure. L*°(T, Y) denotes the space of measurable essentially
bounded functions mapping T to Y, equipped with the usual supremum norm, with Y the separable Banach
space Y =R x R.

We are also given a closed subspace X of L>(T, Y):

t
X = {(s, v) € L®(T,Y) forsome c € R, s(t) =c +/ v(1) dr}
0

and a family of functions f; : ¥ — R (¢ € T) with f;(s, v) = L(t, s, v). We define a function f on X by
the formula

T
fs,v) :/ L(z, s(1), v(t))dr.
0
Note that for any (s, v) in X, we have f (s, v)=J (s). With (5, D) a given element of X (so thatv=(d/d¢)5s),
we assume that the integrand L is measurable in 7, and so that for some ¢ > 0 and some function k(-) in
L'[0, T one has
[L(2, 51, v1) — L, 52, v2) [ <k (@) (s1 — 52, v1 — v2)|

for all (s;, v;) in (5(¢), V(¢)) + ¢B. Then the next formula holds.

Theorem 1. Under the hypotheses described above, f is Lipschitz in a neighborhood of (s,v) and
one has

T
0f (5, ) c/ OL(1,5(t), D(¢)) dr. (2.2)
0

If in addition L is regular, then equality holds. So that if ¢ € 9f (s, V), we deduce the existence of a
measurable function &, = (r(¢), p(t)) such that

(r(t), p(t)) € OL(t, (1), (1)) a.e.

(where 0L denotes generalized gradient with respect to (s, v)) and where, for any (s, v) € X, one has

T T
(¢, (s,v)) 2/0 (S (s, v))C”Zf() [r(D)s(2) + p(H)v()]dr.
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If ¢ = 0 (as when J attains a local minimum at s) then 0 € 0 f (s, v), it then follows easily [6, lemma
Dubois-Reimond] that p(-) is absolutely continuous and that » = p’ a.e. In this case we have a nonsmooth
version (generalized subgradient version) of the Euler—Lagrange equation

(p'(t), p(t)) € OL(t,5(1), 5 (¢)) a.e. (2.3)

3. A necessary condition

We assume the following notations throughout the paper:
LIt z,2)) = Ly(t,2,2); L (t,2,7) :=Ly(t,2.2)),

t
¥I) =13, 2(0), 7 1) - / Ly(z,2(x), 2 (1)) dr,
' 0

t
¥ (1) =L_(t,2(), (1) — / L;(t, 2(7), 7' (1) dr.
0
With the above definitions we can demonstrate the next result (necessary condition for minimum).

Theorem 2. Letqg € Q := {z € ACI[0, T1|z(0) =0 A z(T) = b}. If q is minimum of J on Q then 3K € R
such that

Y =¥, (=K ifq'®)#0
¥ (2K>¥, (1) if ¢'(1)=0 3.1

Proof. Itis easy to see that the hypotheses of the Theorem 1 are satisfied for the functional (1.1). Bearing
in mind that the function L (¢, z, -) is discontinuous in z’, we have, using (2.1), that the Clarke’s gradient
is

OL(t,q(1).q'(1)) = (Lz, L, L]]) ae.
so Eq. (2.3) is

(p'0), p(0) € (Ly, [L, LT ace.,

t
P'1)=L:t,q(),q' (1) = p(t) =K + /0 L (t.q(1).q (1) dr,
p(t) € [L;, L]

Then, we have

1

L;<K+/O Li(t,q(0).¢' () de<L,

t t
L, - f L.(z,q(1), ¢ (1)) de<K <L} — f L (t,9(1),q'(0) dx,
0 0

+ —
¥, (t)>K>¥q ().
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If ¢’ (1) # 0, then L:r = L; and ¥;(t) =¥, (1) and in such a case
+0 — () —
Y, (=¥, =K. O
This Theorem 2 allows the extremals gx to be constructed in a simple way:

(i) For each K we construct gg, where gk satisfies the conditions (3.1) of Theorem 2 and the initial
condition g (0) = 0. In general, the construction of ¢} cannot be carried out all at once over all the
interval [0, T']. The construction must necessarily be carried out by constructing and successively
concatenating the extremal arcs (¢'(¢) # 0) and arcs where the plant neither it generates nor it pumps
(¢'(t) = 0) until completing the interval [0, T']. This is relatively simple to implement, with the use
of a discretized version of Eq. (3.1).

(i1) K is calculated such that gx € Q. The procedure is similar to the shooting method used to resolve
second-order differential equations with boundary conditions. Effectively, we may consider the func-
tion ¢(K) := qx (T) and calculate the root of ¢(K) — b = 0, which may be realized approximately
using elemental procedures like the secant method.

In some cases, for example, with functionals L(z, z') with L,/(¢, -) strictly increasing, the functional is
convex, and the above condition is also sufficient for minimum. This situation arises in a hydrothermal
system (see functional (1.2)) with a hydroplant (fixed head) whose power production H is a lineal function
of the rate of water discharge (m - 7/(t)) and whose power consumption during pumping is also a lineal
function of the amount of water pumped (M - 7/(¢)). The proof of the next theorem is easy, using the
previous Theorem 2.

Theorem 3. Let ¥ € C[R], ¥ strictly increasing, Py € C[0, T, and
L(t,7/ (1) == ¥Y(Pa(t) — H(Z'(1))), with

m-x ifx=0

H(x)::{M-x ifx<0’ O<m<M).

IfK>0and [K/M, K/m] C Y'[R], then gk (t) := fot wk (s)ds with

0 if ¢! (5) > Py(t) > ¢! (5)
m M

vl (5) = Pa(o)
—m

P (&) — Pa(t)
—-M

wg(t) =

if ! (%) < Py(t)

if Pa()<w'~! K
b M
provides the minimum value of J on
Qg ={z € AC[0, T]|z(0) =0 A 2(T) = qx (T)}.

The meaning of this proposition can be seen in Fig. 1. We call Py (¢) := Pq(t) — H (¢, 7'(¢)) the optimal
power generated by the thermal equivalent. It is easy to see that Py, (¢) is constant in the interior arcs of
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Fig. 1. Meaning of Theorem 3.
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4. Application to a hydrothermal problem

P (1) =

Let us now see a problem of a hydrothermal nature whose solution may be constructed in a simple way
taking into account Theorem 1. A program that resolves the optimization problem was elaborated using
the Mathematica package and was then applied to one example of hydrothermal system made up of eight
thermal plants and a hydraulic pumped-storage plant of variable head.

We consider the functional (1.2). The cost function that has systematically been used is a second-order
polynomial

Wi (x) = o + Bix + pix>.

It is also usual to consider the function of losses /; (x) = b;; - x2, (Kirchmayer’s model), where b;; is
termed the loss coefficient.

As an example, we shall use the thermal system of the company HC in Asturias (Spain), which is made
up of eight thermal plants. The data of the plants are summarized in Table 1. The units for the coefficients
are o; in ($/h), B; in ($/hMw), y; in ($/h Mw?), and the loss coefficients b;; in (1/Mw). For the fuel
cost model of the equivalent thermal plant, we use the quadratic model

P(P (1)) = teq + Beq P (1) + 7eq P(1)*.
We construct the equivalent thermal plant as we saw in [2], obtaining that

teq = 9377.2($/h); foq = 19.2616($/h Mw); 7,4 = 0.00175314($/h Mw?).
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Table 1
Coefficients of the thermal plants

Plant i o Bi Vi b;i

1 (Aboiio 1) 1227.83 17.621 0.01325 0.000103
2 (Aborfio 2) 743.78 20.842 0.00211 0.000072
3 (Soto 2) 77.72 21.277 0.00286 0.000172
4 (Soto 3) 1615.35 16.676 0.01659 0.000100
5 (Narcea 2) 2248.16 —7.984 0.17026 0.000353
6 (Narcea 3) 1459.44 21.569 0.01489 0.000121
7 (Lada 3) 1625.43 6.347 0.09803 0.000220
8 (Lada 4) 2155.62 17.745 0.01982 0.000097

We use a variable-head model and the hydroplant’s active power generation Py is different depending
on the positivity or negativity (pumping) of the rate of water discharge. The power production P} of the
hydroplant (variable head) is function of z(¢) and z/(¢) and its power consumption during pumping is a
lineal function of the amount of water pumped (M - z'(¢)). Hence the function Py is defined piecewise as

At)-Z/(t) — B -z(t) - Z/(¢t) if Z(t) >0,

Pu(t,z(2), 7' (1)) == {M 0 if Z/(1)<0

where A(r) and B are the coefficients
By
R

In the variable-head models, the term —B - z(t) - 7'(¢) represents the negative influence of the consumed
volume and reflects the fact that consuming water lowers the effective height and hence the performance
of the station. So, the function of effective hydraulic generation is

Pa(t, z(t), 2/ (1)) — buP2(t, 2(t), 2/(1)) if Z/(t) >0,
Pu(t, z(t), 2/ (1)) if z/() <0,

where by is the loss coefficient.

The values for the coefficients of the hydroplant are: the efficiency G: G = 526315 (m*/h Mw), the
restriction on the volume b: b = 1.1 - 107 (m?), the natural inflow i: i = 3.1313 - 10° (m3/h), the loss
coefficient byi: by = 0.00015 (1/Mw), the initial volume Sp: So = 200 - 108 (m?), the coefficient By:
By, =149.5 - 1011 (m~2), where B, is a parameter that depends on the geometry of the tanks. We also
consider M = (1.1) - A(0) (hMw/m?) that is the factor of water-conversion of the pumped-storage unit.

An optimization interval of 7 = 24 h was considered, with a discretization of 24 - 4 subintervals. The
secant method was used to calculate the approximate value of K for which gg(T) — b = 0. In eight
iterations:

By .
A(t) = E(SO +t-i); B=

H(t,z(t),Z @) := {

lgk (T) — b| < 10~%(m?)

for K = 1358.252465 - 107,
Table 2 presents the optimal solution and the power demand forz =0, 1, ..., 24 (h). Fig. 2 presents the
optimal hydro-power P, (Mw) and Fig. 3 presents the optimal thermal-power Py, (Mw) and the power
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Optimal solution and power demand

t Pq Pin Py t Py Pin Py
0 1480 1433.3 47.0 13 1489 1438.2 51.2
1 1316 1316 0 14 1515 1456.4 59.2
2 1171 1171 0 15 1539 1473.1 66.5
3 839 839 0 16 1534 1469.6 65.1
4 388 669.2 —281.2 17 1540 1473.8 66.9
5 410 669.2 —259.2 18 1574 1497.7 71.3
6 765 765 0 19 1616 1527.3 90.0
7 1175 1175 0 20 1584 1504.6 80.4
8 1347 1340.3 6.7 21 1582 1503.2 79.8
9 1430 1397.4 32.8 22 1613 1525.0 89.2

10 1524 1462.8 61.8 23 1590 1508.7 82.3

11 1560 1488.0 72.8 24 1480 1431.6 48.8

12 1522 1461.3 61.2

AP,

1500
1250
1000
750
500
250

Fig. 2. Optimal hydro-power Py,.

Fig. 3.

12 18
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demand Py (Mw). We can see that the optimal thermal-power remains constant in all the instants in which
pumping takes place (the conditions of Theorem 3 are satisfied). The cost of the optimal solution is $
91 8276 and the CPU time used was 10.0s.

5. Conclusions

In this paper we present the resolution of a problem of hydrothermal optimization with pumped-storage
plants. The problem can be naturally formulated in the framework of nonsmooth analysis. We use, by the
first time, the Clarke’s gradient for the resolution of this problem and we obtain a necessary condition for
minimum.
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