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a b s t r a c t

This paper addresses a hydrothermal problem that simultaneously considers non-regular
Lagrangian and non-holonomic inequality constraints, obtaining a necessary minimum
condition. It is further shown that the discontinuity of the lagrangian does not translate
as discontinuity in the derivative of the solution. Finally, a solution algorithm is developed
and applied to an example.
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1. Introduction

This paper deals with the optimization of hydrothermal problems. In a previous paper [1], we considered a hydrothermal
system with one hydro-plant and m thermal power plants that had been substituted by their thermal equivalent and ad-
dressed the problem of minimizing the cost of fuel FðPÞ during the optimization interval ½0; T�
FðPÞ ¼
Z T

0
WðPðtÞÞdt; ð1:1Þ

PðtÞ þ Hðt; zðtÞ; z0ðtÞÞ ¼ PdðtÞ 8t 2 ½0; T�; ð1:2Þ
zð0Þ ¼ 0; zðTÞ ¼ b; ð1:3Þ
where W is the function of thermal cost of the thermal equivalent and PðtÞ is the power generated by said plant.
The following must also be verified: the equilibrium equation of active power (1.2), and the boundary conditions (1.3),

where PdðtÞ is the power demand, Hðt; zðtÞ; z0ðtÞÞ is the power contributed to the system at the instant t by the hydro-plant,
zðtÞ being the volume that is discharged up to the instant t by the plant, z0ðtÞ the rate of water discharge of the plant at the
instant t, and b the volume of water that must be discharged during the entire optimization interval.

In this paper, we likewise considered constraints for the admissible generated power
PðtÞP 0; Hðt; zðtÞ; z0ðtÞÞP 0:
The mathematical problem ðP1Þ was stated in the following terms:
min
z2H1

FðzÞ ¼min
z2H1

Z T

0
W½PdðtÞ � Hðt; zðtÞ; z0ðtÞÞ�dt ¼min

z2H1

Z T

0
Lðt; zðtÞ; z0ðtÞÞdt;

H1 ¼ fz 2 bC1½0; T�jzð0Þ ¼ 0; zðTÞ ¼ b; 0 6 Hðt; zðtÞ; z0ðtÞÞ 6 PdðtÞ 8t 2 ½0; T�g;
where ðbC1Þ is the set of piecewise C1 functions.
. All rights reserved.
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The problem ðP1Þ was formulated within the framework of optimal control [2–7] and
YqðtÞ :¼ �Lz0 ðt; qðtÞ; q0ðtÞÞ � exp �
Z t

0

Hzðs; qðsÞ; q0ðsÞÞ
Hz0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

; ð1:4Þ
was called the coordination function of q 2 H1, obtaining the following result:

Theorem 1. If q is a solution of ðP1Þ, then 9K 2 Rþ such that
YqðtÞ is
6 K if Hðt; qðtÞ; q0ðtÞÞ ¼ 0;
¼ K if 0 < Hðt; qðtÞ; q0ðtÞÞ < PdðtÞ;
P K if Hðt; qðtÞ; q0ðtÞÞ ¼ PdðtÞ:

8><>:

In another previous paper [8], a problem of hydrothermal optimization with pumped-storage plants was addressed, though
without considering constraints for the admissible generated power. In this kind of problem, the derivative of H with respect
to z0 ðH0zÞ presents discontinuity at z0 ¼ 0, which is the border between the power generation zone (positive values of z0) and
the pumping zone (negative values of z0).

The mathematical problem ðP2Þ was stated in the following terms:
min
z2H2

FðzÞ ¼min
z2H2

Z T

0
W PdðtÞ � Hðt; zðtÞ; z0ðtÞÞ½ �dt ¼min

z2H2

Z T

0
Lðt; zðtÞ; z0ðtÞÞdt;

H2 ¼ fz 2 bC1½0; T�jzð0Þ ¼ 0; zðTÞ ¼ bg;
where Lð�; �; �Þ and Lzð�; �; �Þ are the class C0 and Lz0 ðt; z; �Þ is piecewise continuous ðLz0 ðt; z; �Þ is discontinuous in z0 ¼ 0).
Denoting by UqðtÞ, q 2 H2, the function
UqðtÞ :¼ �Lz0 ðt; qðtÞ; q0ðtÞÞ þ
Z t

0
Lzðs; qðsÞ; q0ðsÞÞds ð1:5Þ
and by Uþq ðtÞ and U�q ðtÞ the expressions obtained when considering the lateral derivatives of L with respect to z0.
The problem ðP2Þwas formulated within the framework of non-smooth analysis [9,10], using the generalized (or Clarke’s)

gradient, the following result being proven:

Theorem 2. If q is a solution of ðP2Þ, then 9K 2 Rþ such that
U
þ
q ðtÞ ¼ U�q ðtÞ ¼ K if q0ðtÞ–0;

U
þ
q ðtÞ 6 K 6 U�q ðtÞ if q0ðtÞ ¼ 0:

(

This paper merges the two previous studies, simultaneously considering non-regular Lagrangian and non-holonomic
inequality constraints (differential inclusions), obtaining a necessary minimum condition. Furthermore, under certain con-
vexity conditions, we shall establish the result (smooth transition) that the derivative of the minimum is continuous, presents
a constancy interval, the constant being the value for which Lz0 ðt; z; �Þ presents discontinuity. Finally, we shall present a solu-
tion algorithm and shall apply it to an example.
2. Mathematical statement and resolution of the problem

In this paper, we consider a hydrothermal system with one thermal plant (the thermal equivalent [11]) and one pumped
hydro-plant, which will have certain constraints in both generation and pumping for H. We shall take Hmin (maximum pump-
ing capacity) as the lower boundary and HsðtÞ ¼minfHmax, PdðtÞg (Hmax being maximum generation) as the upper boundary.

The mathematical problem ðP3Þ may be stated in the following terms:
min
z2H

FðzÞ ¼min
z2H

Z T

0
W½PdðtÞ � Hðt; zðtÞ; z0ðtÞÞ�dt ¼min

z2H

Z T

0
Lðt; zðtÞ; z0ðtÞÞdt;

H ¼ fz 2 bC1½0; T�jzð0Þ ¼ 0; zðTÞ ¼ b; Hmin 6 Hðt; zðtÞ; z0ðtÞÞ 6 HsðtÞ 8t 2 ½0; T�g;
where Lð�; �; �Þ and Lzð�; �; �Þ are the class C0 and Lz0 ðt; z; �Þ is piecewise continuous ðLz0 ðt; z; �Þ is continuous with one single point
of discontinuity at z0 ¼ 0). We shall assume that W is strictly increasing and strictly convex, that H verifies Hz0 > 0,
and Hzðt; zðtÞ; 0Þ ¼ 0, and the strictly increasing nature of Lz0 ðt; z; �Þ. We shall establish the necessary minimum condition
for this problem with non-regular Lagrangian and constraints on the admissible functions, employing to this end the
coordination function, YqðtÞ.

We shall denote by Yþq ðtÞ and Y�q ðtÞ the expressions obtained when considering in (1.4) the lateral derivatives of L and H
with respect to z0. We shall prove that these functions also verify Theorem 2 in the same way as Uþq ðtÞ and U�q ðtÞ, and that for
the stated problem, except in z0 ¼ 0 for which Lz0 ðt; z; �Þ is not continuous, Theorem 1 will continue to be valid. We thus obtain
the following result:



12 L. Bayón et al. / Applied Mathematics and Computation 209 (2009) 10–18
Theorem 3. If q is a solution of ðP3Þ, then 9K 2 Rþ such that:
ðiÞ If q0ðtÞ ¼ 0 ) Yþq ðtÞ 6 K 6 Y�q ðtÞ;

ðiiÞ If q0ðtÞ–0 ) YqðtÞis
6 K if Hðt; qðtÞ; q0ðtÞÞ ¼ Hmin;

¼ K if Hmin < Hðt; qðtÞ; q0ðtÞÞ < HsðtÞ;
P K if Hðt; qðtÞ; q0ðtÞÞ ¼ HsðtÞ:

8<:

Proof. Let us assume, for convenience sake, that there is a single interval ½t1; t2� with t1; t2 2 ð0; TÞ where z0 ¼ 0 (i.e. the
hydro-plant remains shut down in the interval ½t1; t2�Þ. It is obvious that qðtÞ ¼ qðt1Þ 8t 2 ½t1; t2�.

Let us consider the different situations that may arise in the interval ½0; T� ¼ ½0; t1� [ ½t1; t2� [ ½t2; T�
ðaÞ Generation—Shut down—Generation;
ðbÞ Generation—Shut down—Pumping;
ðcÞ Pumping—Shut down—Generation;
ðdÞ Pumping—Shut down—Pumping:
At ½0; t1� we are in a zone of generation or pumping, where only intervals with minimum or maximum constraints may ap-
pear in the hydraulic power generated. From Theorem 1 we have that 9K 2 Rþ such that
YqðtÞ is
6 K if Hðt; qðtÞ; q0ðtÞÞ ¼ Hmin;

¼ K if Hmin < Hðt; qðtÞ; q0ðtÞÞ < HsðtÞ;
P K if Hðt; qðtÞ; q0ðtÞÞ ¼ HsðtÞ:

8><>:

On the other hand, at ½t2; T� we are also in a zone of generation or pumping, and from Theorem 1 we have that 9eK 2 Rþ such
that
YqðtÞ is
6 eK if Hðt; qðtÞ; q0ðtÞÞ ¼ Hmin;

¼ eK if Hmin < Hðt; qðtÞ; q0ðtÞÞ < HsðtÞ;
P eK if Hðt; qðtÞ; q0ðtÞÞ ¼ HsðtÞ:

8>><>>:

We shall carry out the proof of Theorem 3 for case (a).

In this case, taking into consideration Theorem 2, we have that 9K� 2 Rþ such that
Z t1

0
Lzðs; qðsÞ; q0ðsÞÞds� Lþz0 ðt1; qðt1Þ;0Þ ¼ K�;

Z t2

0
Lzðs; qðsÞ; q0ðsÞÞds� Lþz0 ðt2; qðt2Þ;0Þ ¼ K�
and from the fact that Hzðt; zðtÞ;0Þ ¼ 0 8t 2 ½t1; t2�, we have that Lzðt; zðtÞ;0Þ ¼ 0, from which
Z t2

t1

Lzðs; qðsÞ; q0ðsÞÞds ¼ 0
and therefore it is deduced that
Lþz0 ðt1; qðt1Þ;0Þ ¼ Lþz0 ðt2; qðt2Þ;0Þ: ð2:1Þ
Furthermore, 8t 2 ½t1; t2�; z0ðtÞ ¼ 0 is a discontinuity point of Lz0 ðt; qðtÞ; �Þ and, once more, from Theorem 2
Z t

0
Lzðs; qðsÞ; q0ðsÞÞds� Lþz0 ðt; qðtÞ; 0Þ 6 K� 6

Z t

0
Lzðs; qðsÞ; q0ðsÞÞds� L�z0 ðt; qðtÞ;0Þ
and, as
K� ¼
Z t1

0
Lzðs; qðsÞ; q0ðsÞÞds� Lþz0 ðt1; qðt1Þ;0Þ and

Z t

t1

Lzðs; qðsÞ; q0ðsÞÞds ¼ 0;
we deduce that for case (a) the following expression is verified
L�z0 ðt; qðtÞ;0Þ 6 Lþz0 ðt1; qðt1Þ; 0Þ 6 Lþz0 ðt; qðtÞ;0Þ: ð2:2Þ
Besides, from Theorem 1, we have for t1 that
K ¼ �Lþz0 ðt1; qðt1Þ;0Þ � exp �
Z t1

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

: ð2:3Þ
Since 8t 2 ½t1; t2�
Z t

t1

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds ¼ 0; ð2:4Þ
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we have that 8t 2 ½t1; t2�
Z t

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds ¼
Z t1

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds ¼
Z t1

0

Hzðs; qðsÞ; q0ðsÞÞ
H�z0 ðs; qðsÞ; q0ðsÞÞ

ds ¼
Z t

0

Hzðs; qðsÞ; q0ðsÞÞ
H�z0 ðs; qðsÞ; q0ðsÞÞ

ds:
For all t 2 ½t1; t2�, from (2.2) it is verified that
L�z0 ðt; qðtÞ;0Þ � exp �
Z t

0

Hzðs; qðsÞ; q0ðsÞÞ
H�z0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

6 Lþz0 ðt1; qðt1Þ; 0Þ � exp �
Z t

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

6 Lþz0 ðt; qðtÞ; 0Þ � exp �
Z t

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

:

From (2.3) we have that
L�z0 ðt; qðtÞ;0Þ � exp �
Z t

0

Hzðs; qðsÞ; q0ðsÞÞ
H�z0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

6 �K 6 Lþz0 ðt; qðtÞ;0Þ � exp �
Z t

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

:

Besides, as 8t 2 ½t1; t2�, q0ðtÞ ¼ 0
L�z0 ðt; qðtÞ; q0ðtÞÞ � exp �
Z t

0

Hzðs; qðsÞ; q0ðsÞÞ
H�z0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

6 �K 6 Lþz0 ðt; qðtÞ; q0ðtÞÞ � exp �
Z t

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds
� �
and therefore
Yþq ðtÞ 6 K 6 Y�q ðtÞ
and we obtain (i) in Theorem 3.
To obtain (ii) in Theorem 3 we must prove that K in ½0; t1� is the same that eK in ½t2; T�. We have for t2 that
eK ¼ �Lþz0 ðt2; qðt2Þ;0Þ � exp �
Z t2

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

:

From (2.3) and (2.1) we have that
K ¼ �Lþz0 ðt1; qðt1Þ;0Þ � exp �
Z t1

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

¼ �Lþz0 ðt2; qðt2Þ;0Þ � exp �
Z t1

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds
� �
and from (2.4)
Z t2

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds ¼
Z t1

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

dsþ
Z t2

t1

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds ¼
Z t1

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds;
so, we have that
K ¼ �Lþz0 ðt2; qðt2Þ;0Þ � exp �
Z t2

0

Hzðs; qðsÞ; q0ðsÞÞ
Hþz0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

¼ eK

and the case (a) is proven.

The below expressions are obtained by analogous reasoning:
In case (b) it is verified that
Lþz0 ðt1; qðt1Þ;0Þ ¼ L�z0 ðt2; qðt2Þ;0Þ; ð2:5Þ

L�z0 ðt; qðtÞ;0Þ 6 Lþz0 ðt1; qðt1Þ; 0Þ 6 Lþz0 ðt; qðtÞ;0Þ: ð2:6Þ
In case (c) it is verified that
L�z0 ðt1; qðt1Þ;0Þ ¼ Lþz0 ðt2; qðt2Þ;0Þ; ð2:7Þ

L�z0 ðt; qðtÞ;0Þ 6 L�z0 ðt1; qðt1Þ; 0Þ 6 Lþz0 ðt; qðtÞ;0Þ: ð2:8Þ
In case (d) it is verified that
L�z0 ðt1; qðt1Þ;0Þ ¼ L�z0 ðt2; qðt2Þ;0Þ; ð2:9Þ

L�z0 ðt; qðtÞ;0Þ 6 L�z0 ðt1; qðt1Þ; 0Þ 6 Lþz0 ðt; qðtÞ;0Þ: ð2:10Þ
The proof for the remaining cases would be analogous, employing (2.5) and (2.6) in case (b), (2.7) and (2.8) in case (c) and
(2.9) and (2.10) in case (d).
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If the shut down interval contains 0 or T, bearing in mind that
Z t2

t1

Lzðs; qðsÞ; q0ðsÞÞds ¼ 0 and
Z t2

t1

Hzðs; qðsÞ; q0ðsÞÞ
Hz0 ðs; qðsÞ; q0ðsÞÞ

ds ¼ 0
the proof will be similar. h
3. Smooth transition

In this section, we present a qualitative aspect of the solution of the problem ðP2Þ. We prove that, under certain condi-
tions, the discontinuity of the derivative of the Lagrangian does not translate as discontinuity in the derivative of the solu-
tion. In fact, it is verified that the derivative of the extremal where the minimum is reached presents an interval of constancy,
the constant being the value for which Lz0 ðt; z; �Þ presents discontinuity. The character C1 of the solution is thus guaranteed.

Definition 1. Let us take t0 2 ð0; TÞ and e > 0. We consider the auxiliary function ht0
e defined on ½0; T�
ht0
e ðtÞ ¼

0 if t 2 ½0; t0 � e� [ ½t0 þ e; T�;

ðt � t0 þ eÞ if t 2 ½t0 � e; t0�;

�ðt � t0 � eÞ if t 2 ½t0; t0 þ e�:

8>><>>:

Notice that ht0

e 2 bC1½0; T�, 0 6 ht0
e ðtÞ 6 e 8t 2 ½0; T�, and
ðht0
e Þ
0ðtÞ ¼

0 if t 2 ½0; t0 � eÞ [ ðt0 þ e; T�;

1 if t 2 ðt0 � e; t0Þ;

�1 if t 2 ðt0; t0 þ eÞ:

8>><>>:
Theorem 4. Let Lð�; �; �Þ be the Lagrangian of the functional F in the conditions stated above, and let us assume that the function
Lz0 ðt0; zðt0Þ; �Þ is strictly increasing (decreasing) and discontinuous in 0 If q is minimum (maximum) for F, then: (i) t0 is not an
isolated point of a change in the sign of q0, (ii) q0 � 0 in some interval that contains t0 and (iii) q0 is continuous in t0.

Proof

(i) We’ll proceed by contradiction.
Let q 2 H2 be a minimum of F, and let us first assume that q0 is negative to the left of t0 and positive to the right of t0.
That is, let us assume that for t0 2 ð0; TÞ there exist e > 0 such that
q0ðtÞ < 0 8t 2 ðt0 � e; t0Þ; q0ðtÞ > 0 8t 2 ðt0; t0 þ eÞ:
The strict growth of Lz0 , as well as its discontinuity, implies that
Lz0 ðt; qðtÞ; q0ðtÞÞ < L�z0 ðt0; qðt0Þ;0Þ < Lþz0 ðt0; qðt0Þ;0Þ < Lz0 ðet ; qðetÞ; q0ðetÞÞ 8t 2 ðt0 � e; t0Þ 8et 2 ðt0; t0 þ eÞ:
Bearing in mind that 8t 2 ½0; T�, 0 6 ht0
e ðtÞ 6 e, it is evident that we may choose the previous e sufficiently small for the fol-

lowing inequality to be verified:
sup
t2ðt0�e;t0Þ

½Lz0 ðt; qðtÞ; q0ðtÞÞ þ ht0
e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ� < inf

t2ðt0 ;t0þeÞ
½Lz0 ðt; qðtÞ; q0ðtÞÞ � ht0

e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ�;
from which the following inequalities are deduced:
I1 ¼
Z t0

t0�e
½Lz0 ðt; qðtÞ; q0ðtÞÞ þ ht0

e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ�dt 6 e � sup
t2ðt0�e;t0Þ

Lz0 ðt; qðtÞ; q0ðtÞÞ þ ht0
e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ

h i
< e � inf

t2ðt0 ;t0þeÞ
Lz0 ðt; qðtÞ; q0ðtÞÞ � ht0

e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ
h i

6

Z t0þe

t0

½Lz0 ðt; qðtÞ; q0ðtÞÞ � ht0
e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ�dt ¼ I2:
Let us now take into account that
ht0
e ðtÞ ¼ 0 8t 2 ½0; t0 � e� [ ½t0 þ e; T�; ðht0

e Þ
0ðtÞ ¼ 0 8t 2 ½0; t0 � eÞ [ ðt0 þ e; T�;
then
dþFðq;ht0
e Þ :¼ limx!0þ

Fðqþ xht0
e Þ � FðqÞ
x

¼
Z t0þe

t0�e
½ht0

e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ þ ðht0
e Þ
0ðtÞ � Lz0 ðt; qðtÞ; q0ðtÞÞ�dt
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and hence
dþFðq;ht0
e Þ ¼

Z t0

t0�e
½ht0

e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ þ 1 � Lz0 ðt; qðtÞ; q0ðtÞÞ�dt þ
Z t0þe

t0

½ht0
e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ þ ð�1Þ

� Lz0 ðt; qðtÞ; q0ðtÞÞ�dt;
we have that
dþFðq;ht0
e Þ ¼

Z t0

t0�e
½Lz0 ðt; qðtÞ; q0ðtÞÞ þ ht0

e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ�dt �
Z t0þe

t0

½Lz0 ðt; qðtÞ; q0ðtÞÞ � ht0
e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ�dt

¼ I1 � I2 < 0;
which contradicts the assumption that q is a minimum of F.If q0 were positive to the left of t0 and negative to the right of t0,
the proof would be analogous, taking dþFðq;�ht0

e Þ.
(ii) Follows from (i).

(iii) We’ll proceed by contradiction. Let us assume that q0ðt�0 Þ < q0ðtþ0 Þ (if we assume that q0ðt�0 Þ > q0ðtþ0 Þ, the proof will be
analogous). Bearing in mind (i) and (ii), q0 is discontinuous in t0 only in the following cases:
ðaÞ q0ðt�0 Þ < 0; q0ðtþ0 Þ ¼ 0;
ðbÞ q0ðt�0 Þ ¼ 0; q0ðtþ0 Þ > 0:
For (a), in view of (i), there will exist an e > 0 such that q0ðxÞ ¼ 0 at ½t0; t0 þ e�. We may choose e such that q0ðxÞ < 0 at
½t0 � e; t0Þ. In this case
dþFðq;ht0
e Þ ¼

Z t0

t0�e
½ht0

e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ þ ðht0
e Þ
0ðtÞ � Lz0 ðt; qðtÞ; q0ðtÞÞ�dt þ

Z t0þe

t0

½ht0
e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ þ ðht0

e Þ
0ðtÞ

� L�z0 ðt; qðtÞ; q0ðtÞÞ�dt
and, by identical reasoning to that used in (i), we shall have that dþFðq;ht0
e Þ < 0, which once more means a contradiction of

the fact that q is a minimum of F.
Finally, for (b), in view of (i), there will exist an e > 0 such that q0ðxÞ ¼ 0 at ½t0 � e; t0�. We may choose e such that q0ðxÞ < 0

at ðt0; t0 þ e�. In this case
dþFðq;�ht0
e Þ ¼

Z t0

t0�e
½�ht0

e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ � ðht0
e Þ
0ðtÞ � Lz0 ðt; qðtÞ; q0ðtÞÞ�dt þ

Z t0þe

t0

½�ht0
e ðtÞ � Lzðt; qðtÞ; q0ðtÞÞ � ðht0

e Þ
0ðtÞ

� Lþz0 ðt; qðtÞ; q0ðtÞÞ�dt;
where, by identical reasoning to that used in section (i), we shall once more have the contradiction
dþFðq;�ht0
e Þ < 0: �
Note that this result has a very clear interpretation in terms of pumping plants: under optimum operating conditions,
pumping plants never switch brusquely from generating power to pumping water or vice versa, but rather carry out a
smooth transition, remaining inactive during a certain period of time.

4. Optimization algorithm

From the computational point of view, the construction of qK can be performed with the use of a discretized version of
Theorem 3. The problem will consist in finding for each K the function qK that satisfies conditions (i) and (ii) of Theorem 3,
and from among these functions, an admissible function qK 2 H. In general, the construction of qK cannot be carried out all at
once over the entire interval ½0; T�. The construction must necessarily be carried out by constructing and successively con-
catenating the extremal arcs, until completing the interval ½0; T�, where

� Hmin < Hðt; qðtÞ; q0ðtÞÞ < HsðtÞ (free extremal arcs), or
� q0ðtÞ ¼ 0 (the hydro-plant is on shut down), or
� Hðt; qðtÞ; q0ðtÞÞ ¼ HsðtÞ (the hydro-plant generates all the demanded power or its technical maximum), or
� Hðt; qðtÞ; q0ðtÞÞ ¼ Hmin (the hydro-plant is functioning at its maximum pumping power).

If the values obtained for q and q0 do not obey the constraints, we force qK to belong to the boundary until the moment
when the conditions of leaving the domain (established in Theorem 3) are fulfilled.

We will denote by m the rate of water discharge at the instant t ¼ 0 that is needed for the hydro-plant to reach its max-
imum pumping capacity: Hð0;0;mÞ ¼ Hmin and we will denote by M the rate of water discharge at the instant t ¼ 0 that is
needed for the hydro-plant to reach its maximum generating capacity, i.e. Hð0;0;MÞ ¼ Hsð0Þ. We also set
Km ¼ �Lz0 ð0;0;mÞ and KM ¼ �Lz0 ð0;0;MÞ
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as the respective coordination constants for these initial rates. We observe that 8x 2 ðm;MÞ (with the hypothesis
Lz0z0 ðt; z; z0Þ > 0), we have that
KM < �Lz0 ð0;0; xÞ < Km:
To construct the solution, we proceed by the stages shown below:

Stage I: Concatenation of extremal arcs

For each K, we construct qK .
First arc: Given K, we distinguish the following cases:

(i) If �Lþz0 ð0;0;0Þ 6 K 6 �L�z0 ð0;0;0Þ (shut down zone), we set q0KðtÞ ¼ 0 in the maximal interval ½0; t1�, where 8t 2 ½0; t1�,
satisfying
YþqK
ðtÞ 6 K 6 Y�qK

ðtÞ:
(ii) If �Lþz0 ð0;0;0Þ > K (hydro-generation zone) and KM < K , there exists a positive solution q0Kð0Þ for the equation
�Lz0 ð0;0; q0Kð0ÞÞ ¼ K . In this case, we construct an interior arc of the extremal, qKðtÞ, which satisfies Euler’s equation
in its maximal domain ½0; t1� (with qKð0Þ ¼ 0), where 8t 2 ½0; t1�, satisfying q0KðtÞ > 0 and
K ¼ YqK
ðtÞ:
(iii) If �Lþz0 ð0;0;0Þ > K (hydro-generation zone) and K 6 KM , we set qKðtÞ ¼ wðtÞ, the solution of the differential equation
Hðt;wðtÞ;w0ðtÞÞ ¼ HsðtÞ with wð0Þ ¼ 0 in the maximal interval ½0; t1�, where 8t 2 ½0; t1� it is verified that
K 6 YxðtÞ:
(iv) If �L�z0 ð0;0;0Þ < K (pumping zone) and K < Km, there exists a negative solution q0Kð0Þ for the equation
�Lz0 ð0;0; q0Kð0ÞÞ ¼ K . In this case, we construct an interior arc of the extremal, qKðtÞ, which satisfies Euler’s equation
in its maximal domain ½0; t1� (with qKð0Þ ¼ 0), where 8t 2 ½0; t1�, satisfying q0KðtÞ < 0 and
K ¼ YqK
ðtÞ:
(v) If �L�z0 ð0;0;0Þ < K (pumping zone) and K P Km, we set qKðtÞ ¼ wðtÞ, the solution of the differential equation
Hðt;wðtÞ;w0ðtÞÞ ¼ Hmin with wð0Þ ¼ 0 in the maximal interval ½0; t1�, where 8t 2 ½0; t1� it is verified that
K P YxðtÞ:
ith Arc: There are two possibilities:

(A) If ½ti�1; ti� is a maximal interval of shut down or boundary interval of hydro-plant, i.e. q0KðtÞ ¼ 0 or
Hðt; qKðtÞ; q0KðtÞÞ ¼ HsðtÞ or Hðt; qKðtÞ; q0KðtÞÞ ¼ Hmin in said interval, we consider the maximal interval ½ti; tiþ1� such that
8t 2 ½ti; tiþ1�
K ¼ �Lz0 ðt;xðtÞ;x0ðtÞÞ � exp �
Z ti

0

Hzðs; qKðsÞ; q0KðsÞÞ
Hz0 ðs; qKðsÞ; q0KðsÞÞ

ds�
Z t

ti

Hzðs;xðsÞ;x0ðsÞÞ
Hz0 ðs;xðsÞ;x0ðsÞÞ

ds

" #
;

xðtÞ being an interior arc of the extremal, with xðtiÞ ¼ qKðtiÞ, which satisfies Euler’s equation in its maximal domain ½ti; tiþ1�
and the above equation. Now, we set qKðtÞ ¼ xðtÞ 8t 2 ½ti; tiþ1�.

(B) If qK has an interior arc in ½ti�1; ti�, there are three possibilities:

(i) If Hðti; qKðtiÞ; q0KðtiÞÞ ¼ Hmin, we consider the maximal interval ½ti; tiþ1� such that, 8t 2 ½ti; tiþ1�

K P �Lz0 ðt;xðtÞ;x0ðtÞÞ � exp �
Z ti

0

Hzðs; qKðsÞ; q0KðsÞÞ
Hz0 ðs; qKðsÞ; q0KðsÞÞ

ds�
Z t

ti

Hzðs;xðsÞ;x0ðsÞÞ
Hz0 ðs;xðsÞ;x0ðsÞÞ

ds

" #
;

xðtÞ being a solution of the differential equation
Hðt;xðtÞ;x0ðtÞÞ ¼ Hmin with xðtiÞ ¼ qKðtiÞ:
If this is the case, we set qKðtÞ ¼ xðtÞ 8t 2 ½ti; tiþ1�.

(ii) If Hðti; qKðtiÞ; q0KðtiÞÞ ¼ HsðtiÞ, we consider the maximal interval ½ti; tiþ1� such that 8t 2 ½ti; tiþ1�

K 6 �Lz0 ðt;xðtÞ;x0ðtÞÞ � exp �
Z ti

0

Hzðs; qKðsÞ; q0KðsÞÞ
Hz0 ðs; qKðsÞ; q0KðsÞÞ

ds�
Z t

ti

Hzðs;xðsÞ;x0ðsÞÞ
Hz0 ðs;xðsÞ;x0ðsÞÞ

ds

" #
;

xðtÞ being a solution of the differential equation
Hðt;xðtÞ;x0ðtÞÞ ¼ HsðtÞ with xðtiÞ ¼ qKðtiÞ:
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If this is the case, we set qKðtÞ ¼ xðtÞ, 8t 2 ½ti; tiþ1�.

(iii) In another case, we consider the maximal interval ½ti; tiþ1� such that, 8t 2 ½ti; tiþ1�

� Lþz0 ðt;xðtÞ;x0ðtÞÞ � exp �
Z ti

0

Hzðs; qKðsÞ; q0KðsÞÞ
Hz0 ðs; qKðsÞ; q0KðsÞÞ

ds�
Z t

ti

Hzðs;xðsÞ;x0ðtÞÞ
Hþz0 ðs;xðsÞ;x0ðtÞÞ

ds

" #
P K;

K 6 �L�z0 ðt;xðtÞ;x0ðtÞÞ � exp �
Z ti

0

Hzðs; qKðsÞ; q0KðsÞÞ
Hz0 ðs; qKðsÞ; q0KðsÞÞ

ds�
Z t

ti

Hzðs;xðsÞ;x0ðtÞÞ
H�z0 ðs;xðsÞ;x0ðtÞÞ

ds

" #

with xðtiÞ ¼ qKðtiÞ, which satisfies the above equation and x0ðtÞ ¼ 0 in its maximal domain ½ti; tiþ1�. Now, we set
qKðtÞ ¼ xðtÞ;8t 2 ½ti; tiþ1�.

Stage II: Calculation of K

We determine K, such that qK 2 Hb.
Varying K, we would search for the extremal that fulfils the second boundary condition qKðTÞ ¼ b. The procedure is sim-

ilar to the shooting method used to resolve second-order differential equations with boundary conditions.

5. Application to a hydrothermal problem

A program that resolves the optimization problem was elaborated using the Mathematica package and was then applied
to one example of hydrothermal system made up of the thermal equivalent plant [11] and a hydraulic pumped-storage plant.

We use the quadratic model: WðxÞ :¼ c1 þ c2xþ c3x2, for the fuel cost model of the equivalent thermal plant, where the
values for the coefficients are: c1 ¼ 10696:1 ð$=hÞ; c2 ¼ 16:5477 ð$=h MwÞ: c3 ¼ 0:00329982 ð$=h Mw2Þ.

The power production H of the hydro-plant (variable head) is a function of zðtÞ and z0ðtÞ and its power consumption dur-
ing pumping is a lineal function of the amount of water pumped ðM � z0ðtÞÞ. Hence the function H is defined piecewise as
Hðt; zðtÞ; z0ðtÞÞ :¼
AðtÞ � z0ðtÞ � B � zðtÞ � z0ðtÞ if z0ðtÞ > 0;
M � z0ðtÞ if z0ðtÞ 6 0;

�
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Fig. 1. Optimal solution with M1.
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Fig. 2. Optimal solution with M2.
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where AðtÞ ¼ By

G ðS0 þ t � iÞ;B ¼ By

G . The values for the coefficients of the hydro-plant are: the efficiency G ¼ 526;315 m4=h MwÞ,
the restriction on the volume b ¼ 141:6� 105 m3, the natural inflow i ¼ 101:952� 105 m3=h, the initial volume
S0 ¼ 203:904� 109 m3 and the coefficient By ¼ 149:5� 10�12 m�2 (a parameter that depends on the geometry of the tanks).
M ðh Mw=m3Þ is the factor of water-conversion of the pumped-storage plant and we consider two cases: (1) M1 ¼ ð1;04ÞAð0Þ
and (2) M2 ¼ ð1;10ÞAð0Þ.

We consider a short-term hydrothermal scheduling (24 h) with an optimization interval [0,24] and we consider a discret-
ization of 96 subintervals. Figs. 1 and 2 present the optimum solution.

It can be seen how the interval of smooth transition varies when considering two different values of M.
The secant method was used to calculate the approximate value of K for which qKðTÞ � b ¼ 0. The algorithm shows a rapid

convergence to the optimal solution. For example, for M2, in four iterations: jqKðTÞ � bj < 10�2 ðm3Þ for K ¼
0:001307118235071412. The time required by the program was 27 s on a personal computer (Pentium IV/2 GHz).

6. Conclusions and future perspectives

The main contribution of this paper is that simultaneously considers non-regular Lagrangian and non-holonomic inequal-
ity constraints for the optimization of hydrothermal problems, unifying two theories that have been addressed indepen-
dently by the authors until now. Furthermore, we have established the result called smooth transition, i.e. that the
derivative of the minimum presents a constancy interval. This behavior had been observed in pumping plants in the exam-
ples solved computationally and has now been proven theoretically.

As far as future perspectives are concerned, it would be most interesting to apply this method to models in which the
discontinuity of the Lagrangian is not produced at z0 ¼ 0, but rather to solutions of a differential equation of the form
z0 ¼ f ðt; zÞ:
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