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Abstract In this paper we present an algorithm, inspired by the cyclic coordi-
nate descent method, which allows the solution of hydrothermal optimization
problems involving pumped-storage plants. The proof of the convergence
of the succession generated by the algorithm was based on the use of an
appropriate adaptation of Zangwill’s global theorem of convergence. Finally,
the algorithm proposed is implemented using the Mathematica Package and is
applied to an example to illustrate the results obtained.
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1 Introduction

In this paper we present an algorithm, inspired by the cyclic coordinate descent
method, that will allow the solution of hydrothermal optimization problems
involving hydraulic pumped-storage plants. In this case, the Lagrangian of the
functional is continuous but not of class C1.

This problem is large-scale and nonlinear and there is a vast bibliography
describing different formulations and solution methodologies applied to solv-
ing it: the Lagrangian relaxation technique [1], Linear programming [2] and
[3], dynamic programming [4] and genetic algorithms [5] have been widely
used in different formulations. The main drawback is that these approaches
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require serious simplifying assumptions to make the problem computationally
tractable.

We refer the reader to [6], an excellent paper that presents a review of
the literature on the various optimization methods applied to solving the
short-term hydrothermal coordination (STHTC) problem. These optimiza-
tion methods can be generally classified into two main groups: deterministic
methods and heuristic methods. Lagrangian relaxation (LR) and dynamic
programming (DP) are deterministic methods. Genetic algorithms (GAs) and
other evolutionary methods are heuristic.

LR uses Lagrange multipliers for the system constraints and adds the associ-
ated terms in the objective function, thus forming the Lagrangian function. For
fixed values of the multipliers, the initial large-scale problem is decomposed
into one subproblem per thermal plant and one subproblem per hydroelectric
system. There are two major drawbacks to the LR methods: (1) convergence of
the commonly employed subgradient algorithms to the dual maximum is very
slow and the solution of the subproblems may be very sensitive to variations
in the multipliers; and (2) the values of the multipliers that maximize the
dual function do not guarantee feasibility of the primal problem owing to the
nonconvexity of the problem search space. More often than not, the primal
solution is infeasible and heuristic procedures are required to obtain a feasible
primal solution. The duality gap is used as a measure of the quality of the
solution obtained.

Several DP methods have been used, on the other hand, to solve the
STHTC problem in numerous decomposition schemes. However, the “curse
of dimensionality”, which is the limited ability to solve large-sized problems
with large number of variables, still remains the major drawback of using DP
for a realistic system with multiple river basins and cascaded hydro-plants.
Finally, several evolutionary computation techniques based on evolutionary
theory (among these, GAs) have been introduced and applied to power system
optimization problems. Their main advantages are flexibility and the ability to
obtain good quality solutions; however, these are highly affected by computer
requirements and convergence characteristics.

In addition to the previous comments, the reader may check that only 12
of the 123 papers analyzed in [6] consider pumped-storage units. For these
reasons we consider other approach, the optimal control theory, to deal with
the stated problem.

In this paper we propose Pontryagin’s Minimum Principle (PMP) to solve
the hydrothermal optimization problem and provide an optimization algo-
rithm that leads to determination of the optimal solution of the general
problem with hydraulic pumped-storage plants.

In a prior study [7], it was proven that the problem of optimization of the
fuel cost of a hydrothermal system with several thermal plants may be reduced
to the study of a hydrothermal system made up of one single thermal plant,
called the thermal equivalent.

A necessary minimum condition was established in [8] for the optimization
of hydrothermal problems involving one single hydraulic pumped-storage



Numer Algor (2012) 59:227–247 229

plant, thereby considering non-regular Lagrangian and non-holonomic in-
equality constraints. The mathematical problem was stated in the following
terms:

min
z∈�

F(z) = min
z∈�

∫ T

0
�
[
Pd(t) − H(t, z(t), z′(t))

]
dt = min

z∈�

∫ T

0
L(t, z(t), z′(t))dt

� = {z ∈ Ĉ1[0, T] | z(0) = 0, z(T) = b ,

Hmin ≤ H(t, z(t), z′(t)) ≤ Hs(t), ∀t ∈ [0, T]}

where � is the function of thermal cost of the thermal equivalent, P(t) is the
power generated by said plant, Pd(t) is the power demand, H(t, z(t), z′(t)) the
function of effective hydraulic contribution, z(0) = 0, z(T) = b the boundary
conditions which will have to be fulfilled, Pd(t) − H(t, z(t), z′(t)) is the power
generated by the thermal equivalent, (Ĉ1) is the set of piecewise C1 functions,
Hmin is the maximum pumping capacity, Hs(t) = min {Hmax, Pd(t)} with Hmax
the maximum generation, L(·, ·, ·) and Lz(·, ·, ·) are the class C0 and Lz′(t, z, ·)
is piecewise continuous (Lz′(t, z, ·) is continuous with one single point of
discontinuity at z′ = 0.

The coordinate descent method, on the other hand, enjoys a longstanding
history in convex differentiable minimization. Surprisingly, very little is known
about the convergence of the iterates generated by this method. Convergence
typically requires restrictive assumptions such as that the cost function has
bounded level sets and is in some sense strictly convex. The problem of
minimizing a strictly convex function subject to linear constraints is considered
in [9]; a convex function of the Legendre type subject to linear constraints
is considered in [10]; while in [11], the author considers the objective to be
pseudoconvex in every pair of the coordinate blocks and regular in some
natural sense.

In [12] we presented an application of the algorithm of the cyclic coordinate
descent in multidimensional variational problems with constrained speed. We
showed an application to a hydrothermal system with one thermal plant (the
thermal equivalent) and several hydro-plants but neither hydro-plants with
pumping capacity.

The present paper addresses the generalization of both problems. First, we
shall prove a necessary minimum condition for the optimization of hydrother-
mal problems involving several hydraulic pumped-storage plants and, also we
shall introduce a numerical relaxation method for its solution and prove its
convergence. The proof of the convergence of the succession generated by
the algorithm was based, the same that in [12], on the use of an appropriate
adaptation of Zangwill’s global theorem of convergence [13]. The main con-
tribution of our work is the presentation of an algorithm which allows the
solution of a very complex problem of hydrothermal optimization involving
several pumped-storage plants. In this kind of problem, the Lagrangian is
piecewise continuous and we conseder non-holonomic inequality constraints
(differential inclusions) for the admissible generated hydro-power: Hmin ≤
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H(t, z(t), z′(t)) ≤ Hs(t). Finally, we present the solution of a hydrothermal
optimization in which the potential of the proposed algorithm is evidenced.

2 Statement of the problem

Let us consider a hydrothermal system comprised of n thermal plants and
m hydro-plants, assuming, with no loss in generality, that of the m hydro-
plants, the first k are of the pumped-storage type (non-regular Lagrangian).
The problem consists in minimizing the cost needed to satisfy a certain power
demand during the optimization interval [0, T]. Said cost may be represented
by the functional

J(z) =
∫ T

0
L(t, z(t), ż(t))dt (1)

L(·, ·, ·) is the class C2
(

[0, T] × R
2m −

k⋃
i=1

Si

)
and L(·, ·, ż) is the class C2([0,

T] × R2m), such that

L(t, z(t), ż(t)) = � (Pd(t) − H(t, z(t), ż(t)))

over the set

� := {z ∈ (C1[0, T])m / z(0) = 0, z(T) = b,

Hi min ≤ Hi(t, z(t), ż(t)) ≤ Hi max }
where z = (z1, · · · , zm) is the vector of admissible volumes, zi(t) being the
volume that is discharged up to the instant t by the i-th hydro-plant, ż =
(ż1, · · · , żm) is the vector of admissible rates, żi(t) being the rate of water
discharge at the instant t by the i-th hydro-plant and b = (b 1, · · · , b m) is the
vector of admissible volumes, bi being the volume that must be discharged up
to the instant T by the i-th hydro-plant. H(t, z(t), ż(t)) is the power contributed
to the system at the instant t by the set of hydro-plants, Hi(t, z(t), ż(t)) the
function of effective hydraulic contribution by the i-th hydro-plant, being

H(t, z(t), ż(t)) =
m∑

i=1

Hi(t, z(t), ż(t))

satisfying

∂2 Hi(t, z(t), ż(t))
∂ żi∂ ż j

= 0, (i �= j)

This condition means that the performance of the i-th hydro-plant is not
influenced by the rate of water of the remaining plants, although their volumes
may exert an influence.

Furthermore, Si, for every i ∈ {1, . . . , k}, is the set of points where

Lżi(t, z, ż1, . . . , żi−1, ·, żi+1, . . . , żm)
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presents its only discontinuity (in żi = 0, the stoppage zone of the i-th hydro-
plant). That is,

Si := {(t, z, ż1, . . . , żi−1, 0, żi+1, . . . , żm) ∈ [0, T] × R
2m}

We shall assume that the admissible rates żi(t) are bounded, � is strictly
increasing and strictly convex, the strictly increasing nature of

Lżi(t, z, ż1, . . . , żi−1, ·, żi+1, . . . , żm)

that ∂ Hi(t,z,ż)
∂ żi

> 0, ∀i = 1, ..., m, and that if (t, q(t), q̇(t)) ∈ Si, being q = (q1, . . . ,

qm), then for every i = 1, ..., m,

Hi min �= Hi(t, q(t), q̇1(t), . . . , q̇i−1(t), 0, q̇i+1(t), . . . , q̇m(t)) �= Hi max

and

∂ Hi(t, z(t), ż1(t), . . . , żi−1(t), 0, żi+1(t), . . . , żm(t))
∂zi

= 0

These conditions mean respectively that at the moments of maximum
generation or pumping, no discontinuities of Lżi are produced and that, at the
points of discontinuity of Lżi , there is no variation in the generation-pumping
function with respect to the volume.

We consider � equipped with the topology induced by the norm

||p||∗ := max{||p||∞, ||ṗ||∞} = max{ max
i=1,...,m

||pi||∞, max
i=1,...,m

|| ṗi||∞}

3 Minimum necessary condition

At this point, we shall test a result that will allow us to characterize the mini-
mum candidates of the proposed problem. We define the following function.

Definition 1 If (t, q(t), q̇(t)) /∈ Si, ∀t, we define the “i-th coordination function”
of q ∈ � in [0, T] as

Y
i
q(t) = −Lżi(t, q(t), q̇(t)) · exp

[
−
∫ t

0

Hzi(s, q(s), q̇(s))
Hżi(s, q(s), q̇(s))

ds
]

We denote by
(
Y

i
q

)+
(t) and

(
Y

i
q

)−
(t) the expressions obtained when consid-

ering the lateral derivatives with respect to ż. The fundamental result is the
following.

Theorem 1 If q ∈ � is solution of the problem (1), then there exists {Ci}m
i=1 ⊂ R

+
satisfying:

(i) If (t, q(t), q̇(t)) ∈ Si then
(
Y

i
q

)+
(t) ≤ Ci ≤

(
Y

i
q

)−
(t)
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(ii) If (t, q(t), q̇(t)) /∈ Si then

Y
i
q(t) is

⎧⎪⎨
⎪⎩

≤ Ci if Hi(t, q(t), q̇(t)) = Hi min

= Ci if Hi min < Hi(t, q(t), q̇(t)) < Hi max

≥ Ci if Hi(t, q(t), q̇(t)) = Hi max

Proof Considering the study carried out in [8] and that Pontryagin’s Principle
is verified for each one of the components i = 1, · · · m, the remaining com-
ponents being fixed, we may conclude that for every i = 1, · · · m, there exists
Ci ∈ R+ satisfying the thesis of the theorem. ��

4 Definition of the descent algorithm

The solution algorithm that we shall present is based on the resolution of a
problem with m hydro-plants, subsequent to solving a succession of problems
with one single hydro-plant. Let q ∈ �. Let

Li
q(t, zi, żi)

:= L(q1(t), · · · , qi−1(t), zi, qi+1(t), · · · , qm(t), q̇1(t), · · · , żi, · · · , q̇m(t))

and the functional Ji
q : �i

q −→ R,

Ji
q(zi) := J(q1, · · · , qi−1, zi, qi+1, · · · , qm) =

∫ T

0
Li

q(t, zi(t), żi(t))dt

where

�i
q := {z ∈ C1[0, T] / z(0) = 0, z(T) = bi,

Hi min ≤ Hi(t, q1(t), .., qi−1(t), z, qi+1(t), .., qn(t), q̇1(t), .., ż, .., q̇m(t)) ≤ Hi max}

Definition 2 We define the i-th minimizing map as the map �i : � −→ � that
satisfies for every q = (q1, . . . , qi, ..., qm) ∈ �

�i(q1, . . . , qi, . . . , qm) = (q1, . . . , q∗, . . . , qm)

where

Ji
q(q

∗) < Ji
q(zi), ∀zi ∈ �i

q − {q∗}
We shall denote by � the map associated with the descent algorithm, which
will be the composition of the i-th minimizing map:

� := �m ◦ · · · ◦ �1

In every k-th iteration of the algorithm, “the m hydro-plants will have been
minimized” through the i-th minimizing applications in the established order,
thus obtaining the new, admissible element, qk,

qk = �(qk−1) = (φn ◦ φn−1 ◦ · · · ◦ φ2 ◦ φ1)(qk−1)
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The limit of this descending succession will be provided by the sought after
minimum. We denote q∗

i = (q1, . . . , q∗
i , . . . , qm) and q̇∗

i = (q̇1, · · · , q̇∗
i , · · · , q̇m).

The following proposition is verified.

Proposition 1 If q∈�, then �i(q) = q∗
i is of class C1 and there exists {Ci}m

i=1 ⊂
R

+ satisfying:

(i) If q̇∗
i (t) is a point of discontinuity of

(
Li

q

)
żi

(t, q∗
i (t), ·),

(
Y

i
�i(q)

)+
(t) ≤ Ci ≤

(
Y

i
�i(q)

)−
(t)

(ii) If
(

Li
q

)
żi

(t, q∗
i (t), ·) is continuous in q̇∗

i (t),

Y
i
�i(q)(t) is

⎧⎪⎨
⎪⎩

≤ Ci if Hi(t, q∗
i (t), q̇∗

i (t)) = Hi min

= Ci if Hi min < Hi(t, q∗
i (t), q̇∗

i (t)) < Hi max

≥ Ci if Hi(t, q∗
i (t), q̇∗

i (t)) = Hi max

Proof Considering that q∗
i minimizes the functional Ji

q, and the results ob-

tained in [14] for those points where
(

Li
q

)
żi

is continuous and in [8] for those

points of discontinuity of
(

Li
q

)
żi

(existence of plants with pumping capacity),

we may guarantee that the minimum of the proposed problem belongs to C1.
Therefore, �i(q) is of class C1.

Moreover, as q∗
i minimizes the functional Ji

q, following analagous reasoning
to that of Theorem 1, we may conclude that there exists {Ci}m

i=1 ⊂ R+ satisfying
the thesis of Proposition 1. ��

Approximate construction of φi(q) The implementation of the minimizing
map φi(q) is performed by means of the approximate solution of the problem
resulting from setting the “components” different to i.

The properties of φi(q), expressed in Proposition 1, allows us to undertake
its approximate calculation using similar numerical methods to those used to
solve differential equations in combination with an appropriate adaptation of
the classical shooting method. This is achieved by implementing a discretized
version of Theorem 1 in a manner similar to the one used in the soft case [12].

Given q =(q1, . . . , qm)∈�, we shall consider, for each C ∈ R,

qi
C = (q1 , · · · , qi−1 , QC, qi+1 , · · · , qm)

satisfying the conditions (i) and (ii) of Theorem 1 and

QC(0) = 0

That is, QC minimizes the functional Ji
q within the set:

{z ∈ C1[0, T] / z(0) = 0, z(T) = QC(T),

Hi min ≤ Hi(t, q1(t), .., qi−1(t), z, qi+1(t), .., qn(t), q̇1(t), .., ż, .., q̇m(t)) ≤ Hi max}
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We shall undertake two processes of approximation:

(PHASE 1) Approximate construction of QC (the adapted Euler method).
The approximate construction of QC, which we shall call Q̃C, is carried

out by means of polygonals (Euler’s method) considering the triple recurring
sequence (Xn, Yn, In) with

n = 0, · · · , N, h = T
N

, tn = h · n

which represents the following approximations:

QC(tn) ≈ Q̃C(tn) := Xn

Q̇C(tn) ≈ ˜̇QC(tn) := Yn

QC(t) ≈ Q̃C(t) := Xn−1 + (t − tn−1) · Yn−1 in [tn−1, tn], n > 0

Let q̃i
C = (q1 , · · · , qi−1 , Q̃C, qi+1 , · · · , qm)

exp
(

−
∫ tn

0

Hzi(s, qi
C(s), q̇i

C(s))

Hżi(s, qi
C(s), q̇i

C(s))
ds
)

≈ In := exp

(
−
∫ tn

0

Hzi(s, q̃i
C(s),˜̇qi

C(s))

Hżi(s, q̃i
C(s),˜̇qi

C(s))
ds

)

and which obeys the following relation of recurrence:

X0 = 0; I0 = 1

Let χ+ such that − In ∗ ∂Li+
q (tn, Xn, χ

+)

∂ żi
= C

Let χ− such that − In ∗ ∂Li−
q (tn, Xn, χ

−)

∂ żi
= C

Let:
Xn = (q1(tn), · · · , qi−1(tn), Xn, qi+1(tn), · · · , qm(tn))
Yn = (q̇1(tn), · · · , q̇i−1(tn), Yn, q̇i+1(tn), · · · , q̇m(tn))
χ+ = (q̇1(tn), · · · , q̇i−1(tn), χ

+, q̇i+1(tn), · · · , q̇m(tn))
χ− = (q̇1(tn), · · · , q̇i−1(tn), χ

−, q̇i+1(tn), · · · , q̇m(tn))

Yn is such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Hi(tn, Xn, Yn) = Hi max if Hi(tn, Xn, χ
+) ≥ Hi max

Hi(tn, Xn, Yn) = Hi min if Hi(tn, Xn, χ
−) ≤ Hi min

χ+ if 0 < Hi(tn, Xn, χ
+) < Hi max

χ− if Hi min < Hi(tn, Xn, χ
−) < 0

0 otherwise

Xn+1 = Xn + h · Yn

In+1 = In ∗ exp
(

−
∫ tn+1

tn

Hzi(s, Xn+1, Yn)

Hżi(s, Xn+1, Yn)
ds
)
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(PHASE 2) For every i-th component, construction of a sequence {C j} j∈N

such that QC j(T) converges to bi (the adapted shooting method).
In these terms, the objective is to construct C∗ = lim

j→∞
C j such that QC∗(T) =

bi, in which case:

φi(q) = (q1, . . . , qi−1, QC∗ , qi+1, . . . , qm)

Of course, C∗ cannot be computed exactly, but given a certain tolerance Tol,
one should work with an approximation, for which∣∣QC j(T) − bi

∣∣ < Tol

5 Convergence of the algorithm

We now go on to present a topological version of the global convergence
theorem of descent algorithms with more general hypotheses that do not affect
the correctness of the demonstration given in [13] by Zangwill; specifically, the
continuity of the descending function is substituted by sequential continuity
and the compactness by relative sequential compactness.

Theorem 2 (Global convergence, generalized version) Let � be a map on the
topological space (X, τ ) and x0 ∈ X. Let us assume that the recurrence sequence
{xn}n∈N def ined by

xn+1 = �(xn)

verif ies the following:

(i) {xn}n∈N ⊂ K ⊂ X , where K is relatively sequentially compact.
(ii) There exists a sequentially continuous function F : (X, τ ) → (R, | |)

satisfying:

�(x) �= x =⇒ F(�(x)) < F(x)

(iii) � is sequentially continuous in X.

Hence, every convergent subsequence {xnk}k∈N converges to a f ixed point
on �.

Proof This is identical to the proof presented by Zangwill for the global
convergence theorem of descent algorithms. It need only be pointed out that
the transformation � associated with the algorithm is pointwise and that the
solution set is that of fixed points on �. ��

Although in measurable topological spaces the sequential character of
compactness and continuity is irrelevant, we shall maintain this terminology
so as to facilitate the exposition.

We now base the demonstration of the convergence of the proposed al-
gorithm on Theorem 2. First, let us see a series of preparatory results, the
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demonstrations of which we shall omit in some cases on account of their being
simple or well known.

Lemma 1 Let (X, τ ) be a topological space with K ⊂ X relatively sequentially
compact. If the sequence {xn}n∈N ⊂ K verif ies that all its convergent subse-
quences have the same limit, then {xn}n∈N converges to this same limit.

Lemma 2 Given a family of functions

F = {fλ = ( fλ,1, . . . , fλ,m)}λ∈I ⊂ Ĉ1[0, T]m

if the family of its derivatives {ḟλ}λ∈I is uniformly bounded, then F is
equicontinuous.

Lemma 3 Let 
 ⊂ [0, T] × R
2m and L : 
 −→ R locally Lipschitz. For each

h ∈ C1([0, T], R
m) such that (t, h(t), ḣ(t)) ∈ 
 ∀t ∈ [0, T] we def ine

Lh(t) := L(t, h(t), ḣ(t)) and Wh(t) :=
∫ t

0
L(s, h(s), ḣ(s))ds

If {qn}n∈N converges to q in (�, || ||∗) then {Lqn} converges uniformly (c.u.) to
Lq and {Wqn} converges pointwise (c.p.) to Wq.

Lemma 4 If {qn}n∈N ⊂ � c.u. to q and {q̇n}n∈N is equicontinuous and uniformly
bounded, then {q̇n}n∈N c.u. to q̇.

We shall next see that if a sequence {qn} satisfies the thesis of Theorem 1 for
a certain sequence

{
Cn,i

}
, then its limit also satisfies said thesis for the limit of

the
{
Cn,i

}
.

Proposition 2 Let L in the conditions of the problem (1). If {qn}n∈N c.u. to q in
(�, ||||∗) it is verif ied that

(i) If (t, q(t), q̇(t)) /∈ Si then{
Y

i
qn

}
n∈N

c.p. to Y
i
q, ∀i = 1, . . . m

(ii) If (t, q(t), q̇(t)) ∈ Si then ∃{qnk}k∈N ⊂ {qn}n∈N and {qns}s∈N ⊂ {qn}n∈N such
that{(

Y
i
qnk

)+}
k∈N

c.p. to
(
Y

i
q

)+
and/or

{(
Y

i
qns

)−}
s∈N

c.p. to
(
Y

i
q

)−

Proof Considering, for each z ∈�

L
i
z(t) := −Lżi(t, z(t), ż(t))

S
i
z(t) := Hzi(t, z(t), ż(t))

Hżi(t, z(t), ż(t))
I

i
z(t) := ∫ t

0 S
i
z(s)ds

⎫⎪⎪⎬
⎪⎪⎭

=⇒ Y
i
qn

(t) = L
i
qn

(t) exp
[
I

i
qn

(t)
]
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We denote by
(
Y

i
qn

)+
(t) and

(
Y

i
qn

)−
(t) the expressions obtained when con-

sidering the lateral derivatives with respect to ż.

(i) If (t, q(t), q̇(t)) /∈ Si, Lżi is of class C1 and, therefore, Lipschitz in S̄i. In
virtue of Lemma 4, {Li

qn
}n∈N c.u. to L

i
q and applying the same reasoning,

as Hżi �= 0, ∀i = 1, ..., m, we have that {Si
qn

}n∈N c.u. to S
i
q. Thus, {Ii

qn
}n∈N

c.p. to I
i
q and

{
Y

i
qn

}
n∈N

c.p. to Y
i
q

(ii) If (t, q(t), q̇(t)) ∈ Si, Lżi is discontinuous at this point and, therefore,

q̇i(t) = 0 is a point of discontinuity of
(

Li
q

)
żi

. As {qn}n∈N c.u. to q in (�, ||
||∗), it may occur that:

(a) ∀n, q̇n,i(t) ≥ 0. It is verified that Lżi in [0, T] × R
n × R

i−1 × R
∗ ×

R
n−i is of class C1; specifically, it will be locally Lipschitz and, in

virtue of Lemma 3,
{(

L
i
qn

)+}
n∈N

c.u. to
(
L

i
q

)+
. Likewise, consider-

ing H+
żi

�= 0, ∀i = 1, ..., m , we have that
{(

S
i
qn

)+}
n∈N

c.u. to
(
S

i
q

)+

and, hence, that
{(

I
i
qn

)+}
n∈N

c.p. to
(
I

i
q

)+
, from which we conclude

that {(
Y

i
qn

)+}
n∈N

c.p. to
(
Y

i
q

)+

(b) ∀n, q̇n,i(t) ≤ 0. Reasoning analogously to the above, we conclude
that {(

Y
i
qn

)−}
n∈N

c.p. to
(
Y

i
q

)−

(c) There exists {qnk}k∈N, {qns}s∈N ⊂ {qn}n∈N such as: q̇nk,i(t) ≥ 0;
q̇ns,i(t) ≤ 0. Reasoning analogously to the previous cases, we shall
have that{(

Y
i
qnk

)+}
k∈N

c.p. to
(
Y

i
q

)+ ;
{(

Y
i
qns

)−}
s∈N

c.p. to
(
Y

i
q

)−

��

Corollary 1 If {qn}n∈N converges to q in (�, ||||∗) verifying

(a) If (t, qn(t), q̇n(t)) ∈ Si,
(
Y

i
qn

)+
(t) ≤ Cn,i ≤

(
Y

i
qn

)−
(t)

(b) If (t, qn(t), q̇n(t)) /∈ Si,

Y
i
qn

(t) is

⎧⎨
⎩

≤ Cn,i if Hi(t, qn(t), q̇n(t)) = Hi min
= Cn,i if Hi min < Hi(t, qn(t), q̇n(t)) < Hi max
≥ Cn,i if Hi(t, qn(t), q̇n(t)) = Hi max
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then the sequence {Cn,i}n∈N converges and, calling its limit Ci, it is verif ied
that

(i) If (t, q(t), q̇(t)) /∈ Si then

Y
i
q(t) is

⎧⎨
⎩

≤ Ci if Hi(t, q(t), q̇(t)) = Hi min
= Ci if Hi min < Hi(t, q(t), q̇(t)) < Hi max
≥ Ci if Hi(t, q(t), q̇(t)) = Hi max

(ii) If (t, q(t), q̇(t)) ∈ Si then
(
Y

i
q

)+
(t) ≤ Ci ≤

(
Y

i
q

)−
(t)

Proof It is evident that, ∀i = 1, . . . , m, the sequence {Cn,i}n∈N converges, since

otherwise {Yi
qn

}n∈N or
{(

Y
i
qnk

)+}
k∈N

or
{(

Y
i
qns

)−}
s∈N

would not converge, thus

contradicting Proposition 2.

(i) If (t, q(t), q̇(t)) /∈ Si, we have the following possibilities:

– If Hi min < Hi(t, q(t), q̇(t)) < Hi max, ∃k ∈ N / ∀n > k, Hi min < Hi(t,
qn(t), q̇n(t)) < Hi max, and therefore

Y
i
q(t) = lim

n→∞ Y
i
qn

(t) = lim
n→∞ Cn,i = Ci

– If Hi(t, q(t), q̇(t)) = Hi min, ∃k ∈ N / ∀n > k, Hi(t, qn(t), q̇n(t)) = Hi min
and therefore

Y
i
qn

(t) ≤ Ci,n =⇒ Y
i
q(t) ≤ Ci

– If Hi(t, q(t), q̇(t)) = Hi max, ∃k ∈ N / ∀n > k, Hi(t, qn(t), q̇n(t)) =
Hi max and therefore

Y
i
qn

(t) ≥ Cin =⇒ Y
i
q(t) ≥ Ci

(ii) If (t, q(t), q̇(t)) ∈ Si, then in virtue of Proposition 2, we have that ∃{qnk}k∈N ⊂
{qn}n∈N and {qns}s∈N ⊂ {qn}n∈N such that

{(
Y

i
qnk

)+}
k∈N

c.p. to
(
Y

i
q

)+
,

and/or
{(

Y
i
qns

)−}
s∈N

c.p. to
(
Y

i
q

)−
. Moreover, we know that it is verified

that(
Y

i
qnk

)+
(t) ≤ Cnk,i ≤

(
Y

i
qnk

)−
(t) and

(
Y

i
qns

)+
(t) ≤ Cns,i ≤

(
Y

i
qns

)−
(t)

from which it may be deduced that
(
Y

i
q

)+
(t) ≤ Ci ≤

(
Y

i
q

)−
(t)

��

We shall now show the conservation of convergence by means of the i-th
minimizing map �i.
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Proposition 3 If {qn}n∈N and {�i(qn)}n∈N converge in (�, || ||∗) then

{�i(qn)}n∈N converges to �i( lim
n→∞ (qn))

Proof Let sn := �i(qn) which converges uniformly to s and ṡn to ṡ. Proposition 1,
together with Corollary 1, guarantees that

(i) If (t, s(t), ṡ(t)) /∈ Si then

Y
i
s(t) is

⎧⎨
⎩

≤ Ci if Hi(t, s(t), ṡ(t)) = Hi min
= Ci if Hi min < Hi(t, s(t), ṡ(t)) < Hi max
≥ Ci if Hi(t, s(t), ṡ(t)) = Hi max

(ii) If (t, s(t), ṡ(t)) ∈ Si then
(
Y

i
s

)+
(t) ≤ Ci ≤ (Yi

s

)−
(t)

and, hence, �i(s) = s.

Now note that qn and sn = �i(qn) differ only in their i-th component, as do
their limits. Thus,

�i

(
lim

n→∞ (qn)
)

= �i(s) = s = lim
n→∞ (�i(qn))

��

In the following corollary, we present a result, which proof is in [12], it
establishes the sequential continuity of �.

Corollary 2 If {qn}n∈N converges to q in (�, || ||∗) and {�(qn)}n∈N and

{ •
�(qn)}n∈N are equicontinuous and uniformly bounded then:

{�(qn)}n∈N converges to �(q) in (�, || ||∗)

In the following proposition, we establish the application framework of the
extension of Zangwill’s Theorem.

Proposition 4 Let U := � ∩ Ĉ2. Then ∃M ∈ R such that, being UM := {z ∈ U /
||z̈||∞ < M}, it is verif ied that:

(i) �(UM) ⊆ UM.
(ii) UM is relatively sequentially compact in (�, || ||∗).

(iii) � : (�, || ||∗) −→ (�, || ||∗) is sequentially continuous.
(iv) F : (�, || ||∗) −→ (R, ||) is sequentially continuous satisfying �(x) �=

x =⇒ F(�(x)) < F(x).

Proof ∀p =(p1, . . . , pm) ∈ � we have that by hypothesis, for every i-th com-
ponent there exists Ai, Bi ∈ R such as Ai < ṗi < Bi ∀t ∈ [0, T]

|| ṗi||∞ ≤ Mi := max{|Ai|, |Bi|} =⇒ ||pi||∞ < Ni := α + Mi · T
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Let

O := [0, T] ×
n∏

i=1

[−Ni, Ni] ×
n∏

i=1

[−Mi, Mi]

and let fi : [0, T] × R
2m −→ R be the continuous functions associated with the

i-th Euler equation of the functional Fi
p

z̈i(t) = fi(t, p1(t), · · · , zi(t), · · · , pm(t), ṗ1(t), · · · , żi(t), · · · , ṗm(t))

Let

Ci := max
O

fi(t, x1, · · · , xm, y1, · · · , ym),

Max
O

∣∣∣∣∂ Hi(t, z(t), ż(t))
∂zi

żi

∣∣∣∣ = ci, Max
O

∣∣∣∣∂ Hi(t, z(t), ż(t))
∂t

∣∣∣∣ = di

Min
O

∣∣∣∣∂ Hi(t, z(t), ż(t))
∂ żi

∣∣∣∣ = ei

and let φi(p)=(p1, . . . , p∗
i , . . . , pm), where p∗

i minimizes the functional Fi
p and,

hence, φi(p) verifies Proposition 1. Thus, we have that:

– If ṗ∗
i is a point of discontinuity of

(
Li

p

)
żi

then, by hypothesis, ṗ∗
i (t) = 0,

from which p̈∗
i (t) = 0.

– If Hi min < Hi(t, p∗
i (t), ṗ∗

i (t)) < Hi max, p∗
i satisfies the Euler equation of the

functional Fi
p, then

p̈∗
i (t) = fi(t, p1(t), · · · , p∗

i (t), · · · , pm(t), ṗ1(t), · · · , ṗ∗
i (t), · · · , ṗm(t)) ≤ Ci

– If Hi(t, p∗
i (t), ṗ∗

i (t)) = Hi min or Hi(t, p∗
i (t), ṗ∗

i (t)) = Hi max, calculating the
total derivative with respect to t,

∂ Hi(t, p∗
i (t), ṗ∗

i (t))
∂t

+ ∂ Hi(t, p∗
i (t), ṗ∗

i (t))
∂zi

ṗ∗
i (t)+

∂ Hi(t, p∗
i (t), ṗ∗

i (t))
∂ żi

p̈∗
i (t) = 0

from which

p̈∗
i (t) =

−∂ Hi(t, p∗
i (t), ṗ∗

i (t))
∂zi

ṗ∗
i (t) − ∂ Hi(t, p∗

i (t), ṗ∗
i (t))

∂t
∂ Hi(t, p∗

i (t), ṗ∗
i (t))

∂ żi

(2)

Thus,

| p̈∗
i (t)| ≤

∣∣∣∣∂ Hi(t, p∗
i (t), ṗ∗

i (t))
∂zi

ṗ∗
i (t)

∣∣∣∣+
∣∣∣∣∂ Hi(t, p∗

i (t), ṗ∗
i (t))

∂t

∣∣∣∣∣∣∣∣∂ Hi(t, p∗
i (t), ṗ∗

i (t))
∂ żi

∣∣∣∣
≤ ci + di

ei
= ℵi

and, in short,

| p̈∗
i (t)| ≤ Bi := Max{Ci, ℵi}
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Let M := max
i=1,...,m

{Bi}. From all the above, it is clear that ||{ ••
�(p)}||∞ ≤ M.

(i) If p = (p1, . . . , pm) ∈ UM =⇒ �i(p) = (p1, · · · , p∗
i , · · · , pm), where p∗

i
is Ĉ2, since this either satisfies the Euler equation of the functional Fi

q
or it satisfies (2) or p̈∗

i (t) = 0. Hence, φi(p) ∈ UM ∀i = 1, · · · , m and,
obviously, �(p) ∈ UM .

(ii) Any sequence {pn}n∈N ⊂ UM is uniformly bounded (||pn||∞ < max{Ni})
and so are all the sequences {ṗn}n∈N (||ṗn||∞ < max{Mi}) and p̈n}n∈N

(||]p̈n||∞ < M).
Thus, in virtue of Lemma 2, {pn}n∈N and {ṗn}n∈N are equicontinuous.
We are therefore in a situation to use Arzela–Ascoli’s Theorem, which
guarantees that there exists a subsequence {pnk}k∈N that converges uni-
formly to a certain p ∈ �. What’s more, in virtue of Lemma 4, {ṗnk}k∈N

also converges uniformly to ṗ and, in short, {pnk}k∈N converges in the
topological space (�, || ||∗).

(iii) Let the sequence {pn}n∈N be convergent in (�, || ||∗), i.e. {pn}n∈N con-
verges uniformly to p and {ṗn}n∈N converges uniformly to ṗ.
As for each n ∈ N, pn ∈ (C1[0, T])m, in virtue of Proposition 1, �i

(
pn
) ∈(

C1[0, T])m. Thus, it may be deduced that {�i
(
pn
)}n∈N is uniformly

bounded and equicontinuous in �.
The reiterative application of this reasoning guarantees that {� (pn

)}n∈N

is uniformly bounded and equicontinuous in �.

Furthermore, as { •
�i(pn)}n∈N ∈ (C0[0, T])m , simply by taking the maxi-

mum of the bounds for each of these, { •
�i(pn)}n∈N is uniformly bounded.

On the other hand, following the considerations set out at the beginning

of this proof, each i-th component, p̈∗
n,i of { ••

�i(pn)}n∈N is bounded. Hence

{ ••
�(pn)}n∈N is uniformly bounded. Taking into account Lemma 2, we may

state that { •
�(pn)}n∈N is equicontinuous in �.

As {�(qn)}n∈N and { •
�(qn)}n∈N are uniformly bounded and equicontinu-

ous in �, Corollary 2 ensures that � is sequentially continuous.
(iv) If {pn}n∈N converges to p ∈ � with the topology || ||∗, making �z(t) :=

L(t, z(t), z(t)), we are in a situation to use Lemma 3, which guarantees
that

{�pn}n∈N converges uniformly to �p

and, thus{
F(pn) =

∫ b

a
�pn(t)dt

}

n∈N

converges to
∫ b

a
�p(t)dt = F(p)

��

Theorem 3 For every q0 ∈ UM, the sequence generated by the algorithm {qn =
�(qn−1)}n∈N possesses a subsequence that converges in (�, || ||∗) and the limit
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is a f ixed point of �. Moreover, any convergent subsequence of {qn}n∈N will
converge at a f ixed point on �.

Proof It suffices to prove that, in fact, the sequence {qn}n∈N ⊂ UM possesses
a subsequence that converges uniformly and, as we have guaranteed the
verification of the hypothesis of Theorem 2, in virtue of Proposition 4, we may
conclude that {qn}n∈N possesses a subsequence that converges uniformly to a
fixed point on �. By virtue of Theorem 2 itself, we have guaranteed that any
convergent subsequence of {qn}n∈N will converge to a fixed point on �.

We see that the sequence {qn}n∈N ⊂ UM possesses a subsequence that
converges uniformly.

For any q0 ∈ UM, from (i) in Proposition 4, we know that the sequence
qn = �(qn−1) is contained in UM and following analogous reasoning to point
(ii) in this same proposition, we may conclude that there exists a subsequence
{qnk}k∈N that converges in �. ��

6 Example

A program that solves the optimization problem was developed using the
Mathematica package and was then applied to one example of a hydrothermal
system made up of 8 thermal plants and 5 hydro-plants of variable head, two
of which have pumping capacity. For the thermal plants, the cost function �i

used is a quadratic model:

�i(x) = αi + βix + γix2

and we consider Kirchmayer’s model for the transmission losses: li(x) =
bii · x2, where bii is termed the loss coefficient. The data of the plants are
summarized in Table 1. The units for the coefficients are: αi in ($/h), βi in
($/h.Mw), γi in ($/h.Mw2), and the loss coefficients bii in (1/Mw). We con-
struct the equivalent thermal plant as we saw in [7], obtaining: αeq = 10696.1;
βeq = 16.5477; γeq = 0.00329982.

The hydro-network has the configuration shown in Fig. 1. Hydro-plants 1
and 2 are isolated and have pumping capacity. Hydro-plants 3, 4 and 5 are
conventional hydro-plants and they are in the same river basin, so the rate

Table 1 Coefficients of the thermal plants

Plant i αi βi γi b ii Pi min Pi max

1 2,248.16 −7.984 0.17026 0.000353 5 600
2 1,625.43 6.347 0.09803 0.000220 5 150
3 1,615.35 16.676 0.01659 0.000100 10 340
4 1,227.83 17.621 0.01325 0.000103 10 300
5 2,155.62 17.745 0.01982 0.000097 10 320
6 743.78 20.842 0.00211 0.000072 15 550
7 77.72 21.277 0.00286 0.000172 10 310
8 1,459.44 21.569 0.01489 0.000121 5 240
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Fig. 1 The hydro-network 1 2 3 4

5

of discharge at the upstream plants affects the behaviour at the downstream
plants: the hydraulic system has hydraulic coupling. We do not consider any
time delay between plants.

We use a variable head model and the i-th hydro-plant’s active power
generation Phi (for a conventional hydro-plant) is given by

Phi(t, zi(t), żi(t)) = Ai(t)żi(t) − Biżi(t)[zi(t) − Coupi(t)]; żi(t) ≥ 0,

where Ai(t) and Bi are the coefficients: Ai(t) = 1
Gi

Byi(S0i + t · ii); Bi = Byi
Gi

,

and Coupi(t) represents the hydraulic coupling between plants. In variable-
head models, the term −Biżi(t)[zi(t) − Coupi(t)] represents the negative
influence of the consumed volume and reflects the fact that consuming water
lowers the effective height and hence the performance of the plant. The plants
in our system verify:

Coupi(t) = 0, i = 1, 2, 3, 4; Coup5(t) = z3(t) + z4(t)

For the pumped-storage plants, Phi is defined piecewise, taking in the
pumping zone:

Phi(t, zi(t), żi(t)) = Mi · [Ai(t)żi(t) − Biżi(t)zi(t)
] ; żi(t) < 0,

where M is the efficiency of the hydroplant in the pumping zone. The para-
meters that appear in the formula are: the efficiency G in (m4/h.Mw), the
constraint on the volume b in (104m3), the loss coefficient bll in (1/Mw),
the natural inflow i in (106m3/h), the initial volume S0 in (109m3), and the
coefficient By (a parameter that depends on the geometry of the reservoir)
in (10−12m−2). The data of the hydro-plants is summarized in Table 2. We
consider that the transmission losses for the hydro-plants are also expressed

Table 2 Hydro-plant coefficients

Plant i Gi b i blli ii S0i Byi Mi Hi min Hi max

1 534,660 141.6 0.000180 108.176 193.885 150.1 1.033 −100 115
2 536,315 135.2 0.000195 98.176 203.904 149.5 1.030 −100 100
3 520,834 2,130.5 0.000160 30.952 197.808 138.7 – 0 105
4 544,800 3,510.0 0.000200 30.118 224.234 140.9 – 0 120
5 547,770 4,950.8 0.000210 298.204 283.904 156.1 – 0 205
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Fig. 2 Optimal hydro-power
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by Kirchmayer’s model (where bll is the loss coefficient). Hence, the function
of effective hydraulic generation is

Hi(t, zi(t), żi(t)) := Phi(t, zi(t), żi(t)) − blli P2
hi(t, zi(t), żi(t)), ∀żi(t)

This model verifies: ∂ Hi/∂ żi > 0,
[
∂ Hi/∂zi

]
żi=0 = 0 and ∂2 Hi/∂ ż2

i < 0.

We consider short-term hydrothermal scheduling (24 h) with an optimiza-
tion interval [0, 24] and we consider a discretization of 48 subintervals. The
optimal power for the hydro-plants is shown in Fig. 2, and the optimal power
for the thermal plants in Fig. 3.

6 12 18 24

t(h)85

90

95

100

P(Mw)

6 12 18 24

90

95

100

105

6 12 18 24

230
240
250
260
270

6 12 18 24

250
260
270
280
290

6 12 18 24

180

190

200

210

6 12 18 24

280

300

320

340

6 12 18 24

290
295
300
305
310
315

6 12 18 24

110
120
130
140
150

Thermal Plant 2

Thermal Plant 6

Thermal Plant 5

Thermal Plant 3

Thermal Plant 4

Thermal Plant 8Thermal Plant 7

P(Mw) P(Mw)

P(Mw)

P(Mw)P(Mw)P(Mw)

P(Mw)

t(h) t(h)

t(h)

t(h)t(h)t(h)

t(h)

Thermal Plant 1

Fig. 3 Optimal thermal power



Numer Algor (2012) 59:227–247 245

Fig. 4 Convergence with 5
and 10 hydro-plants, with
losses in the pumping zone

The vector Cn = (C1, . . . , Cm) was considered as the stopping criterion for
the algorithm in each iteration, the components of which are the coordina-
tion constants associated with the different hydro-plants, the tolerance being
defined as

Tol(n) = ∥∥Cn − Cn−1
∥∥

For our example, for the case of the 5 hydro-plants, the tolerance was
less than 10−9 in 10 iterations, the time required by the program being 194 s
on a personal computer (Pentium IV/2GHz). Figure 4 presents the obtained
results. We can see how the method exhibits rapid convergence.

To verify this statement, another test was conducted considering the same 8
thermal plants from the above example and 10 hydro-plants, 5 from the above
example and another 5 identical to these, in terms of both the model and
configuration of the river basins. It is evident (assuming conditions that guar-
antee the uniqueness of the solution) that, in this second example, we should
obtain the same solution for identical hydro-plants, such as, for instance, 1
and 6, or 2 and 7, etc. In this case the method requires twice the number of
iterations (from 10 to 20) to achieve the established tolerance. This makes the

Fig. 5 Absence of the
uniqueness of solution
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Fig. 6 Convergence with 10
hydro-plants, without losses
in the pumping zone

method an ideal tool for working with large-scale systems. Figure 4 presents
the obtained results.

In the above hydraulic models, fulfilment of the condition

∂2 Hi/∂ ż2
i < 0

is fundamental to solve the problem. We conducted a test with the same
example of 10 hydro-plants as above, but with a Kirchmayer model that
considers that there are no losses for the pumped-storage plants in the zone
in which żi(t) < 0. The condition ∂2 Hi/∂ ż2

i < 0 is no longer verified in this
zone, and the uniqueness of the solution is lost for the pumped-storage plants,
although the cost of both solutions is identical. Figure 5 shows the different
solutions that are obtained for plants 1 and 6 in the pumping zone. This means
that the convergence is much slower. The method requires 39 iterations to
achieve the established tolerance (Fig. 6).

7 Conclusions

In this paper we describe a numerical relaxation method for computing
the solution for a hydrothermal optimization problem that simultaneaously
considers non-regular Lagrangian and non-holonomic inequality constraints.
The problem can be naturally formulated in the framework of nonsmooth
analysis. The proof of the convergence of the succession generated by the
algorithm was based on the use of an appropriate adaptation of Zangwill’s
global theorem of convergence. Finally we ilustrate the performance of our
work with a numerical example. The algorithm, based on coordinate descent,
developed with the Mathematica package shows a rapid convergence to the
optimal solution.

It would be most interesting that in future researc we can to apply this
method to models in which the discontinuity of the Lagrangain is not produced
at z′ = 0, but rather to solutions of a differential equation of the form

z′ = f (t, z)
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