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a b s t r a c t

In this paper we present a generalization of the classic Firm’s Profit Maximization Problem,
using the linear model for the production function, considering a decreasing pricewi(xi) =

bi − cixi and maximum constraints for the inputs or, equivalently, considering inputs
that are in turn outputs in economies of scale with quadratic concave cost functions. We
formulate the problem by previously calculating the analytical minimum cost function
in the quadratic concave case. This minimum cost function will be calculated for each
production level via the infimal convolution of quadratic concave functions whose result
is a piecewise quadratic concave function.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Problems involving economies of scale (in production and sales) can often be formulated as concave quadratic
programming problems [1,2]. Consider a case in which n products are being produced, with xi being the number of units of
product i andwi being the unit production cost of product i. As the number of units produced increases, the unit cost usually
decreases. This can often be correlated by a linear functional

wi(xi) = bi − cixi (1)

where ci > 0. Thus, given constraints on production demands and the availability of each product and using the classic
linear production function model, the Firm’s Cost Minimization (FCM) problem [3–6] can be written as

C( y) = min
x

n
i=1

xiwi(xi)

s.t.
n

i=1

aixi = y; ai ≠ 0, i = 1, . . . , n

0 ≤ xi ≤ Ui; i = 1, . . . , n

(2)

where y is the output and Ui are the maximum constraints for the inputs. This is a concave minimization problem. As well
as representing a situation in which the inputs are acquired with a discount proportional to the amount, the affine function
model for the prices (1) can also be interpreted as dealing with inputs that are in turn outputs of a prior production process
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of economies of scale with a quadratic cost: xibi − cix2i . On the other hand, the linear production function is presented in a
natural way when the output is the result of the sum of the inputs (ai = 1) or, in general, a specific fraction of each of these.

Similarly, when the Firm’s Profit Maximization (FPM) Problem is considered:

π(p,w) = max
x,y


py −

n
i=1

xiwi(xi)


s.t.

n
i=1

aixi = y; ai ≠ 0, i = 1, . . . , n

0 ≤ xi ≤ Ui; i = 1, . . . , n

(3)

the economies of scale dictate that the profit per unit rises linearlywith the number of units produced. In this case, therefore,
the problem becomes one of maximization of a convex functional.

To solve the FPM problem, we formulate the problem by previously calculating the analytical minimum cost function
C( y) and then maximizing over the output quantity:

π(p,w) = max
y

(py − C( y)).

Concave programming [7,8] constitutes one of the most fundamental and most widely studied problem classes in
deterministic nonconvex optimization. Concave programming has a remarkably broad range of direct and indirect
applications. Many of the mathematical properties of concave programming are even identical to the properties of linear
programming. The goal in concave programming, or the concave minimization problem (CMP):

globmin f (x)
s.t. x ∈ D

is to find the global minimum value that f achieves over D, where D is a nonempty, closed convex set in Rn and f is a real-
valued, concave function defined on some open convex set A in Rn that contains D. The application of standard algorithms
designed for solving constrained convex programming problems will generally fail to solve CMP. Accordingly, in this paper
we shall present an algorithm specifically designed for the problemwe are going to solve that, as we shall see, presents very
advantageous features.

To develop the algorithm which determines the optimal production level, we shall make use of the infimal convolution
operator. This operator is well knownwithin the context of convex analysis [9–11]. However, convexity is only one desirable
property so as to be able to resort to differential techniques to tackle its calculation and its use should definitely not be
restricted to this context alone.

Definition 1. Let F ,G : R −→ R̄ be two functions of R in R̄ := R ∪ {+∞, −∞}. We denote as the Infimal Convolution of
F and G the operation defined below:

F


G


(x) := inf
y∈R

{F( y) + G(x − y)}.

It is well known that (z(R, R̄),


) is a commutative semigroup. Furthermore, for every finite set E ⊂ N and Fi : R →

R̄, ∀i ∈ E, it is verified that
i∈E

Fi


(K) = inf

i∈E
xi=K


i∈E

Fi(xi).

When the functions are considered constrained to a certain domain, Dom(Fi) = [mi,Mi], the above definition continues to
be perfectly valid redefining Fi(x) = +∞ if x ∉ Dom(Fi). In this case, the definition may be expressed as follows:

F1


F2


(ξ) := min
x1+x2=ξ

mi≤xi≤Mi

(F1(x1) + F2(x2)) = min
m1≤x≤M1

m2≤ξ−x≤M2

(F1(x) + F2(ξ − x)).

2. Statement of the generalized problem

We first consider the FCM problem (2). Using (1) and making these changes in the variables

aixi = zi; aiUi = Mi

bi
ai

= βi;
ci
a2i

= γi
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the FCM problem may be re-written as follows:

C( y) = min
z

n
i=1


βizi − γiz2i


s.t.

n
i=1

zi = y

0 ≤ zi ≤ Mi; i = 1, . . . , n

(4)

which makes C( y) the infimal convolution of the quadratic functions:

Fi(zi) := βizi − γiz2i
respectively constrained to the domains [0,Mi]; i.e.

C = F1


F2


· · ·


Fn.

In this paper we shall demonstrate that C( y) is piecewise concave such that the solution to the FPM problem:

max
y

(py − C( y))

s.t.
n

i=1

zi = y

0 ≤ zi ≤ Mi; i = 1, . . . , n

(5)

cannot be tackled by means of marginalistic techniques (coinciding of marginal cost and price). In fact, the maximum profit
will be obtained at a production level y∗ where C is not differentiable, or at boundary values

y∗
= 0 or y∗

=

n
i=1

Mi.

3. The infimal convolution in the concave case

In this section we shall study the infimal convolution of two concave functions, which is crucial as the basis for the
optimization algorithm.

Lemma 1. Let F1 and F2 be concave functions with domains [m1,M1] and [m2,M2], respectively. We shall consider the following
four functions:

Ψ −

1 (x) := F1(x − m2) + F2(m2) with domain [m1 + m2,M1 + m2]

Ψ +

1 (x) := F1(x − M2) + F2(M2) with domain [m1 + M2,M1 + M2]

Ψ −

2 (x) := F1(m1) + F2(x − m1) with domain [m1 + m2,m1 + M2]

Ψ +

2 (x) := F1(M1) + F2(x − M1) with domain [M1 + m2,M1 + M2]

then 
F1


F2


(x) = min{Ψ −

1 (x), Ψ +

1 (x), Ψ −

2 (x), Ψ +

2 (x)}.

Proof. Due to the concavity of the functions involved, the minimum value of F1(x1) + F(x2) constrained to x1 + x2 = ξ can
only be achieved in those pairs (x1, x2) in which at most one of the components can be inside the corresponding domain of
Fi. In other words, the aforementioned minimum value can only be achieved in pairs of the following form

(ξ − m2,m2), (ξ − M2,M2), (m1, ξ − m1) and (M1, ξ − M1).

Thus, for each value of ξ , we have that
F1


F2


(ξ) = min{F1(ξ − m2) + F2(m2), F1(ξ − M2) + F2(M2),

F1(m1) + F2(ξ − m1), F1(M1) + F2(ξ − M1)}. �

Unfortunately, the operator of the infimal convolution does not preserve the concave nature of the functions. In general,
the result is a piecewise concave function. This means that the infimal convolution of more than two functions cannot
be obtained by means of a simple reiteration of the aforestated lemma, but requires resorting to calculating the infimal
convolution of several piecewise concave functions. To carry out this calculation, we shall interpret a piecewise concave
function as the minimum function of several concave functions, preceding as shown in the following obvious lemma.
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Lemma 2. Let the function

F(x) =

F1(x) if x ∈ [m1,M1]

· · ·

Fk(x) if x ∈ [mk,Mk]

be piecewise concave (concave in each interval [mk,Mk]). Thus,

F(x) = min
i∈{1,...,k}

Fi(x)

where, we have redefined each function Fi(x) as

Fi(x) :=


Fi(x) if x ∈ [mi,Mi]

∞ if x ∉ [mi,Mi]
, i = 1, . . . , k.

Once redefined in this way, the calculation of the infimal convolution of two piecewise concave functions requires a
combinatorial exploration that is reflected in the following theorem.

Theorem 1. Let F(x) := mini∈A(Fi(x)) and G(x) := mini∈B(Gi(x)), then:
F


G


(t) = min
(i,j)∈A×B


Fi


Gj


(t).

Proof.
F


G


(t) = min
x

(F(x) + G(t − x)) = min
x

(min
i∈A

(Fi(x)) + min
j∈B

(Gj(t − x)))

= min
x

( min
(i,j)∈A×B

(Fi(x) + Gj(t − x)))

= min
(i,j)∈A×B

(min
x

(Fi(x) + Gj(t − x))) = min
(i,j)∈A×B


Fi


Gj


(t). �

This theorem justifies the construction of the infimal convolution of the two functions defined piecewise as theminimum
function of all the possible infimal convolutions of ‘‘pairs of pieces ’’.

Now, bearing in mind the associative nature of the infimal convolution operation, the infimal convolution may be
calculated by means of a recursive process, carrying out n operations of infimal convolution considering the following
recurrence:

H1


H2


· · ·


Hn =


H1


H2


· · ·


Hn−1


Hn.

4. Algorithm and complexity

In this section we analyze the computational complexity of the previously proposed recursive algorithm for calculating
the analytical solution for the piecewise concave quadratic functions. We first analyze the calculation of the minimum of a
set of piecewise quadratic functions.

4.1. Algorithm

Let G : [m̃, M̃] → R be a quadratic function and let F be a piecewise quadratic function:

F(x) =

F1(x) if x ∈ [m1,M1]

· · ·

FN(x) if x ∈ [mN ,MN ]

considering Fj(x) := ∞ if x ∉ [mj,Mj] and G(x) := ∞ if x ∉ [m̃, M̃]. Hence,

F(x) = min
i∈{1,...,N}

Fi(x).

The calculation of the infimal convolution
F


G


(x) = min
i∈{1,...,N}


Fi


G


(x)

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is carried out in two phases:

PHASE (1) Calculation of Fi


G for each i ∈ {1, . . . ,N}

PHASE (2) Calculate min
i∈{1,...,N}


Fi


G


(x).

PHASE (1) Calculation of Fi


G for each i ∈ {1, . . . ,N}, which requires, at least, K · N elemental operations, where K
represents the maximum number of elemental operations required in the construction of the infimal convolution of two
2nd-order polynomials. Thus, the required running time is O(N).

PHASE (2) Calculate

min
i∈{1,...,N}

Fi


G = min
i∈{1,...,4N}

Pi

being Pi the polynomials defined in Lemma 1 with respective domains [mi,M i]. Let ΞN := {1, 2, . . . , 4N}. The functions
involved in the proposed algorithms are defined as follows.

(i) Let us consider the function Θ that assigns to each pair of (i, j) ∈ Ξ 2
N the set of cut-off points of the polynomials Pi

and Pj within [mi,M i] ∩ [mj,M j]. Note that Θ[i, j] may have 0, 1 or 2 elements.

Θ[t, i, j] := {x ∈ [t, ∞) ∩ [mi,M i] ∩ [mj,M j] such that Pi(x) = Pj(x)}.

(ii) Let us consider the function B that assigns to each t the subscript of the polynomial whose value at all points of
some interval [t, t + ε) is lower than or equal to the value of the remaining polynomials, defined in said interval, with
t ∈ [mB[t],MB[t]). B[t] satisfies for all j such that t ∈ [mj,M j):

t ∈ [mB[t] ,MB[t]),

PB[t](t) ≤ Pj(t)
PB[t](t) = Pj(t) H⇒ P ′

B[t](t) < P ′

j (t)
PB[t](t) = Pj(t) and P ′

B[t](t) = P ′

j (t) H⇒ P ′′

B[t](t) ≤ P ′′

j (t)

B[t] represents the subscript in whose associated polynomial the minimum searched for in some surrounding [t, t + ε) is
obtained. The number of operations required to determine B[t] is O(N) seeing as it actually comprises the search for the
minimum element of an ordered set of 4N elements.

(iii) Let us consider the function C that assigns to each pair

(t, j) ∈ R × (ΞN − {B[t]})

the lowest of the points of

[t, ∞) ∩ [mB[t] ,MB[t] ] ∩ [mj,M j]

at which the graph of the polynomial PB[t] changes from being below to being above Pj. If this fact is not produced, then we
consider C[t, j] = MB[t].

If Θ[t, B[t], j] = ∅ ⇒ C[t, j] :=


mj ifmj ∈ [t,MB[t] ] ∧ Pj(mj) < PB[t](mj)

MB[t] otherwise

If Θ[t, B[t], j] ≠ ∅ ⇒ C[t, j] :=

MB[t] if PB[t] = Pj
mj ifmj ∈ [t,MB[t] ] ∧ Pj(mj) < PB[t](mj)

min(Θ[t, B[t], j]) otherwise.

(iv) Let us now consider the function H : R → ΞN

H[t] := {C[t, j] | j ∈ {1, . . . , 4N} − {B[t]}}

that returns the set of points resulting from the action of the function C[t, ·]. The number of operations needed to determine
H[t] is also O(N).

4.2. Description of the algorithm

Let us represent each polynomial Pi(x) = αi + βix + γix2, i ∈ {1, . . . , 4N} restricting the domain [mi,M i] by means of
the list: {mi,M i, αi, βi, γi}.

Input :


{{m1,M1, α1, β1, γ1}, . . . , {m4N ,M4N , α4N , β4N , γ4N}}

Aux = {}; t1 = min
i=1,...,4N

{mi}

IF ts = max{M i} then STOP

ELSE ts+1 := minH[ts]
Aux = Join[Aux, {{ts, ts+1, αB[ts], βB[ts], γB[ts]}}]

Output : Aux = {{t1, t2, αB[t1]
, βB[t1]

, γB[t1]
}, . . . , {ts, ts+1, αB[ts]

, βB[ts]
, γB[ts]

}, . . .}.
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The solution is Aux, which represents the piecewise quadratic function:
αB[t1]

+ βB[t1]
x + γB[t1]

x2 if x ∈ [t1, t2]
· · ·

αB[ts]
+ βB[ts]

x + γB[ts]
x2 if x ∈ [ts, ts+1]

· · · .

4.3. Computational complexity

The nature of the underlying problem in the calculation of the infimal convolution of piecewise concave functions
suggests that the computational complexity of the algorithm is exponential seeing as it entails exploring all the combinations
of intervals of concavity of the functions involved. In certain cases, this is effectively so; however, we shall see that the
complexity is polynomial in some other cases.

Theorem 2. Let {Fi}ni=1, where Fi(x) := βix−γix2, with γi > 0, with the same domain [0,M]. If Fi(x) ≠ Fj(x) for all x ∈ (0,M],
then the computational complexity of the recursive algorithm that calculates

n
i=1

Fi via
n−1
i=1

Fi


Fn

is cubic in order; i.e.

T ∈ O(n3).

Proof. First, note that the hypothesis Fi(x) ≠ Fj(x) for all x ∈ (0,M] implies that the number of intervals of concavity
involved in

k
i=1 Fi is exactly k.

Let us denote by T (n) the required number of operations (or the runtime of the algorithm). We thus have that

T (n) = T (n − 1) + S(n)

where S(n) represents the time needed to calculate the infimal convolution of Fn and the result of the infimal convolution of
the previous

n−1
i=1 Fi. The calculation of this infimal convolution involves two phases, as expressed in the previous section.

Phase (1) requires a number of operations S1(n) which are needed to calculate (n − 1) infimal convolution operations
(Fn with each of the (n − 1) pieces that make up

n−1
i=1 Fi); such that

S1(n) ∈ O(n).

On the other hand, Phase (2), S2(n), requires calculating the minimum value of a family of n polynomials (which will consist
of n intervals of concavity) whose complexity is quadratic; i.e.

S2(n) ∈ O(n2).

In short, S(n) ∈ O(n2), from which it follows that

T ∈ O(n3). �

Remark. This theorem is highly restrictive andmay give the impression that the cubic order can only arise under hypotheses
as demanding as these. However, the key to the demonstration lies in the linear character of the intervals of concavity
involved in the infimal convolution

n
i=1 Fi. In the case analyzed here, this number is exactly n; however, even if it were

greater and providing it continues to be linear in nature, the result would be cubic complexity. This is what always happens
when the hypotheses of the theorem are satisfied by a large number of the functions involved or simply when the graphs of
the functions present a small number of intersections even when they have different ranges of definition.

5. Example

Aprogram that solves the FPMproblemwaswritten using theMathematica package andwas then applied to one example
using the previously developed model for the cost function

C( y) = min
z

n
i=1


βizi − γiz2i


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Table 1
Example data.

i 1 2 3 4

βi 1 2 3 4
γi 0.01 0.03 0.03 0.01
Mi 10 15 4 2

Table 2
Solution y∗ .

p 2 1 1
2 5

y∗ 25 10 0 31

Fig. 1. The infimal convolution C( y).

and maximum constraints for the n = 4 inputs.

max
z,y


py −

n
i=1


βizi − γiz2i


s.t.

n
i=1

zi = y

0 ≤ zi ≤ Mi; i = 1, . . . , n.

The data on the inputs is summarized in Table 1.
Applying the aforementioned algorithm, we have that the infimal convolution

C =


F1


F2


F3


F4


is a piecewise quadratic function (see Fig. 1):

C( y) =


y − 0.01y2 if 0 ≤ y ≤ 10
−14 + 2.6y − 0.03y2 if 10 ≤ y ≤ 25
−61.5 + 4.5y − 0.03y2 if 25 ≤ y ≤ 29
−80.64 + 4.58y − 0.01y2 if 29 ≤ y ≤ 31.

Finally, considering different values of the price p, we calculate the solution to the FPM problem

max
y

(py − C( y)).

The results are summarized in Table 2.
As already mentioned, despite having the analytical cost expression, C( y), the optimum level of output cannot be

obtained viamarginalistic techniques; i.e. ∂C( y)/∂y coincideswith the price p. Themaximumprofit is always obtainedwith
a level of output y∗ in which either C is not differentiable or y∗ is one of the extreme values of the interval


0,
n

i=1 Mi

.

In fact (see Fig. 2), for p = 2 → y∗
= 25 and for p = 1 → y∗

= 10, the solution is obtained from angle points of C( y),
whereas, as we have already seen, for p = 1/2 → y∗

= 0, i.e. production is not profitable, and for p = 5 → y∗
= 31, the

maximum is produced at the technical maximum.

6. Conclusions

Concave quadratic problems often arise involving economies of scale. In this paper we present an algorithm for
calculating the analytical solution for the classic firm’s cost minimization problem in the case of economies of scale, with n
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(a) p = 2. (b) p = 1.

(c) p = 1/2. (d) p = 5.

Fig. 2. The function py − C( y) for different values of the price p.

inputs,maximumconstraints for the inputs and a general output y (i.e. a family ofmonoparametric problems). The algorithm
uses the infimal convolution of piecewise concave functions. For the firm’s profitmaximization problem, the solution cannot
be obtained using derivatives and our method calculates the exact solution, without any kind of simplification, searching
non-differentiable points of the analytical formulas of the cost or extreme values of the output.
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