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The Exact Solution of the Environmental/Economic
Dispatch Problem

Luis Bayón, José M. Grau, María M. Ruiz, and Pedro M. Suárez

Abstract—In this paper, the exact analytical solution for the envi-
ronmental/economic dispatch (EED) optimization problem is pre-
sented for the first time. The EED, which simultaneously satisfies
multiple contradictory criteria, is stated as a multiobjective op-
timization problem (MOP). Our paper has improved several as-
pects of a previous analytical approach. First, we take into account
the unit capacity constraints in the exact formulae. Second, we ob-
tain the set of compromise solutions known as Pareto optimal solu-
tions and, third, our treatment of transmission losses satisfies the
power balance constraint. In contrast with the known heuristic
methods used in the literature, which only provide a reasonable
solution (suboptimal, nearly global optimal), our method provides
the global solution. Moreover, our method can obtain the Pareto
optimal set under different loading conditions. The performance of
the proposed technique is validated using a standard test system.

Index Terms—Environmental/economic dispatch, multiobjec-
tive optimization problem, Pareto optimal set, transmission losses.

I. INTRODUCTION

P OWER generation plants have traditionally been dis-
patched following minimum fuel cost criteria without

considering the pollution produced. The basic objective of
economic cost dispatch (ECD) is defined as finding an optimal
distribution of system load to the generators in order to min-
imize the total generation cost while meeting all the system
constraints. However, due to the ever increasing requirements
of environmental regulations and social awareness, the use of
these types of alternative strategies is becoming fundamental.
Emission dispatch (ED) is similar to ECD, with emission being
the objective to be minimized, instead of cost. The two func-
tions are conflicting in nature and both have to be considered
simultaneously to find the overall optimal dispatch. Environ-
mental/economic dispatch (EED) is thus a multi-objective
optimization problem (MOP) with non-commensurable and
contradictory objectives.

Different techniques have been reported in the literature to
solve the EED problem. In the first references [1] and [2], the
EED problem was reduced to a single objective problem and the
emission function was treated as a constraint. In [3], the EED
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problem was solved using linear programming. An -constraint
method was proposed in [4] and [5]. This approach consists
in optimizing the preferred objectives and treats the others as
constraints. Recently, multi-objective evolutionary algorithms
(MOEAs) [6] have been widely used. In many of their appli-
cations to solve the EED, [7]–[9] and [10] applied several algo-
rithms to locate the Pareto optimal solutions, such as the niched
Pareto genetic algorithm (NPGA), the non-dominated sorting
genetic algorithm (NSGA) and the strength Pareto evolutionary
algorithm (SPEA). Other techniques recently used to solve the
EED problem are a particle swarm optimization (PSO) algo-
rithm [11] and a differential evolution (DE) algorithm [12].

The solution of the EED problem using the different methods
proposed in literature consumes considerable computing time.
It should be noted that, in all the above references, the EED
problem was addressed considering only one loading condi-
tion for a given system. So, its real-time exploitation is impos-
sible when dealing with a load curve. Moreover, these heuristic
methods do not always guarantee discovery of the globally op-
timal solution; they only provide a reasonable solution (subop-
timal, nearly global optimal).

To date, only one analytical approach [13] has been developed
to find the global solution to EED. In this paper we shall develop
various improvements with respect to [13]. First of all, in our
paper capacity constraints will be incorporated into the analyt-
ical solution. Second, we shall propose combining the classic
iterative method to incorporate losses [14] with the analytic so-
lution of our paper to obtain a solution that actually verifies the
power balance equation. Third, for the treatment of the multi-
objective problem, we shall present the set of compromise solu-
tions known as Pareto optimal solutions. We shall see that our
method can easily obtain the Pareto optimal set under different
loading conditions.

The paper is organized as follows. In Section II, we state the
mathematical models of our thermal system and show the mul-
tiobjective problem formulation using the Pareto optimal set. In
Section III, we present the simple case when transmission losses
are neglected. We describe the mathematical environment of our
work: the thermal equivalent plant, and use it to obtain the exact
analytical optimal solution. In Section IV, we present an itera-
tive method that takes into account transmission losses. The re-
sults of the application of the method to a numerical example
are presented in Section V, where the solution of our method
is compared with the best results of [13]. Finally, Section VI
summarizes the main conclusions of our research and presents
a discussion to highlight the contribution compared to existing
techniques.
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II. FORMULATION OF THE MULTIOBJECTIVE PROBLEM

Let us see the different components of our problem.

A. Mathematical Models

The cost function of each generator is traditionally approxi-
mated by a single quadratic function

(1)

where is the fuel cost ($/h), is the power generated
(MW), and are the fuel cost coefficients of the th unit,
and we suppose .

The form of the emission function model depends on the
emission type. For , it is generally acknowledged that emis-
sions will be of the same form as that of the fuel cost function.
The emission function is less straightforward to represent
as it is highly nonlinear in and highly dependent on the type
of boiler. We focus on a particular type of boiler in this paper:
the circulating fluidized bed combustion (CFBC) boiler. As an
alternative to pulverized coal combustion (PCC) power plants,
fluidized bed combustion (FBC) has emerged as a viable alter-
native, presenting significant advantages over the conventional
firing system and offering multiple benefits. One of the main
advantages of CFBC is the possibility of reducing the sulphur
dioxide formed during combustion from the sulphur con-
tent of the fuel by adding a cheap absorbent material to the bed
such as limestone . Increasing the ratio suf-
ficiently may, in theory, completely reduce the sulphur in the
bed. This is the reason for not considering emissions in
our study.

As regards emissions, as the reactions involving
thermal are only significant at high temperatures

, this extra is avoided in CFBC boilers. This
allows us to use a second-order polynomial function (U-shaped)
(see [15]) for the emission function

(2)

where is the emission (kg/h), is the power generated
(MW), and are the emission coefficients of the th unit,
and we suppose .

B. Environmental/Economic Dispatch

1) Problem Objectives: The EED problem, with plants,
is to minimize two competing objective functions: fuel cost and
emission.

Minimization of Fuel Cost: The total ($/h) fuel cost
can be expressed as

(3)

Minimization of Emission: The total (kg/h) emission
can be expressed as

(4)

2) Problem Constraints: The EED problem is subject to two
constraints:

Power balance constraint: The total power generated must
supply total load demand and transmission losses:

(5)

where is the total load demand (MW) and is the
total transmission losses (MW).
Unit capacity constraint: The power generated by each
generator, , is constrained between its minimum and
maximum limits, i.e.,

(6)

where and are the minimum and maximum
power outputs of the th unit.

Aggregating the two conflicting objectives (3), (4) and the
two constraints (5), (6), the EED problem can be mathematically
formulated as follows:

(7)

where is the equality constraint representing the power bal-
ance and is the inequality constraint representing the unit gen-
eration capacity. In general, the EED can be formulated either
as an emissions constrained economic dispatch (ECED) or as a
multiobjective optimization problem (MOP). In [13], the EED
is modeled in a simple way using a price penalty factor ($/kg) to
combine the two objectives. But actually there is no single op-
timal solution because the exact preference or “weight” of the
two objectives is unknown. In the present paper we use a more
accurate approach: the Pareto optimal solution.

C. Pareto Optimal Solution

A general MOP consists of a number of objectives to be op-
timized simultaneously and is associated with a number of
equality constraints and a number of inequality constraints:

where is the th objective function, represents a solution,
and is the number of objectives. For a MOP, any two so-
lutions and can have one of two possibilities: one domi-
nates the other or neither dominates the other. In a minimization
problem, a solution dominates if the following two con-
ditions are satisfied:

If any of the above conditions is violated, the solution does
not dominate the solution . If dominates the solution ,
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is called the nondominated solution within the set . The
solutions that are nondominated within the entire search space
are denoted as Pareto optimal and constitute the Pareto optimal
set.

Our MOP (7) thus gives rise to a set of optimal solutions in-
stead of one optimal solution. The reason for the optimality of
many solutions is that none can be considered to be better than
any other with respect to all the objective functions. This set
of compromise solutions is known as the Pareto optimal solu-
tions set. When optimizing all objectives simultaneously, Pareto
optimal solutions show the tradeoffs between conflicting objec-
tive functions. Methods of generating Pareto sets continue to be
a topic of research: random sampling, weighting method, dis-
tance method, constrained trade-off method, normal boundary
intersection method, goal programming, Pareto genetic algo-
rithm, etc. The weighted sum method of generating Pareto sets
was shown to work well with convex problems decades ago
and while it is still a very popular method, some deficiencies
have been noted. As we shall see, some of these deficiencies can
be avoided with the combined use of our analytical technique.
Thus, using the weighting method, our approach converts it into
a single function optimization problem using the weighted sum
of and

(8)

where is a constant in the range of [0,1]. To obtain the Pareto
optimal solutions set, multiple runs with different weights are
required to create the tradeoff curve. The important aspect of
this weighted sum method is that a set of noninferior solutions
can be obtained by varying the weights. The traditional disad-
vantage of the weighted sum method, when traditional methods
are used, is that it requires multiple runs. With our analytical
method, multiple runs can be performed without any difficulty.
As we have exact formulae for the optimal solution, each point
on the Pareto front is obtained immediately. As we have chosen
the weighting method in our case to populate the Pareto set, we
need only assign values to the weighting functions. There is no
need for iterative processes, the estimation of initial values or
problems of convergence of any algorithm. Simply substitute in
the given formulae.

It should also be noted that the weighting method is not suit-
able for achieving the whole Pareto set in some problems, since
it can map only the solutions which belong to the boundary of
the convex hull of the efficient solution set. Therefore, using
the weighting method, the whole Pareto set can be achieved
only in convex problems, such as ours (see the hypothesis in-
troduced in models (1) and (2)). The whole Pareto set can be
mapped in non-convex problems using an enhanced scalariza-
tion method, such as the -constrained approach [4] and [5]. In
this method, one of the problem objectives is considered as the

objective function and the other objectives are treated as con-
straints. The solutions of the Pareto set are obtained through
variations in the constraint. One limitation of this approach is
that this technique changes the structure of problem, adding new
constraints to it, which can make the problem nonviable in terms
of computational cost. A way of mapping the whole Pareto set
in non-convex problems is the hybrid method [16], which uses
a combination of the weighting and -constraint methods.

III. PROBLEM WITHOUT TRANSMISSION LOSSES:
ANALYTICAL SOLUTION

In this section we first present the simple case when transmis-
sion losses are neglected. Our method is based on constructing
the equivalent thermal plant: a single one that behaves equiv-
alently to the entire set. This study constitutes the generaliza-
tion of prior papers. We summarize the main results obtained
by Bayon et al. in previous papers, which we consider neces-
sary for a better understanding of the present paper.

In [17], we considered the case where the objective functions
are second-order polynomials and we imposed the natural con-
straint of positivity of the thermal power:

(9)

Without loss of generality, we assumed that
. We denote by the minimum value of

and by the vector where said min-
imum value is reached. Following the nomenclature employed
in [17], we shall call the equivalent minimizer of
and each the th distribution function. We proved that
if , then the equivalent minimizer is a
second-order polynomial with piece-wise constant coefficients:

with the coefficients

and being

the value of the demanded power, , below which the th plant
is kept at its minimum value: .



726 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 27, NO. 2, MAY 2012

Moreover, we proved that for every , the th
distribution function (i.e., the optimal power) is

In [18], we generalized the previous paper and calculated the
equivalent minimizer in the case where the cost functions are a
general (non-quadratic) model and the inequality constraint
is . We assumed , strictly in-
creasing, and with ,

. The problem considered was

(10)

We proved that for every , the th distribution
function is

with

the value of the demanded power, , below which the th plant
is kept at its minimum value, .

We shall now generalize the particular cases (9) and (10) to
our more general MOP (8), where

(11)

and where we simultaneously have minimum and maximum
constraints

We assume . Following the same
technique as in [18], we obtain the values

(12)

and new values, which we shall call

(13)

which represent the value of the demanded power, , above
which the th plant is kept at its maximum value, . The
order of the plants is given by the permutation such
that

It is easy to prove that for every , the th distribu-
tion function (i.e., the optimal power) is

(14)

Applying (12), (13) and (14) to the functional (11) and ex-
pressing it in terms of the coefficients of , we have that the th
distribution function (i.e., the exact optimal power) is

(15)

with
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Moreover, the function (equivalent minimizer) is

with the coefficients

and

It is evident that our formulae provide a very notable improve-
ment with respect to those obtained in [13], as they take into
account the inequality constraints. So, in this paper we have ob-
tained the exact formulae corresponding to the MOP without
losses.

The construction of all the parameters involved in the afore-
mentioned formulas, which defines the piecewise equivalent
minimizer, can be carried out in linear or quasi-linear

time if we take into account the time spent in
calculating the sigma permutation. Once all the aforementioned
parameters have been constructed, the calculation of the op-
timal cost to produce a given level of power is of complexity

, since the only calculation that requires a significant
period of time, depending on the size of the problem, is the
determination of the interval in which is found (of the

possible polynomials). This is achieved with less than
operations using a very simple bisection strategy.

Fig. 1. Computational flow of the proposed iterative method.

IV. PROBLEM WITH TRANSMISSION LOSSES:
ITERATIVE METHOD

To incorporate the transmission losses in the problem, an
approximate technique is used in [13] that consists in repre-
senting the transmission loss in terms of demand. To do so, the
aforementioned authors calculate an initial distribution of op-
timal power values (neglecting transmission losses) and use said
power values to calculate the losses, subsequently incorporating
the losses in the demand. A new solution is obtained with this
new demand; it being evident that the solution thus obtained
produces different losses to those initially estimated. The so-
lution is analytical, but not exact. One of the advantages of our
method is its versatility. So, in this section we shall combine the
well known iterative method to incorporate transmission losses
[14] with the exact formulae obtained in the previous section
to achieve an iterative method that obtains a solution that actu-
ally verifies the power balance equation (5). The process (see
Fig. 1) is similar to the method presented in [14], replacing the
phase of solving the linear system of optimal conditions and the
subsequent phase of meeting the constraints for our analytic so-
lution (15). We represent the transmission losses by means of
the classic -coefficients

(16)

where represents the transmission loss coefficients, the
generation of unit (MW), and the generation of unit
(MW). Since and are given by (15), substituting and

in (16) and simplifying, we obtain an expression for trans-
mission losses, , in terms of demand,
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TABLE I
FUEL COST AND EMISSION COEFFICIENTS AND GENERATING

CAPACITY CONSTRAINTS

TABLE II
TRANSMISSION LOSS COEFFICIENTS

the coefficients , and being known. The total power gen-
erated, , must be equal to total load demand and transmission
losses, so

Introducing as a new demand in (15), we obtain a new solu-
tion. Now, however, instead of accepting this solution, we iterate
the process until the variation in losses from one iteration to the
next is lower than the chosen tolerance.

In the following section, we shall show the rapid convergence
of this algorithm on the chosen test example.

V. EXAMPLE: COMPARISON OF RESULTS

In this section the proposed method is applied to a test system.
To compare with [13], the same realistic Indian system is pre-
sented here. The system (which is around 25 years old) has three
plants and six generating units. The fuel cost and emission coef-
ficients and the capacity constraints of the generating units are

TABLE III
ECONOMIC DISPATCH (WITHOUT TRANSMISSION LOSSES) � � �����

TABLE IV
ECONOMIC DISPATCH (WITHOUT TRANSMISSION LOSSES) � � ���� ��

given in Table I, while Table II shows the transmission loss coef-
ficients. The optimal solution was calculated on a personal com-
puter (Pentium IV, 3.4-GHz PC) using the commercial program
Mathematica 5.0.

A. Economic Dispatch Without Transmission Losses

We shall commence by comparing the exact solution of our
method: that is the formulae (15), with the best results of the
method in [13]. The results are summarized in Table III. As was
to be expected, the two solutions are identical (except for the
discrepancies produced by rounding off), since none of the units
reaches its technical minimum or maximum with the demanded
power (free solution). Where our method shows its true value
is in problems with a load curve when unit capacity constraints
come into effect. No additional method is needed to impose the
constraints, while the exact formulae provide us with the solu-
tion directly without the need to perform any iterative proce-
dure. Table IV shows the solution for . As can
be seen, units 3, 4 and 5 reach their maximum constraints, while
units 1, 2 and 3 are in the free zone.

B. Economic Dispatch With Transmission Losses

We shall now consider transmission losses. To obtain a solu-
tion that verifies the power balance constraint
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TABLE V
ECONOMIC DISPATCH (WITH TRANSMISSION LOSSES) � � �����

TABLE VI
TRANSMISSION LOSSES

Fig. 2. Convergence of the iterative method.

we apply the iterative method presented in the previous sec-
tion. In Table V we compare our solution with the one ob-
tained in [13]. As can be seen, the discrepancies are now sig-
nificant, sometimes even exceeding 1 MW, as in the case of unit
6. The reader will be able to appreciate that our solution verifies
the power balance equation, whereas the solution in [13] does
not. Even so, our CPU time is lower. The algorithm converges
rapidly (see Fig. 2). Only 6 iterations are needed to reach the
desired tolerance. Losses in two successive iteration should be
less than tolerance which in this case was selected to be :

Despite carrying out 6 iterations, it can be seen that the CPU
time is very low. Table VI shows the variation in transmission
losses with the iterations.

Finally, we compare the test presented in Table VI for
, an example with technical minimum and maximum

constraints, but without losses, with the solution obtained when
losses are incorporated. Table VII shows the optimal solution.
As can be seen, when incorporating transmission losses, unit 3

TABLE VII
ECONOMIC DISPATCH (WITH TRANSMISSION LOSSES) � � ���� ��

TABLE VIII
TRANSMISSION LOSSES

reaches its maximum constraint, besides the logical increase in
units 1 and 2. Once again, the algorithm converges rapidly (162
ms), employing 7 iterations to reach the same tolerance as the
previous example. Table VIII shows the variation in transmis-
sion losses with the iterations.

C. EED Dispatch

In this section the formulae (15) are used to tackle the EED
multi-objective problem by adopting the weighting method.
Note that each given weight provides a single solution in
the Pareto optimal set. Fig. 3 shows the emission-cost tradeoff
curve for a load of and the system is considered
lossless. Table IX presents the results of the EED. The solution
presented in [13] is only one point of our Pareto optimal set.
With our analytical method, the multiple runs that are the basis
of the weighted sum method can be performed without any
difficulty. The above solution presents the variation of from
0 to 1, in intervals of 0.05 (i.e., 20 solutions) with an execution
time of only 140 ms. As can be seen in Fig. 3, for an even spread
of the weights, the optimal solutions in the criterion space are
usually not evenly distributed. This is one of the well-known
drawbacks of the weighted sum method to populate the Pareto
set. Fortunately, this drawback can be mitigated in our problem
using the well-known technique [12] that introduces a scale
conversion factor. This new approach makes it a single function
optimization problem using the weighted sum of and

(17)

where is a weight selected between [0,1] and is a conversion
factor that scales emissions into monetary units. Using the same
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Fig. 3. Pareto-optimal front.

Fig. 4. Pareto-optimal front.

TABLE IX
EED (WITHOUT TRANSMISSION LOSSES) � � ��� ��

value that [13], i.e., , we obtain the well-
distributed Pareto-optimal front presented in Fig. 4.

As the tests carried out show, despite being analytic and pro-
viding the exact solution, our method is very fast. It is not only
useful as a comparison for the methods that seek approximate
solutions, it is in itself a useful tool in practice for real systems.
Let us recall that although we present the solution for a partic-
ular load, for reasons of comparison with other techniques, our
method solves the problem for all loading conditions and, once
this solution has been achieved, we assign a particular value to
the power demand. The CPU time we present corresponds to the
complete problem. It should also be noted that as it is neither an
iterative nor approximate method, it does not require initial es-
timations of any parameter and, finally, it is not influenced by

the size of the system. In fact, it has not limitations. It is a linear
time method.

VI. DISCUSSION AND CONCLUSIONS

An exact analytical solution technique for combined eco-
nomic and emissions dispatch has been presented in this paper.
To date, only one analytical approach [13] has been developed
to find the global solution to EED. In this paper we have
developed three improvements with respect to [13].

1) First of all, the solution of [13] when transmission losses
are neglected does not take into account unit capacity con-
straints. These constraints are imposed a posteriori in a
barely effective way, above all when considering a high
number of plants. In our paper, these constraints are incor-
porated into the analytical solution, thereby improving the
previous analytical approach.

2) Second, to incorporate the transmission losses in the
problem, [13] use an approximate technique that consists
in representing the transmission loss in terms of demand.
Once again, the solution is analytical, but not exact. In our
paper, we have combined the classic iterative method to
incorporate losses [14] with the analytical solution of our
paper to obtain a solution that actually verifies the power
balance equation.

3) Third, the treatment in [13] of the Multiobjective Problem
is simply reduced to introducing a price penalty factor be-
tween both objectives. In this paper, we have presented a
better approach: the Pareto set. When optimizing all ob-
jectives simultaneously, Pareto optimal solutions show the
tradeoffs among conflicting objective functions.

With respect to heuristic methods, which only provide a
nearly optimal solution, and for each loading condition, our
approach presents the exact solution and does so without any
additional time cost. To the contrary, as we have seen, our
method is very fast and there is no need for iterative processes,
the estimation of initial values or problems of convergence of
any algorithm. We are able to obtain the solution for all the
values of the load curve by simple substitution in the given
formulae. In this environment, our paper presents a technique
that we consider highly practical and useful for solving an EED
problem in real-time for a forecast load curve.

On some occasions, exact techniques are usually complicated
to understand, difficult to program and slow from the computa-
tional point of view. This means that they are usually substituted
by approximate techniques. In this case, however, none of these
conditions is fulfilled in our paper. Furthermore, our technique
is highly versatile and we have shown in this paper that it is
compatible with many other well-known techniques such as the
iterative method to incorporate losses or the weighting method
to populate the Pareto set.
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