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Abstract In this paper we present a method to solve a constrained optimal control
problem to calculate the optimal enzyme concentrations in a chemical process by
considering the minimization of the transition time. The method, based on Pontryagin’s
Minimum Principle, allows us to obtain the generalized solution of an n-step system
with an unbranched scheme and bilinear kinetic models in an almost exclusively
analytical way.
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1 Introduction

This paper presents an optimal control problem which arises when metabolic chemical
processes are considered. Within this context, one of the most important problems is the
study of enzyme concentrations. Our work focuses on dynamic optimization, studying
the problem of minimizing the transition time during which the substrate is converted
into the product.

Let us consider the following (unbranched) reaction chain of n irreversible reaction
steps converting substrate x1 into product p:

x1
u1→ x2

u2→ x3
u3→ · · · → xn−1

un−1→ xn
un→ p (1)
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where x1 is the substrate concentration (starting reagent), p the concentration of the
final product, xi (i = 2, . . . , n) the concentration of the intermediate compounds, and
ui (i = 1, . . . , n) the concentration of the enzyme catalyzing the i-th reaction.

For the dynamic case, the aim is to solve the problem analytically and numerically.
An explicit solution for the simplest case, i.e. n = 2, can be found in [1]. For longer
pathways, i.e. n > 2, the aforementioned authors solved the optimization problem
numerically. An interesting study is presented in [2], in which the solution is obtained
quasi-analytically, though with the constraint of considering only the case of n = 3
with two intermediate compounds. An interesting theoretical result is presented in [3]
for the general case of n steps: the optimal enzyme concentration profile is of the
“bang-bang” type (a well-known concept in the framework of optimal control which
implies that the solution switches between 0 and the maximal level), except in the last
interval. Other qualitative considerations of the solution are also presented, though not
the analytical solution.

In this paper, we shall substantially extend the theoretical analysis of [2] and [3],
presenting the quasi-analytical solution for the more general case of n steps. A funda-
mental difference with regard to the work presented in [3] is that, in said paper, the final
steady-state enzyme levels are computed directly from an imposed final condition. In
our study, leaving this condition free for the final interval will markedly complicate the
development of the solution. The paper is organized as follows. Section 2 presents the
statement of the problem. In Sect. 3, we carry out a calculation based on Pontryagin’s
Minimum Principle. Finally, we present the conclusions drawn.

2 Statement of the problem

The optimization of enzyme concentrations in metabolic pathways can be calculated
using the optimality criterion of minimizing the time period during which an essential
product is generated. Klipp et al. [1] and Bartl et al. [2] assumed bilinear (linear in
the metabolite concentrations, xi , and linear in the enzyme concentrations, ui ) and
irreversible rate laws. Oyarzun et al. [3] used a more general model: the rate laws
are only linear in the ui , and some assumptions are made about the behaviour of the
xi . In this paper, we use a bilinear kinetic model to solve the problem analytically,
likewise assuming that the enzymes can be switched on and off instantaneously. For
the sake of simplicity, we employ normalized quantities. Enzyme levels are divided
by the maximum total enzyme concentration, and substrate, intermediate and product
levels by the initial substrate concentration.

Our goal is to convert substrate x1 into product p as fast as possible. Several cost
functions may be considered. In [3], combined optimization of the time taken to reach
the new steady state and a measure of enzyme usage are considered:

min
u1,...un

t f∫

0

(1 + αT u(t))dt

where α is the vector of weights and u the vector of enzyme concentrations. If we
choose α = 0, then the minimization of the total operating time is considered:
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min
u1,...un

t f∫

0

dt

In this paper, we use the transition time, τ , as defined in [4] and [5], which is likewise
used in [1] and [2]. In order to be converted into the product as fast as possible, substrate
x1 must follow the pathway of reactions xi which lead to p within a minimum period
of time. In metabolic analysis, this period of time is called the transition time. Thus,
the objective function of the optimization problem may be defined as:

min
u1,...un

τ = min
u1,...un

∞∫

0

1

x1(0)
(x1(0) − p(t))dt

Due to normalization, x1(0) = 1, and the conservation relation:

x1(t) + x2(t) + · · · + xn(t) + p(t) = 1, ∀t ≥ 0

the objective function can be written as:

min
u1,...un

τ = min
u1,...un

∞∫

0

(x1(t) + x2(t) + · · · + xn(t))dt (2)

where concentrations x1, x2, . . . , xn are the state variables (p is eliminated) and the
enzyme concentrations u1, u2, . . . , un comprise the control variables.

The model of the reactions in (1) can then be described by the set of differential
equations (see [1] and [2]):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = −k1u1x1 x1(0) = 1, x1(t) ≥ 0
ẋ2 = k1u1x1 − k2u2x2 x2(0) = 0, x2(t) ≥ 0
ẋ3 = k2u2x2 − k3u3x3 x3(0) = 0, x3(t) ≥ 0
· · ·
ẋn = kn−1un−1xn−1 − knun xn xn(0) = 0, xn(t) ≥ 0

(3)

where, for the sake of simplicity, we shall assume equal catalytic efficiencies of the
enzymes (ki = 1). As an initial condition, for t = 0, we shall consider the concentra-
tions of the intermediate compounds and of the product to be equal to zero. Finally,
we shall consider the concentrations of the compounds, xi , as well as those of the
enzymes, ui , to be positive limited quantities and, after normalization, that the upper
bound on the enzymatic concentration is 1. Hence, (u1(t), . . . ,un(t)) ∈ Ω , being:

Ω = {u = (u1(t), . . . , un(t)) ∈ R
n|u1 ≥ 0, . . . un ≥ 0; u1 + · · · + un ≤ 1} (4)

We have thus stated an optimal control problem (OCP). Our standard Lagrange-type
OCP can be mathematically formulated as follows:
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min
u(t)

I = min
u(t)

t f∫

0

F (t, x(t), u(t)) dt

subject to satisfying:

ẋ(t) = f (t, x(t), u(t)) ; x(0) = x0

u(t) ∈ Ω, 0 ≤ t ≤ t f (5)

where I is the performance index, F is an objective function, x = (x1(t), . . . , xn(t)) ∈
R

n is the state vector, with initial conditions x0 u ∈ R
n is the control vector, Ω denotes

the set of admissible control values and t is the operating time that starts from 0 and
ends at t f . The state variables must satisfy the state equation (5) with given initial
conditions. In this statement, we consider the final state to be free. Let H be the
Hamiltonian function associated with the problem

H(t, x, u, λ) = F (t, x, u) + λ · f (t, x, u)

where λ = (λ1(t), . . . , λn(t)) ∈ R
n is called the costate vector. The classical approach

involves the use of Pontryagin’s Minimum Principle [6], which results in a two-point
boundary value problem (TPBVP). In order for u ∈ Ω to be optimal, a nontrivial
function λ must necessarily exist, such that for almost every t ∈ [0, t f ]:

ẋ = Hλ; x(0) = x0
·
λ = −Hx; λ(t f ) = 0

min
u∈Ω

H(t, x, u, λ) (6)

Normally, the last optimality condition (6) is imposed as Hu = 0 and the system of
equations is solved for the control vector, u(t). However, if we consider control to
appear linearly, (6), this leads to the minimization of a linear function of n variables
of the following type:

min
u∈Ω

H = min
u∈Ω

{−μ1u1 − μ2u2 − · · · − μnun}

where the functions μi are called the switching functions. It is shown that control
ui will be activated when the switching function μi reaches its maximum value. If
ui switches between its upper and lower bounds only at isolated points in time, then
the optimal control is said to be a bang-bang type control [7]. The times are called
switching times.
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3 Optimal solution

In this section, we present the solution to the optimal control problem defined in the
previous section using Pontryagin’s Minimum Principle [6]. The fundamental result
to obtain may be summarized as follows:

Proposition 1 There exists a set of switching times {t1, t2, . . . , tn−1}, (with 0 < ti <

t j , for i < j ) which partition the optimization interval as:

[0, t1) ∪ [t1, t2) ∪ · · · ∪ [tn−2, tn−1) ∪ [tn−1,∞)

such that the optimal profile of the i -th enzyme is of the bang–bang type and satisfies:

u∗
i (t) =

{
1 f or t ∈ [ti−1, ti )
0 f or t /∈ [ti−1, ti )

; i = 1, . . . , n − 1

with t0 = 0. In each interval [ti−1, ti ), i = 1, . . . , n − 1, the optimal metabolite
concentration is given by:

x1(t) =
{

e−t i = 1
e−t1 i > 1

(7)

x j (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j−1∏
h=1

(1 − e−(th−th−1)) · e−(t j −t j−1) j = 2, . . . , i − 1

j−1∏
h=1

(1 − e−(th−th−1)) · e−(t−ti−1) j = i

i−1∏
h=1

(1 − e−(th−th−1)) · (1 − e−(t−ti−1)) j = i + 1

0 j = i + 2, . . . , n

(8)

In the last interval (t ≥ tn−1), the solution is not of the bang–bang type.

Proof In our case, as regards the control appearing linearly in the Hamiltonian H :

H = x1 + x2+· · ·+xn +λ1(−u1x1)+λ2(u1x1 − u2x2)+· · ·+λn(un−1xn−1 − un xn)

when H is minimized w.r.t. the control variables, we have that:

min
u∈Ω

H = min
u∈Ω

{−μ1u1 − μ2u2 − · · · − μnun} ;

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ1 = (λ1 − λ2)x1
μ2 = (λ2 − λ3)x2
...

μn−1 = (λn−1 − λn)xn−1
μn = λn xn

(9)

where μi are the switching functions. From (9), we conclude that control ui will
be activated when the function μi reaches its maximum. Moreover, according to the
optimality conditions:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

·
λ1 = − ∂ H

∂x1·
λ2 = − ∂ H

∂x2
...
·
λn−1 = − ∂ H

∂xn−1·
λn = − ∂ H

∂xn

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

·
λ1 = (λ1 − λ2)u1 − 1
·
λ2 = (λ2 − λ3)u2 − 1
...
·
λn−1 = (λn−1 − λn)un−1 − 1
·
λn = λnun − 1

(10)

When control ui is activated, the coefficient μi has to be positive: μi ≥ 0, (∀i =
1, . . . , n) (otherwise ui = 0). The following condition can thus be easily seen to hold:

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn

We shall obtain the optimal solution constructively by intervals, starting from t = 0
and concatenating the results.

– First interval [0, t1] . For t = 0 ⇒ u1 = 1, u2 = 0, u3 = 0, · · · , un = 0, since if
u1 = 0 from (3), ẋ1 = 0 ⇒ x1(t) = 1,∀t and the product will not be produced.
Therefore, from (3), we have:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = −x1 x1(0) = 1
ẋ2 = x1 x2(0) = 0
ẋ3 = 0 x3(0) = 0
...

ẋn = 0 xn(0) = 0

⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1(t) = e−t

x2(t) = 1 − e−t

x3(t) = 0
...

xn(t) = 0

Moreover, from (3), (9) and (10), the following holds:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

·
λ1 = λ1 − λ2 − 1
·
λ2 = −1
·
λ3 = −1
x3 = 0
...

xn = 0

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

·
μ1 = ·

(λ1 − ·
λ2)x1 + (λ1 − λ2) ẋ1 =

(λ1 − λ2) x1 + (λ1 − λ2) (−x1) = 0
·
μ2 = ·

(λ2 − ·
λ3)x2 + (λ2 − λ3) ẋ2 =

(λ2 − λ3) x1 ≥ 0
μ3 = (λ3 − λ4)x3 = 0
...

μn = λn xn = 0

⇒ μ1 = cte, μ2 = increasing, μ3 = 0, . . . , μn = 0

and we obtain the transition time for this interval:

τ1 =
t1∫

0

(x1(t)+x2(t)+x3(t)+· · ·+xn(t)) dt =
t1∫

0

(
e−t +1−e−t +0+· · ·+0

)
dt =

t1∫

0

1dt = t1
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– Second interval [t1, t2] . For t = t1 ⇒ u1 = 0, u2 = 1, u3 = 0, · · · , un = 0. Thus,
from (3):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = 0 x1(t1) = e−t1

ẋ2 = −x2 x2(t1) = 1 − e−t1

ẋ3 = x2 x3(t1) = 0
ẋ4 = 0 x4(t1) = 0
...

ẋn = 0 xn(t1) = 0

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = e−t1

x2(t) = (
1 − e−t1

)
e−(t−t1)

x3(t) = (
1 − e−t1

) (
1 − e−(t−t1)

)
x4(t) = 0
...

xn(t) = 0

Once again, using (3), (9) and (10), we have that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

·
λ1 = −1
·
λ2 = λ2 − λ3 − 1
·
λ3 = −1
·
λ4 = −1
x4 = 0
...

xn = 0

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

·
μ1 = ·

(λ1 − ·
λ2)x1 + (λ1 − λ2) ẋ1 =

− (λ2 − λ3) x1 ≤ 0
·
μ2 = ·

(λ2 − ·
λ3)x2 + (λ2 − λ3) ẋ2 =

(λ2 − λ3)x2 + (λ2 − λ3) (−x2) = 0
·
μ3 = ·

(λ3 − ·
λ4)x3 + (λ3 − λ4) ẋ3 =

(λ3 − λ4) x2 ≥ 0
μ4 = λ4x4 = 0
...

μn = λn xn = 0

⇒ μ1 = decreasing, μ2 = cte, μ3 = increasing, μ4 = 0, . . . , μn = 0

The transition time for this interval is:

τ2 =
t2∫

t1

(
e−t1 + (

1 − e−t1
)

e−(t−t1) + (
1 − e−t1

) (
1 − e−(t−t1)

)
+ · · · + 0

)
dt

= t2 − t1

The successive intervals up until the last but one are similarly obtained.
– Interval

[
tn−2, tn−1

]
. For t = tn−2 ⇒ u1 = 0, u2 = 0, u3 = 0, . . . , un−2 =

0, un−1 = 1, un = 0. From the state equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = 0
ẋ2 = 0
ẋ3 = 0
ẋ4 = 0
...

ẋn−2 = 0
ẋn−1 = −xn−1
ẋn = xn−1

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = e−t1

x2(t) = (
1 − e−t1

)
e−(t2−t1)

x3(t) = (
1 − e−t1

) (
1 − e−(t2−t1)

)
e−(t3−t2)

x4(t) = (
1 − e−t1

) (
1 − e−(t2−t1)

)
(1 − e−(t3−t2))e−(t4−t3)

...

xn−2(t) = (
1 − e−t1

) · · · (1 − e−(tn−3−tn−4))e−(tn−2−tn−3)

xn−1(t) = (
1 − e−t1

) · · · (1 − e−(tn−2−tn−3))e−(t−tn−2)

xn(t) = (
1 − e−t1

) · · · (1 − e−(tn−2−tn−3))(1 − e−(t−tn−2))
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And hence:

τn−1 =
tn−1∫

tn−2

(x1(t) + x2(t) + x3(t) + · · · + xn(t)) dt =
tn−1∫

tn−2

1dt = tn−1 − tn−2

– In the interval [tn−1,∞), if it holds that u1 = 0, u2 = 0, u3 = 0, . . . , un = 1,

we thus have that:

⎧⎪⎨
⎪⎩

ẋn = −xn·
λn = λn − 1
μn = λn xn

⇒ ·
μn = ·

λn xn + λn ẋn = (λn − 1) xn + λn (−xn) = −xn ≤ 0

⇒ μn = decreasing

and we will not have an interval in which to activate un . Therefore, in the last interval
(t ≥ tn−1), the solution is not of the bang–bang type. ��

The optimal solution have already been obtained analytically for the intervals
[0, t1) ∪ [t1, t2) ∪ · · · ∪ [tn−2, tn−1). The value of ui and the values of concentrations
x1, x2, . . . , xn are given by Proposition 1. The following table presents the results
developed from the formula (7) for ease of comprehension.

As we have just seen, un cannot be activated in the last interval [tn−1,∞). Therefore,
in order to calculate the solution in this last interval, we need to determine the minimum
total transition time, τ . The result can be summarized in the following proposition.

Proposition 2 The optimal values of x1(t), x2(t), . . . , xn(t) are given by (7) in
[ti−1, ti ), i = 1, . . . , n − 1, and by:

x j (t) =
j−1∑
h=1

⎡
⎢⎢⎣xh(tn−1)

j−1∏
k=h

uk

⎛
⎜⎜⎝

j∑
k=h

j∏
i=h
i 
=k

e−uk (t−tn−1)

ui − uk

⎞
⎟⎟⎠

⎤
⎥⎥⎦+ x j (tn−1)e

−u j (t−tn−1)

in the last interval [tn−1,∞) (with j = 1, . . . , n).

Proof To calculate the solution in the last interval, we consider the Hamiltonian:

H = x1 + x2 + · · · + xn − μ1u1 − μ2u2 − μ3u3 − · · · − μnun

As the optimality condition is independent of time, the following holds:

·
H = ẋ1 + ẋ2 + · · · + ẋn −

( ·
μ1u1 + ·

μ2u2 + · · · + ·
μnun

)

−
(
μ1

·
u1 + μ2

·
u2 + · · · + μn

·
un

)
= −

(
μ1

·
u1 + μ2

·
u2 + · · · + μn

·
un

)
= 0
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thus:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

·
u1 = 0 ⇒ u1 = cte
·
u2 = 0 ⇒ u2 = cte
·
u3 = 0 ⇒ u3 = cte
...
·
un = 0 ⇒ un = cte

; u1 + u2 + · · · + un = 1

We shall now determine x1(t), x2(t), . . . , xn(t) and the transition time in the last
interval, [tn−1,∞). Progressively solving the equations comprising the system of
differential equations (3), we obtain the following expressions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = x1(tn−1)e−u1(t−tn−1)

x2(t) = x1(tn−1)u1

[
1

u2−u1
e−u1(t−tn−1) + 1

u1−u2
e−u2(t−tn−1)

]
+x2(tn−1)e−u2(t−tn−1)

x3(t) = x1(tn−1)u1u2

[
1

u2−u1
· 1

u3−u1
e−u1(t−tn−1)

+ 1
u1−u2

· 1
u3−u2

e−u2(t−tn−1) + 1
u1−u3

· 1
u2−u3

e−u3(t−tn−1)
]

+x2(tn−1)u2

[
1

u3−u2
e−u2(t−tn−1) + 1

u2−u3
e−u3(t−tn−1)

]
+x3(tn−1)e−u3(t−tn−1)

. . .

(11)

which correspond to the general formula:

x j (t) =
j−1∑
h=1

⎡
⎢⎢⎣xh(tn−1)

j−1∏
k=h

uk

⎛
⎜⎜⎝

j∑
k=h

j∏
i=h
i 
=k

e−uk (t−tn−1)

ui − uk

⎞
⎟⎟⎠

⎤
⎥⎥⎦+ x j (tn−1)e

−u j (t−tn−1)

Performing the appropriate operations, we thus obtain:

∞∫

tn−1

x1(t)dt = x1(tn−1)
1

u1

∞∫

tn−1

x2(t)dt = (x1(tn−1) + x2(tn−1))
1

u2

∞∫

tn−1

x3(t)dt = (x1(tn−1) + x2(tn−1) + x3(tn−1))
1

u3

...
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∞∫

tn−1

xn(t)dt = (x1(tn−1) + x2(tn−1) + · · · + xn(tn−1))
1

un

Hence, the transition time for [tn−1,∞) is:

τn =
∞∫

tn−1

(x1(t) + · · · + xn(t)) dt = x1(tn−1)

(
1

u1
+ · · · + 1

un

)

+x2(tn−1)

(
1

u2
+ · · · + 1

un

)
+ · · · xn(tn−1)

(
1

un

)

And the total transition time will be:

τ = τ1 + τ2 + · · · τn−1 + τn = t1 + t2 − t1 + t3 − t2 + · · · + tn−1 − tn−2 + τn

= tn−1 + τn = tn−1 + x1(tn−1)

(
1

u1
+ · · · + 1

un

)

+x2(tn−1)

(
1

u2
+ · · · + 1

un

)
+ · · · + xn(tn−1)

(
1

un

)

where xi (tn−1) are known from Table 1. Thus, in order to calculate the solu-
tion in this last interval, we need to determine the minimum total transition time,
τ(t1, t2, . . . , tn−1, u1, u2, . . . , un). To minimize τ with the condition:

u1 + u2 + . . . + un = 1

we apply the method of Lagrange multipliers to the augmented functional:

L(t1, t2, . . . , tn−1, u1, u2, . . . , un, β) = τ + β(u1 + u2 + · · · + un − 1)

In order to do so, we have to solve the non-lineal system:

∂L

∂t1
= 0; ∂L

∂t2
= 0; · · · ; ∂L

∂tn−1
= 0; ∂L

∂u1
= 0; ∂L

∂u2
= 0; · · · ; ∂L

∂un
= 0; ∂L

∂β
= 0

(12)

which may be done by means of any commonly used program. ��
Remark 1 It is therefore in this last step when we truly determine the switching times:
t1, t2, . . . , tn−1, and the values of u1, u2, . . . , un in the last interval, [tn−1,∞) (in the
other intervals, ui is given by Proposition 1). The problem is now completely solved
by calculating x1(t), x2(t), . . . , xn(t). Finally, the concentration of product p(t) can
be easily calculated ∀t using the conservation relation:

p(t) = 1 − (x1(t) + x2(t) + · · · + xn(t)), ∀t ≥ 0

123



1046 J Math Chem (2014) 52:1036–1049

Table 1 Metabolite concentration and transition time

Interval Concentrations

[0, t1]

τ = t1

x1(t) = e−t

x2(t) = 1 − e−t

x3(t) = 0; . . . ; xn(t) = 0

[t1, t2]

τ = t2 − t1

x1(t) = e−t1

x2(t) = (
1 − e−t1

)
e−(t−t1)

x3(t) = (
1 − e−t1

) (
1 − e−(t−t1)

)
x4(t) = 0; · · · ; xn(t) = 0

[t2, t3]

τ = t3 − t2

x1(t) = e−t1

x2(t) = (
1 − e−t1

)
e−(t2−t1)

x3(t) = (
1 − e−t1

) (
1 − e−(t2−t1)

)
e−(t−t2)

x4(t) = (
1 − e−t1

) (
1 − e−(t2−t1)

)
(1 − e−(t−t2))

x5(t) = 0; · · · ; xn(t) = 0
. . . . . .

[
tn−2, tn−1

]

τ = tn−1 − tn−2

x1(t) = e−t1

x2(t) = (
1 − e−t1

)
e−(t2−t1)

x3(t) = (
1 − e−t1

) (
1 − e−(t2−t1)

)
e−(t3−t2)

.

.

.

xn−2(t) = (
1 − e−t1

) · · · (1 − e−(tn−3−tn−4))e−(tn−2−tn−3)

xn−1(t) = (
1 − e−t1

) · · · (1 − e−(tn−2−tn−3))e−(t−tn−2)

xn(t) = (
1 − e−t1

) · · · (1 − e−(tn−2−tn−3))(1 − e−(t−tn−2))

We have thus solved the problem quasi-analytically; this last step, the calculation of
the switching times, is the only one that is not carried out analytically or exactly. These
two propositions provide an analytic justification of the behaviour described in [1] and
observed experimentally in [8].

4 Example: Discussion of the results

Using the results presented in the previous section, we developed a program using
the Mathematica® package that allows us to obtain the optimal solution. In Table 2,
we present the optimal solution for the cases n = 2, 3, 4, 5. Let us see the switching
times ti (i = 1, . . . , n − 1), the optimal profile of the i-th enzyme ui (i = 1, . . . , n)

in the last interval [tn−1,∞), and the transition time τ. Remember that in the previous
intervals, ui is given by Proposition 1. Moreover, the substrate concentration, x1, the
concentrations of the intermediate compounds, x2, . . . , xn , and the concentration of
the final product, p, are immediately obtained in any interval using the presented
formulae.

We shall now compare the results with those presented by other authors. Klipp et
al. [1] present the analytical solution for the case n = 2. Compared to our solution,
we have detected an error in the value they give to u2, the correct value being u2 =
0.61803. Figure 1 shows the optimal enzyme profile and the metabolite and product
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Table 2 Optimal solution

n t1 t2 t3 t4

2 0.9624 – – –

3 2.0061 2.9595 – –

4 2.7801 4.7452 5.7609 –

5 3.3628 6.0746 8.0789 9.1759

n u1 u2 u3 u4 u5 τ

2 0.38197 0.61803 – – – 3.5805

3 0.17882 0.33359 0.48758 – – 7.1658

4 0.10439 0.18437 0.29208 0.41916 – 11.453

5 0.06989 0.11801 0.17623 0.26033 0.3755 16.267

Enzyme profile Metabolite and product profile

Fig. 1 Case n = 3

profile for the case n = 3. The solution obtained coincides with the one presented in
[2].

Figure 2 shows the optimal solution for the case n = 5. An approximate solution
for the case n = 5 is also presented in [1]. Compared to our solution, we have detected
significant variations in the values of the switching times. The values given in [1]
are: t1 = 3.08, t2 = 5.28, t3 = 6.77, t4 = 7.58. As the authors do not provide the
values of ui , we have not been able to check that the optimality equations are verified
(12). However, the value of the transition time τ = 16.3(s) is similar to the one we
obtained: τ = 16.267(s).

The results show a clear-cut chemical interpretation which we shall now elucidate
in detail. During each of the first n − 1 intervals, only one enzyme is active and at its
maximum value, namely ui , corresponding to compound xi , which we want to convert
into xi+1, (i = 1, . . . , n − 1). The solution is hence of the bang–bang type.
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Enzyme profile Metabolite and product profile

Fig. 2 Case n = 5

In these n − 1 intervals, the concentration of the metabolites varies as follows. In
the first interval, starting from the initial value x1(0) = 1, and using only enzyme u1,

substrate x1 is converted into the intermediate compound x2. Upon reaching the opti-
mal value, the first switching time, t1, appears. At this point, x2 reaches its maximum
value, x2(t1), while x1 takes on a constant value, x1(t1), which it will maintain until
the last interval. The process is repeated in the second interval, though now it is x2
which, starting from this maximum value, x2(t1), is converted into the intermediate
compound x3. Once the second switching time, t2, has been reached, x2 takes on a
constant value, x2(t2), which it will maintain as the optimal value until the instant
tn−1. The process is similarly repeated for all xi .

Note that the maximum values obtained by metabolites xi (ti−1) become progres-
sively lower as the process advances, whereas the constant values xi (ti ) that they
maintain during a good part of the chain reaction increase progressively with increas-
ing i . This is related to the fact that the intervals between switching times become
progressively smaller as the chain reaction advances (see Fig. 2), with the subsequent
decrease in the period of activation of each enzyme ui .

Product p is only generated in the last interval [tn−1,∞). As just stated, it is worth
noting that the concentration of the substrates in this time period (without p) are
ordered xi < xi+1. However, the most noteworthy fact is that a combination of all the
enzymes ui appears in which the enzyme concentrations are ordered ui < ui+1 (see
Table 2; Fig. 2). Note that the last enzyme, un , only takes part in the last interval, and
never does so at its maximum value of 1, because, along with the other enzymes, it
must fulfil the condition (4).

Moreover, if we compare the solution obtained for different values of n, a number of
conclusions may also be drawn. First, the minimal transition time logically increases
as the number of intermediate compounds, n, increases. We can also see that the first
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switching time is increasingly delayed and that the value in the last interval of the last
enzyme, un , becomes progressively smaller with increasing n. Finally, it would appear
paradoxical that the fastest possible conversion of the substrate into the final product
is achieved when delaying (of course, in an appropriate manner) the appearance of
intermediate compounds.

5 Conclusions

Our paper supposes the generalization of the optimal control problem that arises when
considering a linear unbranched chemical process with n steps. We provide a quasi-
analytical solution to the case of n steps by considering the minimization of the tran-
sition time. We show that the qualitative and quantitative description of the optimal
solution provided by Proposition 1 considerably simplifies the computation of the opti-
mal solutions, as we need only calculate the optimal switching times and the enzyme
values in the last interval, seeing that the remaining unknowns are obtained analyti-
cally using the given formulas. We believe that the results obtained in this paper may
be very useful to other researchers, serving as a benchmark for comparison with other
approximate methods.
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