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This paper presents a method to solve the economic dispatch (ED) problem for thermal unit systems
involving combined cycle (CC) units. The ED problem finds the optimal generation of each unit in order to
minimize the total generation cost while satisfying the total demand and generating-capacity constraints. A
CC unit presents multiple configurations or states, each state having its own unique cost curve. Therefore,
in performing ED, we need to be able to shift between these cost curves. Moreover, the cost curve is not
convex for some of these states. Hence, ED becomes a non-convex optimization problem, which is difficult
to solve by conventional methods. In this paper we present a new technique, developed to find the global
solution, that is based on the calculation of the infimal convolution. The paper includes the results for a
case test and we compare our solution with other techniques.
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1. Introduction

In today’s environment of deregulated power markets, combined cycle (CC) units represent the
majority of new generating plants worldwide. In the particular case of Spain, CC gas technology
predominates in the energy mix, representing 26% at the end of 2010 [12]. Compared with single-
cycle thermal units, CC units present numerous advantages such as higher efficiency, lower capital
investment, more flexible operation, and lower environmental impact. The use of this technology
has, in turn, brought new challenges to the economic dispatch (ED) problem.

The ED problem is defined as that of finding an optimal distribution of system load to the
generators in order to minimize the total generation cost while satisfying the total demand and
generating-capacity constraints. Cost curves of conventional thermal units can be modelled as
convex functions and, traditionally, the cost function of each generator is approximated by a
single quadratic function [4]. In this paper, we analyse a more complex problem and present a
method to solve the ED problem for thermal unit systems involving CC units.

A CC unit consists of one or more combustion turbines (CTs), each with a heat recovery steam
generator (HRSG). The steam produced by each HRSG is used to drive steam turbines (STs). The
different combinations of CTs and STs in a CC unit produce multiple configurations or states.
Each state has its own unique cost curve. Therefore, in performing ED, we need to be able to
shift between these cost curves. However, there is another, more serious problem: the cost curve
is not convex for some of these states (see [3] for a detailed explanation). Hence, ED becomes a
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270 L. Bayón et al.

non-convex optimization problem, which is difficult or even impossible to solve by conventional
methods [15]. As a result, ED of CC units must use special techniques. Let us see a summary of
the most important of these.

Based on the evolutionary programming (EP) technique,Yang et al. [16] developed an algorithm
capable of determining the near global optimal solution. Bjelogrlic [3] decomposes the problem
into several subproblems to then apply dynamic programming (DP) and mixed integer linear
programming (MILP). Gao et al. [5] propose to use complete enumeration (CE), merit order
loading, genetic algorithm (GA), and a hybrid technique (the lambda iteration method is applied
for conventional units and CE for CC units). Gao and Sheble [6] implement three evolutionary
algorithms: GA, EP, and particle swarm (PS), comparing these with the classic MILP. The three
former techniques (GA, EP, and PS) involve a stochastic searching mechanism, and it should
be noted that these heuristic methods do not always guarantee obtaining the globally optimal
solution: they only provide an approximate solution for the non-convex optimization problem.
The solution of ED problems with non-convex fuel cost functions using stochastic methods is
presented in [13] for another classic problem: the valve-point effect.

In [14], a combined economic emission dispatch problem with line flow constraints is con-
sidered applying evolutionary computation methods such as GA, micro GA, and EP. Lu and
Shahidehpour [10] solved a more general problem considering the unit commitment problem,
applying DP and Lagrangian relaxation. However, there is a drawback to assuming that each
configuration or state has a convex function model. Lu and Shahidehpour [11] consider network
constraints in a security-constrained unit commitment (SCUC) and uses the same technique.
Kavasseri and Nag [8] explore the algebra-based Gröbner basis technique to find the solution.
MILP is also used by Liu et al. [9]. Recently [1] and [2] solve the SCUC problem using DP under
a dual programming scheme.

In this paper we present a new technique for solving the ED problem of CC units. The technique,
developed to find the global solution, is based on the calculation of the infimal convolution (IC).We
believe that our work provides two very important novel contributions to the ED problem with CC
units. The first is that our method calculates the global analytical solution, as opposed to heuristic
methods (present in the literature), which only calculate a suboptimal solution that approximates
the global solution. The second (and perhaps fundamental) contribution is that it solves not only
a specific problem for a particular power demand, but also the family of problems that arise when
considering all admissible power demands. We further believe that the proposed algorithm can
be applied to other problems with similar characteristics that fall outside the field of ED.

The proposed recursive algorithm for calculating the analytic solution (AS) consists of four
phases: calculation of the piecewise linear cost function of each CC unit, calculation of the IC of
two piecewise linear functions, generalization to N units, and calculation of the optimal solution
of each unit. Finally, the proposed method is applied to a test ED problem and our solution is
compared with three stochastic optimization techniques: GA, EP, and PS.

The paper is organized as follows. In Section 2 we set out the mathematical modelling of CC
units. Section 3 presents the optimization algorithm for the corresponding ED problem. The results
obtained in a case test are then presented in Section 4 and our solution is compared with various
stochastic techniques. Finally, the conclusions reached in this study are discussed in Section 5.

2. Mathematical modelling of combined cycle units

The literature [1,2,7] provides several alternatives to model CCs in electricity markets:
• Aggregated model. This model represents a CC unit by means of an aggregated one that is

treated as a regular thermal unit. This is a very simplistic model since it ignores all the different
configurations and technical constraints of the CC unit.
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Figure 1. The states of a CC unit and the state transition diagram.

• Pseudo unit model. This model represents a CC unit with one or more pseudo units that comprise
a single CT and its associated portion of the ST capacity. All pseudo units are required to
have the same characteristics. As a consequence, this model has difficulties to represent these
characteristics precisely under different operating modes.

• Configuration-based model. This model represents a CC unit as multiple mutually exclusive
configurations or combinations of CTs and STs. Hence, each configuration has its own cost func-
tion. The feasible transitions between configurations are determined by a pre-established state
transition diagram. This model presents a degree of flexibility that allows a better representation
of technical parameters and bid data from each CC unit.

• Physical unit model. This method models the physical components of a CC unit and each CT
and ST is considered as an individual resource that may submit its own startup cost, minimum
up/down time, etc. From a scheduling point of view, this is not an ideal choice due to the
complexity of handling dependency among components.

The last two models are the most accurate ones (see Liu et al. [9] for a comparison between
these two models). In general, the physical unit model is more suitable for power flow and
network security analysis. However, the configuration-based model is more suitable for bid/offer
processing and dispatch scheduling.

This paper focuses on the ED problem that a generation company with CC units faces when
preparing its offers for the day-ahead market. We hence consider the configuration-based model.
Assuming a CC unit consists of two CTs and one ST, all configurations (or states) are shown in
Figure 1. The state space for a CC unit is composed of the state space of distinct configurations
and must be set up according to the individual configurations as well as the relationship between
the configurations. The state transition diagram for the above CC unit can be also seen in Figure 1.
It can be seen, for example, that transitions between configurations 2 and 3 are not allowed.

Each state has its own cost curve; for some states, this curve is not convex. This situation occurs
just as the HRSG is ramped up. Prior to HRSG startup, only the CT is generating with a specified
cost per hour. Subsequently, after HRSG startup, the fuel input remains almost constant, although
the MW output of the (now) two generation units has increased due to the power produced by the
ST. In the case presented in Figure 1, states 1 and 2 will be represented by conventional (convex)
cost curves, but the incremental cost curves of states 3 and 4 will not increase monotonically with
generation.

The most widely used model to represent the non-convexity of cost curves is a piecewise linear
cost function [5,6,14]. This is the most flexible model and allows a greater approximation to reality.
Sometimes, the piecewise linear cost function is approximated by more complex functions. For
instance, a 4th-order polynomial function is used in [6], while a 10th-order polynomial is employed
in [8]. However, some authors also simplify the problem and consider that the cost curves of all
states are convex, like, for example, [16] or [10]. In the present paper, we shall use piecewise
linear cost functions to represent the states of a CC unit.

The four piecewise linear cost curves, {Gj(P)}4
j=1, of the CC unit considered in the example of

Section 4 are shown in Figure 2. States 1 and 2 are essentially thermal unit states. Accordingly,
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272 L. Bayón et al.

Figure 2. CC cost functions as piecewise linear functions.

the cost curves are monotonously increasing and convex. However, the curves corresponding to
states 3 and 4 are monotonously increasing, though no longer convex, as they are CC unit states.

3. Algorithm of optimization

The classic ED problem can be described as an optimization (minimization) problem:

min
N∑

i=1

Fi(Pi) subject to:
N∑

i=1

Pi = PD; Pi min ≤ Pi ≤ Pi max, ∀ i = 1, . . . , N ,

where Fi(Pi) is the fuel cost function of the ith unit, Pi the power generated by the ith unit, PD

the system load demand, Pi min and Pi max the minimum and maximum power outputs of the ith
unit, and N the number of units.

To solve this problem, we have designed an algorithm based on the mathematical concept of
IC, the definition and properties of which we summarize below.

Definition 1 Let f , g : R −→ R̄ be two functions of R in R̄ := R ∪ {+∞, −∞}. We denote as
the infimal convolution (IC) of f and g the operation defined below:

(f � g)(x) := inf
y∈R

{f (x) + g(y − x)}.

It is well-known that (�(R, R̄), �) is a commutative semigroup. Furthermore, for every finite
set E⊂ N, it is verified that (⊙

i∈E

fi

)
(K) = inf∑

i∈E xi=K

∑
i∈E

fi(xi).

When the functions are considered constrained to a domain Dom(fi) = [mi, Mi], the above
definition continues to be perfectly valid redefining fi(x) = +∞ if x /∈ Dom(fi). In this case,
the definition may be expressed as follows. Let us denote

(f1 � f2)(ξ) := min
x1+x2=ξ

mi≤xi≤Mi

(f1(x1) + f2(x2)) = min
m1≤x≤M1

m2≤ξ−x≤M2

((f1(x) + f2(ξ − x)).

This is the abstract functional operation that constructs the cost function of the equivalent thermal
power plant to a set of units with cost functions Fi.When conventional thermal units are considered,
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modelled as quadratic (convex) functions, we have: Fi(Pi) = αi + βiPi + γiP2
i , i = 1, . . . , N .

However, the problem differs when CC units are considered. As already mentioned, the cost
functions may not be convex in this case.

We next show the basic phases that our algorithm comprises.
Phase 1: Piecewise linear cost function of each CC unit.
Let us consider N CC units with a configuration-based model, M being the states of each CC

unit. The function Fi(Pi) of each CC unit will be defined as the minimum of the M piecewise
linear functions, one for each state:

Fi(Pi) ≡ min{Gj
i(Pi)}M

j=1, i = 1, . . . , N .

Hence, for each Fi(Pi), this will in turn be a piecewise linear function:

Fi(Pi) =

⎧⎪⎪⎨
⎪⎪⎩

Fi1(Pi) if Pi ∈ [mi1, Mi1]
...

...

Fik(i)(Pi) if Pi ∈ [mik(i), Mik(i)]
, i = 1, . . . , N ,

where k(i) is the number of pieces in which each function Fi is defined (see Figure 3).
Phase 2: Infimal convolution of two CC units.
Having thus modelled the cost functions of the N CC units, we shall now construct the equivalent

unit to them all. The construction is based on the IC concept presented previously. As the cost
functions Fi(x) are piecewise linear, we shall redefine each one as:

Fij(x) :=
{

Fij(x) if x ∈ [mij, Mij]
∞ if x /∈ [mij, Mij] , i = 1, . . . , N , j = 1, . . . , k(i)

and we have that:

Fi(x) = min
j∈{1,...k(i)}

Fij(x).

Once redefined in this way, we proceed in this phase to construct the IC of only two CC units,
generalizing to N units in the following phase. The calculation of the IC of two piecewise linear
functions requires a combinatorial exploration that is reflected in the following theorem.

Theorem 1 Let f (x) := mini∈A(fi(x)) and g(x) := mini∈B(gi(x)), then:

f � g = min
(i,j)∈A×B

(fi � gj).

This theorem justifies the construction of the equivalent unit to two CC units as the minimum
function of all the possible ICs of pairs of linear functions. In the following proposition, we shall
express the IC for each pair of linear functions.

Proposition 1 Let fi(xi) = ai + bixi, (i = 1, 2) with domains [mi, Mi]. Let us assume that b1 ≤
b2. It is verified that:

(f1 � f2)(ξ) :=
{

f1(ξ − m2) + f2(m2) if ξ ∈ [m1 + m2, M1 + m2],
f1(M1) + f2(ξ − M1) if ξ ∈ [M1 + m2, M1 + M2].

We now need to perform all the possible combinations of pairs of linear functions between the
two CC units, F1, F2, and then calculate the minimum of them all:

F1 � F2 = min
(i,j)

(F1i � F2j), i = 1, . . . , k(1), j = 1, . . . , k(2),
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274 L. Bayón et al.

Figure 3. Illustration of the algorithm: phases 1 and 2.

obtaining the piecewise linear function outlined in Figure 3. This result will form the basis for
the subsequent generalization to the case of N functions.

Phase 3: Infimal convolution of N CC units.
Bearing in mind the associative nature of the IC operation, the equivalent of N CC units may

now be calculated by means of a recursive process, carrying out N operations of IC. We consider
the next recurrence:

F1 � F2 � · · · � FN = (F1 � F2 � · · · � FN−1) � FN

= {Hi(P)} = {ai + bi · P}, P ∈ [li, ui], i = 1, . . . , Z .

That is, once we have obtained the IC of the first two units, we calculate the IC of the obtained
result F1 � F2 with the third F3 and so on successively. The analytic expression of the IC of the
N CC units yields the total cost of the optimal solution for any P.

Phase 4: Optimal solution of each CC unit.
Besides the minimum value of the total cost, the IC of the N CC units yields, for any P, the

vector where said minimum value is reached; i.e. the state Gj(P) in which each unit is to be found
and the fuel cost function corresponding to said state:

Ii = {ri + si · x}N
i=1, x ∈ [ci, di], i = 1, . . . , N .

We shall now determine the distribution, for any P, of what each of the N CC units has to produce
(the optimal solution of each CC unit). The procedure is the following.

First, given a certain P, we take the interval [li, ui], i = 1, . . . , Z , corresponding to the IC of
the N units for which P ∈ [li, ui]. We then order the Ii in increasing order of their slopes {si}N

i=1.
Finally, the distribution is carried out with the units with a lower si assuming all the available
power in their operating interval, di, until meeting all the demand, P.

The ED problem of CC units is thus fully solved. It should be noted that our algorithm presents
a much higher convergence speed than CE, as, in each phase, and after calculating the minimum,
we shall only consider a very small fraction of the entire problem.

4. Example

Based on the above results, we are now ready to present an example. For this purpose, we imple-
mented the aforementioned algorithm in Mathematica®. We shall now consider the case test
presented in [5,6].
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Table 1. States of the CC units.

State 1 State 2 State 3 State 4

MW $/h MW $/h MW $/h MW $/h

60 5026 120 10,051 95 5026 190 10,051
90 6084 180 12,167 145 6084 290 12,167
110 6771 220 13,542 168 6771 335 13,542
130 7602 260 15,203 189 7602 378 15,203
150 8469 300 16,939 210 8469 420 16,939
170 9390 340 18,780 245 9390 490 18,780
180 9903 360 19,806 265 9903 530 19,806
200 10,876 400 21,752 295 10,876 590 21,752

By considering this example, we shall be able to compare our solution with three evolutionary
algorithms: GA, EP, and PS. As already stated, these heuristic methods only provide an approxi-
mate solution for the non-convex optimization problem. The test system consists of two identical
CC units (N = 2). The fuels’ cost functions of the two units are obtained from the data in Table 1.
Each of the four states (M = 4) comprises seven straight lines. The corresponding graphs have
already been presented in Figure 2.

As opposed to the other solutions mentioned above, our algorithm provides the AS for all
values of demand. The total cost (ai + bi · P) for each interval (i = 1, . . . , Z) of demand is listed
in Table 2. This table also shows the state in which each unit operates and the fuel cost function
corresponding to that state. For example, 32 means: state 3, fuel cost function 2.

In [6] the test system is run with a demand of 800 MW. The solutions obtained using heuristic
methods GA, EP and PS, are shown in Table 3, together with the AS obtained using our method.
As stated in phase 4 of the description of the algorithm, we need to only consider the appropriate
interval i (i = 1, . . . , Z) in order to find the AS. In this case, i = 27:

795–855 36 47 3924.5 32.43

The optimal cost is given by:

a + b · P = 3924.5 + 32.433 · 800 = 29871.2$.

Moreover, we know that unit 1 is in state 3, fuel cost function 6:

I1 = r1 + s1 · x = 3105.75 + 25.65 · x, x ∈ [c1, d1] = [245, 265]
and unit 2 in state 4, fuel cost function 7:

I2 = r2 + s2 · x = 2616.33 + 32.433 · x, x ∈ [c2, d2] = [530, 590],
and, given that s1 < s2, the distribution between the two units consists in unit 1 producing d1 =
265 MW while 2 produces 800 − d1 = 535 MW.

The costs obtained using GA, EP and PS solutions in Table 3 are higher as they are based on
the (erroneous) assumption that both units operate in state 4. As can be seen, the cost of the AS
solution is lower due to allowing unit 1 to operate in state 3.

To complete our study, we shall now conduct a second test imposing precisely this condition:
fix both units in state 4. The AS obtained in this case is exactly the same as that obtained using
PS, which evidences that this heuristic method is not only superior to the other two (GA and EP),
but also that it is able to provide the AS in this case.

Finally, note that there is no reason to compare running time between our method and the others
mentioned here, as our running time corresponds to the entire family of problems resulting from
varying PD, whereas the other methods only solve one P.
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Table 2. Optimal total cost and state of each CC unit.

Demand Unit Total cost

li−ui 1 2 ai bi

120–150 11 11 5820 35.26
150–155 11 12 5957.5 34.35
155–190 11 31 6883.8 20.44
190–290 31 31 6168.4 20.44
290–313 31 32 2979.9 31.43
313–336 32 32 2979.9 31.43
336–357 32 33 246 39.57
357–371.8 33 33 246 39.57
371.8–390 31 35 5175.4 26.31
390–410 31 36 5434.5 25.65
410–433 32 36 3062.7 31.43
433–463 32 37 2630.3 32.43
463–484 33 37 −674.57 39.57
484–492.7 34 37 −1504.2 41.28
492.7–510 35 36 5872.7 26.31
510–530 36 36 6211.5 25.65
530–560 36 37 2616.3 32.43
560–590 37 37 2616.3 32.43
590–600 36 42 5111.6 30.55
600–630 37 42 3985. 32.43
630–651.7 37 43 82.41 38.62
651.7–675 31 46 8540.2 25.65
675–698 32 46 4635.5 31.43
698–758 32 47 3938.5 32.43
758–775 33 47 −1472.1 39.57
775–795 36 46 9317.2 25.65
795–855 36 47 3924.5 32.43
855–885 37 47 3924.5 32.43
885–925 42 47 5293.1 32.43
925–968 43 47 −436.8 38.62
968–985.5 44 47 −3055.6 41.33
985.5–1020 45 46 11760. 26.3
1020–1060 46 46 12423. 25.65
1060–1120 46 47 5232.6 32.43
1120–1180 47 47 5232.6 32.43

Table 3. Comparison of the optimal solution.

CC 1 (MW) CC 2 (MW) Demand (MW) Cost ($/h)

GA 560 240 800 31,888
EP 528.75 271.25 800 31,544
PS 510 290 800 31,460
AS 265 535 800 29,871.2

5. Conclusions

In this paper we have presented a new technique, based on the calculation of the IC, for solving
the ED problem of CC units. The technique consists in a recursive algorithm for calculating the
global AS. That is, we do not obtain the solution for only one value of demand, but solve a family
of problems, varying PD to obtain the solution for any value. This distinguishes our method from
traditional heuristic methods. Furthermore, we have analytically obtained the solution for a test
case that may serve as a comparison for subsequent studies using approximate methods.
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