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a b s t r a c t

Optimal control theory is one of the most important tools in the development of new therapeutic protocols

for treating infections. In this work, we present an algorithm able to deal with high-dimensional problems

with bounded controls. The optimal solution is obtained by minimizing a positive-definite treatment cost

function. Our method, based on Pontryagin’s Minimum Principle and the coordinate cyclic descent method,

allows solving problems of varied nature. In this paper, and by way of example, therapeutic enhancement

of the immune response to invasion by pathogenic attack is addressed as an optimal control problem. The

generic mathematical model used describes the evolution of the disease by means of four non-linear, ordinary

differential equations. The model is characterized by the concentration of pathogens, plasma cells, antibodies

and a numerical value that indicates the relative characteristic of an organ damaged by disease. From a system

theory point of view, drugs can be interpreted as control inputs. Therapies based on separate application

of the agents are presented in previous studies. We shall present the more general problem in this paper,

considering combined therapies and bounded controls. Finally, we present several numerical simulations.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The natural human immune system exists to defend our organism

against agents such as bacteria, viruses, and our own transformed

cells such as tumor cells. Without therapy, the natural immune re-

sponse depends upon the initial concentration of pathogens. Initially,

the innate immune system provides a non-specific tactical response,

aimed mainly at killing the pathogen and starting a series of pro-

cesses like inflammation, vasodilation or blood coagulation which,

on one hand, aid the defends and on the other, slow the spread of

infection to other parts of the body. Next, a humoral response is ini-

tiated, activating B cells to become plasma cells that produce anti-

bodies that bind to the antigens, so as to destroy the pathogens. Fi-

nally, the adaptive immune system provides a strategic response that

is tailored to the primary attack. Actually, the innate, humoral and

adaptive immune responses are coupled. Without any control, four

cases of natural response appear: the subclinical case, which does not

require medical attention; the clinical case, which warrants medical

attention, but is self-healing; the chronic case, which presents an un-

stable equilibrium with degraded organ health; and the lethal case,

which results in death of the organ. When the natural defense mech-

anism fails, the need for external medication arises. In this paper,
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herapeutic treatment of a pathogenic disease process is addressed

s an optimal control problem.

In [1], the authors study a mathematical model of a disease which,

s they themselves state “is only a crude approximation and generally

equires further refinement.” Certainly, the response of the immune

ystem to intra-cellular microbial attack is a rather complex problem

ased on producing antibodies customized to the pathogens. We re-

er to [2] for a better understanding of the associated complex mech-

nism. Since then, numerous models of immune response to infec-

ion have been postulated [3–6]. Based on the idea presented in [1],

model including the effect of various controls is presented in [7]

nd [8]. This model has proved a good tool for studying therapeutic

rotocols, and is frequently used in other studies (see for example:

9–11]). Evolution of the disease is characterized by a mathematical

odel with four non-linear, ordinary differential equations that de-

cribes concentrations of pathogens, plasma cells and antibodies, as

ell as a numerical indication of patient health under the influence

f therapeutic treatment. This model of pathogenic attack facilitates

he presentation, while more complex control effects could easily be

ncorporated in the optimization. This is the model that will be con-

idered in this work and is presented in Section 2.

Focusing on the mathematical statement of the problem, several

pplications of control theory to therapeutic protocols have been pre-

ented in the literature from as early as Perelson [12]. An excellent

eference for the beginning of the application of control theory to

mmunology and disease is [13]. Since then, several applications of

http://dx.doi.org/10.1016/j.mbs.2015.11.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2015.11.013&domain=pdf
mailto:bayon@uniovi.es
http://dx.doi.org/10.1016/j.mbs.2015.11.013


L. Bayón et al. / Mathematical Biosciences 272 (2016) 34–43 35

c

l

t

u

a

q

f

b

o

[

f

t

l

e

m

t

h

r

t

n

(

t

t

e

o

i

w

t

l

a

t

m

d

c

t

m

m

a

t

a

p

n

2

i

r

c

(

,

W

c

T

t

s

t

o

t

x

x

x

x

w

b

n

b

a

T

c

t

t

t

o

i

s

t

t

T

s

l

t

t

b

h

u

a

d

T

o

d

p

o

d

t

u

(

s

x

T

x

w

v

0

b

p

0

n

ontrol theory to the immune processes have been presented in the

iterature (see for example: [14–18]). In [7], an optimal solution is ob-

ained by solving the associated two-point boundary value problem

sing the steepest descent gradient method. In [9], the authors use

linearized neighboring optimal controller based on standard linear

uadratic regulator theory. In [7] and [9], the authors consider the ef-

ects of each control variable applied and optimized separately (four

aseline cases), but do not explicitly present optimizations using all

f the therapeutic agents at once. This work is further developed in

8], in which a linear-optimal state estimator is incorporated in the

eedback therapy to minimize the effects of measurement error and

o account for missing measurements. Another relatively simple non-

inear control method is the dynamic inversion technique, which is

ssentially based on the philosophy of feedback linearization. This

ethod was used by authors in [10] and [11] in the treatment of infec-

ious diseases. A major drawback of the dynamic inversion approach,

owever, is its sensitivity to modeling errors and parameter inaccu-

acies. Moreover, the authors assumed only the availability of drugs

hat kill the invading microbes and heal the affected organ, but did

ot consider drugs that enhance the efficacy of the immune system.

In this paper, we propose to use Pontryagin’s Minimum Principle

PMP) ([19,20]) and the cyclic coordinate descent method to solve

he optimal control problem and provide an optimization algorithm

hat leads to the determination of the optimal solution of the gen-

ral problem with several therapies.Unlike some of the other meth-

ds, ours is based on the use of Pontryagin’s Principle, which makes

t particularly suited for the problem at hand. It allows us analyze

hat happens when a different therapy is applied each time and also

o combine several therapies simultaneously. It also allows us to set

imits on the controls.

The main objectives of this paper will be: moving from a single-

gent therapy to combined therapies, considering four drugs simul-

aneously, and considering bounded controls, all of it using Stengel’s

odel [7]. The optimal solution is derived by minimizing a positive-

efinite cost function that penalizes large values of pathogen con-

entration, poor organ health, and excessive application of therapeu-

ic agents over a fixed time interval. Our method is able to deal with

ore complex problems and, to illustrate this, Section 2 presents the

ore realistic case with bounded controls (not considered by other

uthors). In Section 3, we prove a necessary minimum condition for

he optimization problem. Section 4 introduces a numerical relax-

tion method (the coordinate descent method) for the solution of this

roblem. In Section 5, we present several numerical simulations. Fi-

ally, Section 6 summarizes the main contributions of our paper.

. A model of enhanced immune response

We consider a simple model for pathogenic attack on an organ-

sm and the organism’s immunological defense. We refer interested

eaders to [7,9], and [8] for a better understanding of the associated

omplex mechanism. The dynamic state comprises four components

the state variables):

x1(t) : concentration of a pathogen
x2(t) : concentration of plasma cells (carriers and producers

of antibodies)
x3(t) : concentration of antibodies, which kill the pathogen
x4(t) : relative characteristic of a damaged organ: [0= healthy

1=dead]

e now add the following idealized therapeutic control agents (the

ontrol variables):

u1(t) : pathogen killer
u2(t) : plasma cell enhancer
u3(t) : antibody enhancer
u4(t) : organ healing factor
he four treatments aim, respectively, at killing the pathogen, neu-

ralizing its harmful effects, enhancing the efficacy of immune re-

ponse and providing healing care to the damaged organs. We seek

he best combination of these therapies. The four scalar, non-linear,

rdinary differential equations of the dynamic model (the state equa-

ions) are (considering no delay):

˙ 1(t) = (a11 − a12x3(t))x1(t) − b1u1(t)

˙ 2(t) = a21(x4(t))a22x1(t)x3(t) − a23(x2(t) − x∗
2(t)) + b2u2(t)

˙ 3(t) = a31x2(t) − (a32 + a33x1(t))x3(t) + b3u3(t)

˙ 4(t) = a41x1(t) − a42x4(t) − b4u4(t) (1)

here x∗
2
(t) is the steady-state concentration of plasma cells. aij and

i are nonnegative (with bi �= 0) constants except a21(x4). This is a

on-linear function that describes the immune deficiency triggered

y damage to the organ:

21(x4) =
{

cos(πx4) 0 ≤ x4 ≤ 0.5
0 0.5 ≤ x4

(2)

his definition expresses the fact that the capacity to generate plasma

ells decreases as the damage to the organ increases. Indeed, when

he health of the organ reaches a certain point (in this case, x4 = 0.5),

he production of plasma cells stops altogether.

Absent the controls, the global behavior of the (uncontrolled) sys-

em is a function of the initial conditions. The four cases depending

n the initial conditions are: (1) The sub-clinical case, in which the

mmune system acts and the pathogens are successfully destroyed

o that no medical examination is required. (2) The clinical case: if

he initial infectious dose is increased, the pathogen compromises

he immune system and a medical consultation is required. (3)

he chronic case: the pathogen and the health of the organ reach

teady-state so that the patient is not completely cured. (4) The

ethal case: the antibodies by themselves are unable to overcome

he infection, the pathogen concentration diverges and this causes

he death of the organ. The chronic case can be defined as the limit

etween (2) and (4).

The state equations (1) and the sign of the coefficients aij and bi

ave simple interpretations. In the first one, the pathogen has a nat-

ral tendency to grow exponentially (a11 > 0) which is limited by the

ntibodies x3 and the pathogen killer (b1 > 0). The second equation

escribes the evolution of the plasma cells as a non-linear function.

he influence of x4(t), x1(t), x3(t) and the steady-state concentration

f plasma cells x∗
2

is clear. In this case, the control boosts the pro-

uction of plasma cells (b2 > 0). The third equation shows how the

opulation of antibodies depends on the plasma cells x2 (producers

f antibodies, so a31 > 0) and also on the balance between births and

eaths of cells (a32 > 0). The pathogen, x1 has a negative impact and

he control u3 a positive one b3 > 0. In the last equation, the control

4 with b4 > 0 tries to get a perfectly healthy organ (x4 = 0). From

1) and prior to the pathogen attack, it is immediate to infer that the

teady-state value of antibody concentration corresponding to x∗
2

is:

3(0) = (a31/a32)x∗
2 (3)

he state equations can be expressed in the vector form:

˙ (t) = f (t, x(t), u(t)) (4)

here vector x is called the state of the system and u is the control

ector, which we will consider bounded:

≤ umin ≤ u(t) ≤ umax; u(t) ∈ U(t), 0 ≤ t ≤ t f (5)

eing [0, tf] the fixed time interval. It is worth noting that, in this

articular problem, it is not necessary to impose the constraint x(t) ≥
. This is due to the fact that, in uncontrolled dynamics, the state is

ever less than zero on its own [7].
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The optimal therapeutic protocol is derived by minimizing a

positive-definite treatment cost function, J, that penalizes large val-

ues of pathogen concentration, poor organ health, and excessive ap-

plication of therapeutic agents over the fixed time interval:

J = 1

2

[
p1x2

1(t f ) + p4x2
4(t f )

]
+ 1

2

∫ t f

0

[
q1x2

1(t) + q4x2
4(t) + r1u2

1(t) + r2u2
2(t)

+ r3u2
3(t) + r4u2

4(t)
]
dt (6)

The problem includes a terminal cost, associated with values of

pathogen and organ health at the end of the treatment period, as

well as an integral cost of state and control variations during the

period. Each value is multiplied by a coefficient (p1, p2, q1, q2 and

ri, i = 1, . . . , 4) that establishes its relative importance in the cost of

treatment.

3. Mathematical formulation: a necessary minimum condition

A standard Lagrange-type optimal control problem (OCP) can be

mathematically formulated as follows:

min
u(t)

J = S[x(t f )] +
∫ t f

0

F (t, x(t), u(t))dt (7)

subject to satisfying:

ẋ(t) = f (t, x(t), u(t)) (8)

x(0) = x0 (9)

u(t) ∈ U(t), 0 ≤ t ≤ t f (10)

where J is the objective functional, F and S are given functions (running

cost and terminal cost), x(t)= (x1(t), . . . ,xn(t)) ∈R
n is the state vector,

with initial conditions x0= (x10, . . . ,xn0), u = (u1(t), . . . ,um(t)) ∈R
m

is the control vector bounded by umin (umin ≥ 0) and umax , U denotes

the set of admissible control values, and t is the operation time which

starts from 0 and ends at tf. The state variables (or simply the states)

must satisfy the state equation (8) with given initial conditions (9).

In this statement, we consider the final instant to be fixed and

the final state to be free. The OCP is referred to as a constrained OCP

because constraints are imposed on the controls (10), apart from the

dynamic equation (8). We say that x = (x1(t), . . . ,xn(t)) is admissible

if xi belong to the class Ĉ1[0, t f ] (the set of piecewise C1 functions).

Let H be the Hamiltonian function associated with the problem:

H(t, x, u, λ) = F (t, x, u) + λ · f (t, x, u) (11)

where λ = (λ1(t), . . . ,λn(t)) ∈R
n is called thecostate vector. In our

case (n = m = 4):

H(t, x, u, λ) = 1

2
[q1x2

1(t) + q4x2
4(t)]

+ 1

2

[
r1u2

1(t) + r2u2
2(t) + r3u2

3(t) + r4u2
4(t)

]
+λ1[(a11 − a12x3(t))x1(t) − b1u1(t)]

+λ2[a21(x4(t))a22x1(t)x3(t) − a23(x2(t) − x∗
2(t))

+ b2u2(t)]

+λ3[a31x2(t) − (a32 + a33x1(t))x3(t) + b3u3(t)]

+λ4[a41x1(t) − a42x4(t) − b4u4(t)] (12)

The classical approach involves the use of PMP [19,20] which results

in a two-point boundary value problem (TPBVP). In order for u ∈ U to

be optimal, a nontrivial function, λ, must necessarily exist, such that

for almost every t ∈ [0, t f ]:

ẋ = Hλ = f ; x(0) = x0 (13)
˙ = −Hx; λ(t f ) =∂S[x(t f )]

∂x
(14)

(t, x, u, λ) = min
v(t)∈U

H(t, x, v, λ) (15)

n virtue of PMP and Eq. (14), there exists a piecewise C1 function, λ
costate variable), that satisfies:

˙ = −Hx = −Fx − λ(t) · fx (16)

perating, we have:

˙
1 = −q1x1 − λ1(a11 − a12x3) − λ2a21(x4)a22x3 + λ3a33x3 − λ4a41

(17)

˙
2 = λ2a23 − λ3a31

˙
3 = λ1a12x1 − λ2a21(x4)a22x1 + λ3(a32 + a33x1)

˙
4 = −q4x4 − λ2a′

21(x4)a22x1x3 + λ4a42

ith the boundary conditions:

1(t f )=p1x1(t f ) (18)

2(t f )=0

3(t f )=0

4(t f )=p4x4(t f )

n virtue of PMP and Eq. (15), we have:

1u1 − λ1b1 = 0 (19)

2u2 + λ2b2 = 0

3u3 + λ3b3 = 0

4u4 − λ4b4 = 0

necessary minimum condition

In the previous section, we have seen that the necessary condi-

ions for optimality are expressed by the three Euler–Lagrange equa-

ions [19]: (13), (14) and (15). These equations include: (13), four non-

inear, ordinary differential equations with initial conditions, whose

ntegral is x; (14), four linear, ordinary-differential equations with fi-

al boundary condition, whose integral is λ; and (15), a stationary

ondition on the control, u.

Due to the complexity of the above mathematical equations, there

s no closed-form solution for the Euler–Lagrange equations and they

ust be solved numerically. There are numerous methods for solving

his problem. For example, a quasi-optimal solution is obtained in [7]

y solving the associated two-point boundary value problem using

he steepest descent gradient method. We propose a new method in

his paper, which consists in solving the problem with n = m > 1 as

he limit of a sequence of problems with n = m = 1, based on the use

f an equation (coordination equation) which we will obtain in the

ollowing theorem. For the sake of simplicity, in this section we first

resent the necessary minimum condition considering one state vari-

ble, x(t) (n = 1), and one control variable, u(t) (m = 1). The problem

o solve is in this case:

in
u(t)

J = S[x(t f )] +
∫ t f

0

F (t, x(t), u(t))dt (20)

ubject to satisfying:

˙ (t) = f (t, x(t), u(t)) (21)

(0) = x0 (22)

≤ umin ≤ u(t) ≤ umax, 0 ≤ t ≤ t f (23)

Prior to proving the theorem, we define the following function.
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efinition 1. Let q be a function q : [0, t f ]− > R, with q̇(t) =
f (t, q(t), u(t)). Let us term the coordination function ofq, Yq(t), the

unction in [0, tf], defined as follows:

q(t) := − Fu(t, q(t), u(t))

fu(t, q(t), u(t))
exp

(∫ t

0

fx(s, q(s), u(s))ds)

)

+
∫ t

0

(
Fx(s, q(s), u(s) exp

(∫ s

0

fx(z, q(z), u(z))dz)

))
ds (24)

e now present a necessary minimum condition.

heorem 1. Let uopt be the optimal control, let xopt ∈ Ĉ1 be a solution of

he above problem. If fu(t, xopt, uopt) > 0 (resp. fu(t, xopt, uopt) < 0 ) then

here exists a constant K ∈ R such that:

I f umin < uopt < umax �⇒ Yxopt
(t) = K

I f uopt = umax �⇒ Yxopt
(t) ≥ K(resp.Yxopt

(t) ≤ K)
I f uopt = umin �⇒ Yxopt

(t) ≤ K(resp.Yxopt
(t) ≥ K)

(25)

roof. See Appendix 1. �

The problem in the general -dimensional case will be stated so

hat what we shall need to solve it will be the holding of the condi-

ions of Theorem 1 in each of the components and this theorem will

e applied to each of them, considering all the other constant. We call

the coordination constant and the following equation, the coordi-

ation equation

x(t) = K (26)

he idea for solving the one-dimensional problem is to find, for each

, the state x such that the function Yx(t) that satisfies (1), and from

mong these states, the one that satisfies the transversality condi-

ion. From the computational point of view, the construction can be

erformed with the same procedure as the simple shooting method,

ith the use of a discretized version of the coordination equation.

his idea will be applied in the next section for the case n = m = N,

o each of the state variables.

The sufficient condition giving the existence of a minimum holds

y Arrow’s theorem (see [20]), due to the convexity conditions of the

roblem in the specific case with which we are dealing.

. The optimization algorithm

The problem of optimization of the complex system that includes

he four state and control variables (n = m = 4) is highly complex

ecause the associated variational problem is related to solving a

oundary-value problem for a system of differential equations. In this

ection, we present an algorithm of its numerical resolution using a

articular strategy related to the cyclic coordinate descent method [21].

sing this method, a problem PN, of the type n = m = N, could be

olved under certain conditions if we start out from the resolution of

sequence of problems P1 of the type n = m = 1.

Let the function:

: R
n → R, G ∈ C1(Rn) (27)

nd x = (x1, . . . , x j, . . . , xn). The idea underlying the coordinate de-

cent method is to use the coordinate axes as descent directions.

he method sequentially searches for the minimum of G in all the

irections ej. Descent with respect to the xj coordinate means that

(x1, . . . , x j, . . . , xn) is minimized with respect to xj, while the rest

emain fixed.We now we adapt the finite-dimensional version of this

lgorithm to our functional.

.1. PN problem

The solution algorithm for the PN problem is based on the reso-

ution of a succession of problems P1, each one of them consisting
n computing the optimal functioning of a state variable, while the

ehavior of the rest of the states is assumed fixed. Thus, at each k-th

teration of the algorithm, N stages are performed, one for each state

nd control variable.For every q = (q1, . . . , qN) admissible state and

= (v1, . . . , vN) control vector, we consider the functional Ji
q defined

y:

in
ui(t)

Ji
q = Si

q[xi(t f )] +
∫ t f

0

F i
q(t, xi(t), ui(t))dt (28)

ith:

i
q(t, xi, ui) = F (t, q1, . . . , qi−1, xi, qi+1, . . . , qN, v1, . . . ,

vi−1, ui, vi+1, . . . , vN) (29)

i
q[xi] = S[q1, . . . , qi−1, xi, qi+1, . . . , qN] (30)

˙ i(t) = fi(t, xi(t), ui(t)) (31)

≤ ui min ≤ ui ≤ ui max (32)

here F i
q and Si

q represent the functional as a function of the i-th

tate and the i-th control, under the assumption that the rest of the

tates and controls remains constants. We call the i-th minimizing

apping the mapping �i, defined in the following way: for every

=(q1, . . . , qi, . . . , qN)

i(q1, . . . , qi, . . . , qN) = (q1, . . . , qopt
i

, . . . , qN) (33)

here q
opt
i

minimizes Ji
q verifying that for u

opt
i

:

˙ opt
i

(t) = fi

(
t, qopt

i
(t), uopt

i
(t)

)
(34)

nd ui min ≤ u
opt
i

≤ ui max. Beginning with some admissible:

0 = (q0
1, . . . , q0

N) (35)

e construct a sequence of qk via successive applications of {�i}N
i=1.

f we set:

= (�N ◦ �N−1 ◦ . . . ◦ �2 ◦ �1) �⇒ qk = �(qk−1) (36)

he algorithm will search:

lim
→∞

qk (37)

nder appropriate conditions in the admissible set (bounded deriva-

ives), the convergence of the above algorithm may be assured using

angwill’s global convergence theorem of algorithms [21].

The following proposition is verified, the demonstration of which

s identical to that of Theorem 1.

roposition 1. For all q = (q1, . . . , qN), with qi belongs to the class
1[0, t f ], there exists K ∈ R such that if:

i(q) =(q1, . . . , qopt
i

, . . . , qN) with q̇opt
i

(t) = fi

(
t, qopt

i
(t), uopt

i
(t)

)
(38)

nd if fui
(t, qi, ui) > 0 (resp. fui

(t, qi, ui) < 0)then:

i
�i(q)(t)is

⎧⎨
⎩

≤ K (resp. ≥ K) i f ui min = uopt
i

= K i f ui min < uopt
i

< ui max

≥ K (resp. ≤ K) i f uopt
i

= ui max

(39)

.2. P1 problem. Formal construction of �i(q)

Given q =(q1, . . . , qi, . . . , qN), with qi belongs to the class Ĉ1[0, t f ],

e shall consider, for each K ∈ R,

i
K = �i(q1, . . . , qi, . . . , qN) =(q

1
, . . . , q

i−1
, qK , q

i+1
, . . . , q

N
) (40)

hat is, qK, for ui, minimizes the functional Ji
q.
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Fig. 1. Optimal response with combined therapies.

Fig. 2. Optimal therapies.
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The application of every �i involves solving a problem of the type

P1; the optimal functioning of one state calculated at each stage in

the following way.

For givenK,qKthe construction is carried out inductively by con-

catenating inner arcs (inactive restrictions) and boundary arcs (active

restrictions). One imposes the boundary conditions qK (0) = xi0 and

the conditions of Proposition 1 (See Appendix B). Finally, by varying

the coordination constant K, we search for “the extremal” that fulfills

the transversality condition:

λopt (t f ) = ∂S[x(t f )]

∂x
(41)

The procedure is similar to the shooting method, used to resolve

second-order differential equations with boundary conditions, which

may be performed approximately using elemental procedures.

The proposed algorithm, specially designed for this problem,

shows good convergence properties. Numerical results are presented

in the next section.

5. Numerical simulations

A program based on the algorithm presented in the previous sec-

tion that solves the optimization problem was written using the

Mathematica ©package. The values of the parameters used for this

study are:

a11 = a12 = a23 = a31 = a41 = a42 = 1 (42)

a22 = 3, a32 = 1.5, a33 = 0.5

b1 = b4 = b2 = b3 = 1

These values have been taken from [7] and [8], for the sake of com-

parison. In the first two cases presented in this section, the unit

cost function weights p1, p4, q1 and q4 are equal to 1, and the ri,

(i = 1, . . . , 4) are also 1, because we consider all the controls active

at once. Later on we shall consider them different, in case 3. Hence,

substituting in (1), we have:

ẋ1(t) = (1 − x3(t))x1(t) + u1(t) (43)

ẋ2(t) = 3a(x4(t))x1(t)x3(t) − (x2(t) − 2) + u2(t)

ẋ3(t) = x2(t) − (1.5 + 0.5x1(t))x3(t) + u3(t)

ẋ4(t) = x1(t) − x4(t) + u4(t)

The treatment interval is 10 time units, and the steady-state concen-

tration of plasma cells is x∗
2 = 2. Moreover, the initial conditions are:

x1(0) = 3, x2(0) = 2, x3(0) = 4/3, x4(0) = 0 (44)

The initial conditions, steady state value and interval of treatment

have been chosen based on the results obtained in [7] and [8]. We

have chosen an initial value for the pathogen x1 = 3, with which no

therapy (uncontrolled) leads to case (4) already presented: the lethal

case. The length of the time horizon is enough to reach steady-state.

There are lots of possible combinations of parameters, control

variables and cost function weights that could be considered. For the

sake of illustration, we present some examples which show the value

added of our algorithm. Notice that in all of them, the values of the

control, pathogen and organ tend to zero. However, this is not always

the case. What happens is that in the examples shown, the organ is al-

ways healed because the killer pathogen disappears with the applied

therapy. Hence at the end of the needed treatment time the respec-

tive controls will tend to zero, as once the illness is cured it is un-

necessary to go on with the therapy. Recall that we have considered

an initial value for the pathogen x1(0) = 3 which in the uncontrolled

case led to the lethal case but that leads to healing with the therapy.

However, specific initial levels of the pathogen can give rise to situ-

ations incompatible with the healing of the organ and reaching no

steady state. This same reasoning works in the case of the pathogen

and the indicator of health of the organ, which also tend to zero.
.1. Case 1: 0 ≤ u

We present this case first because it is the case analyzed by other

uthors ([7] and [9]), who, however, considered the effects of each

ontrol variable separately. We shall present the optimization using

ll of the therapeutic agents at once for its comparison. Optimal so-

utions computed with these otherwise-lethal initial conditions (44)

7] are presented in Figs. 1 and 2. The values of the controls are pre-

ented only for t ∈ [0, 5] with the aim of providing greater detail.

Some representative values are:

x1(10) = 0.00013; x2(10) = 2.0011;
x3(10) = 1.3333; x4(10) = 0.00021 (45)

u1(0) = 2.39004; u2(0) = 0.434931;
u3(0) = 1.73573; u4(0) = 1.56648 (46)

e used a discretization of 100 subintervals, the minimum value ob-

ained for the cost functional being: 3.9874. The convergence of the

umerical solution is also shown in Fig. 3. We achieve the prescribed

olerance: tol = 0.001, in only 15 iterations. For the convergence of

he algorithm, the error has been considered as the sum of the differ-

nces (in absolute value) of the values of the coordination constant

etween two consecutive iterations k − 1 and k of the previous algo-

ithm (36), Kk−1 and Kk:

(k) =
N∑

i=1

∣∣Kk
i − Kk−1

i

∣∣ < tol (47)

In this example, the time required by the program was 35.5 s on a

ersonal computer (Intel Core 2/2.66GHz). The reader can now com-

are this solution with those presented in [7] and [9]. As can be seen,
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Fig. 3. Convergence of the algorithm.

Table 1

Maximum value of controls with bounds.

u1max u2max u3max u4max

Free 2.390 0.435 1.735 1.731

u1 max = 0.50 0.50 0.597 2.257 2.227

u1 max = 1.00 1.00 0.525 2.039 2.033

u2 max = 0.10 2.396 0.10 1.745 1.737

u2 max = 0.20 2.392 0.20 1.740 1.734

u3 max = 0.50 2.562 0.487 0.50 1.763

u3 max = 1.00 2.464 0.456 1.00 1.743

u4 max = 0.50 2.586 0.464 1.801 0.50

u4 max = 1.00 2.530 0.454 1.788 1.00
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Table 2

Influence of controls.

u2max min J max (x4) t∗ u3max min J max (x4) t∗

− 3.987 0.555 4.4 − 3.987 0.555 4.4

0.20 3.987 0.555 4.4 1.00 3.987 0.557 4.5

0.10 3.988 0.555 4.4 0.50 4.043 0.560 4.5

0.05 3.988 0.555 4.4 0.20 4.129 0.563 4.5

u1max min J max (x4) t∗ u4max min J max (x4) t∗

− 3.987 0.555 4.4 − 3.987 0.555 4.4

1.50 4.043 0.573 4.4 1.50 3.988 0.558 4.4

1.00 4.197 0.594 4.4 1.00 3.996 0.679 4.7

0.75 4.338 0.610 4.4 0.75 4.001 0.737 4.7

0.50 4.540 0.627 4.4 0.50 4.038 0.774 4.7

0.25 4.658 0.658 4.4 0.25 4.140 0.894 4.7
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he effect of the pathogen killer u1(t) is dominant, and the form of the

olution with combined therapies presented in Fig. 1 is quite similar

o that of the pathogen killer alone (see [7]). However, the combined-

herapy solution provides a significant improvement in other qual-

tative aspects, such as cost or time of healing, with respect to the

olutions in which single therapies were used separately. For exam-

le, if we calculate the cost of the best case reported in [7], i.e. the

ingle therapy employing u1 (ui min = ui max = 0, i = 2, 3, 4), we ob-

ain min J = 4.6954, whereas in our case, using combined therapies,

e have obtained min J = 3.9874.

.2. Case 2: 0 ≤ u ≤ umax

We shall now generalize the study, including upper limits for the

ontrols. These bounds could represent physiological limits such as

oxicity or discomfort. We think that the imposition of this type of

imit is mandatory in any realistic therapy. We start with a one-at-a-

ime exploration of the upper bounds of the control. Table 1 shows

he maximum values now obtained for the other controls uj (j �= i)

hen imposing bounds on ui, compared to the unconstrained solu-

ion.

Notice how the more limited a control is, the more the remaining

nes must increase in order to attain healing. The most remarkable

ffect happens for u1 and the least one for u2. Noteworthy increases

f over 37% can be observed in some cases by limiting u1.

We analyze them in more detail separately. Table 2 shows the re-

ults obtained when imposing different bounds on the controls. The

rst row in the table represents the unconstrained solution obtained

n case 1. In addition to the optimal cost of the functional J, we show

wo new values that we believe may facilitate the interpretation of

he results: the maximum value reached by state x4 (maximum or-

an damage) and t∗, which represents the time it takes to reach what

ould be called complete healing (i.e. x4 ≤ 10−2). These two param-

ters can provide a clearer idea about the evolution of the infected

rgan throughout the entire course of the disease.

The imposed bounds have been chosen in consonance with the

alues obtained in the unconstrained solution. As can be seen, the in-
uence of control u2 is negligible, even with high bounds. However,

ontrol u3 can be seen to have a slight influence on the cost, barely

erceptible at max (x4) and at t∗. The two most important controls

re u1(t), the pathogen killer, and u4(t), the organ healing factor. We

hoose the same values for the upper limit for both controls. As can be

een, restricting the killer pathogen, u1, increases the cost of the final

olution notably due to the more elevated use of the other controls,

hich distorts the final cost. On its part, u4 has a much lesser effect

han u1 on the minimum cost of the solution. The behavior of both

ontrols is very interesting when analyzing the other two indices in

able 2, as substantial differences arise. Specifically, we see that the

ound on u1 has no effect on the time of treatment, t∗, and a mod-

rate effect on the maximum value reached by x4, which measures

rgan damage. However, the effect of u4 is much more pronounced,

oth on treatment time, t∗, and above all on the health of the organ.

e consider these conclusions to be of major value for subsequent

tudies on specific diseases.

How the optimal solution of the state variables changes when re-

tricting the use of these controls is also worth noting. We describe

ow the influence of the two most important controls, u1(t) and u4(t).

t can be seen in Fig. 4 that the concentration of plasma cells, x2(t), de-

reases as we restrict the use of u4, the contrary effect being achieved

hen limiting u1. On the other hand, the concentration of pathogen,

1(t), is barely affected by the limitation on u4, whereas the restric-

ion of u1 increases its value slightly.

Similar behavior as for x2(t) can be seen in Fig. 5 for the concen-

ration of antibodies, x3(t). Finally, x4(t) shows an increase in the free

olution both in the limitation of u1, and mainly in that of u4.

The reason for these results is that if u1 is bounded, the pathogen

an develop more, which leads to the generation of more plasma cells

nd hence antibodies; if u4 is bounded, the organ is more damaged

nd less plasma cells are generated.

To conclude this section, we present a study of optimizations with

ultiple bounds: we simultaneously place upper limits on u1 and u4.

n Table 3 an analysis of the impact of these bounds on our outputs

f interest: min J, max (x4) and t∗ is presented. We choose 3 values for

ach bound (free and 2 other values) and cross them.

As can be seen, upon imposing simultaneous limits onu1 and u4

he greatest effect regarding the free solution happens for max (x4),

hich undergoes an increase of about 80%. The value of min J under-

oes an increment of approximately 25%, whereas the least affected

ariable is the time t∗ which barely increases by 16%.

We show now, by way of example, the case where the values

ere: u1 max = 0.50 and u4 max = 0.50. The optimal solution of the

tate variables can be seen in Fig. 6.

What can be observed first in this case is that the optimal so-

ution presents a slightly different pattern: the variables x2 and x3,

hich in the unconstrained solution decreased asymptotically after

n initial rapid growth to the initially imposed value, are now seen

o fluctuate slightly within these bounds before converging to x (0)
2
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Fig. 4. Optimal x1(t) and x2(t) with combined therapies and bounded controls.

Fig. 5. Optimal x3(t) and x4(t) with combined therapies and bounded controls.

Table 3

Analysis with multiple bounds.

min J u1 free u1 max = 1.0 u1 max = 0.5

u4 free 3.9874 4.1976 4.5404

u4 max = 1.0 3.9960 4.2467 4.7575

u4 max = 0.5 4.0379 4.3579 4.9513

max (x4) u1 free u1 max = 1.0 u1 max = 0.5

u4 free 0.5554 0.5945 0.6271

u4 max = 1.0 0.6796 0.7939 0.8495

u4 max = 0.5 0.7737 0.9221 0.9938

t∗ u1 free u1 max = 1.0 u1 max = 0.5

u4 free 4.4 4.4 4.4

u4 max = 1.0 4.7 4.8 5.0

u4 max = 0.5 4.7 4.9 5.1

Fig. 6. Combined and bounded therapies.
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nd x3(0). On the other hand, if we compare the result now obtained

ith the values shown in Table 3 when both limits were separately

mposed, we observe the following: the final cost increases consid-

rably, specifically to min J = 4.951; the same happens with max (x4)

hich reaches now 0.994; finally, the value of t∗ increases now to

.1. This is related to the pathogen x1 showing a slower decrease. The

rgan almost reaches the value 1 (at which it would be considered

ead). We believe that maintaining the organ in a diseased condition

or so long requires careful consideration and makes the combination

f limits in therapies u1 and u4 unadvisable, from the clinical point of

iew.

.3. Case 3: influence of function weights

Finally, this section presents a variant which, without considering

ny particular disease, will afford greater importance to curing the

isease than the monetary goal. To do so, we simply give more impor-

ance to the weight functions q1, q4 in our cost functional than to ri.

he chosen values are: p1, p4 and ri, (i = 1, . . . , 4) equal to 1, while the

alues of q1 and q4 will vary as shown in Table 4. We have included

wo new parameters which will help us interpret the results. We de-

ote by t∗∗ the time taken to achieve the almost complete elimination

f the pathogen (i.e. x1 ≤ 10−2), and we denote by MC, the monetary

ost of the treatment, calculated as:

C = 1

2

∫ t f

0

[
r1u2

1(t) + r2u2
2(t) + r3u2

3(t) + r4u2
4(t)

]
dt (48)

hich only depends on the ui. Bear in mind that min J includes in

ur statement (6) not only the monetary cost but also other factors

hich penalize large values of pathogen concentration, or poor organ

ealth.

As can be seen, increasing the weight q1 associated to x2
1
(t) in the

unctional, the solution reduces the value of the pathogen as soon

s possible. This is apparent in the sudden decrease of t∗∗ (38.7%). In
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Table 4

Influence of the weight functions q1 and q4 .

q1 min J MC max (x4) t∗ t∗∗ u1max u4max

1 3.987 1.855 0.555 4.4 3.1 2.39 1.73

2 5.848 2.573 0.469 4.0 2.5 3.41 1.61

3 7.425 3.233 0.451 3.8 2.2 4.3 1.47

4 8.834 3.865 0.438 3.7 2.0 5.0 1.34

5 10.126 4.467 0.432 3.5 1.9 5.7 1.23

q4 min J MC max (x4) t∗ t∗∗ u1max u4max

1 3.987 1.855 0.555 4.4 3.1 2.39 1.73

2 4.166 2.067 0.419 3.6 2.7 2.44 1.84

3 4.273 2.179 0.365 3.2 2.5 2.46 1.90

4 4.352 2.268 0.324 2.9 2.4 2.48 1.95

5 4.414 2.341 0.295 2.7 2.4 2.50 1.99

Table 5

Influence of the weight function r4 .

r4 min J MC max (x4) t∗ u1max u4max

1 3.987 1.855 0.555 4.4 2.39 1.73

1.1 4.022 1.875 0.599 4.5 2.43 1.63

1.2 4.042 1.866 0.647 4.6 2.45 1.50

1.3 4.074 1.896 0.662 4.6 2.48 1.43

1.4 4.080 1.860 0.714 4.8 2.49 1.28

1.5 4.101 1.877 0.727 4.8 2.51 1.22
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rder to achieve this, it increases remarkably the control associated

o the pathogen, this is, u1, which even doubles its value with respect

o the base case and hence the cost shoots up as well. We notice also

remarkable decrease of u4max , as the use of this therapy is not so

ecessary, and a moderate decrease of the healing time t∗ (20.4%).

When the increase takes place in q4, as this weight affects x2
4
(t)

n the functional, now the solution seeks to heal the organ as soon

s possible and hence the time which is most affected is precisely t∗,

hich decreases by 38.6%, whereas the decrease of t∗∗ is less notice-

ble (22.5%). It is interesting to observe how, in order to achieve this,

he control u1 has hardly any influence and the control associated

o the organ, u4 increases its value but very moderately. As a conse-

uence, the cost stays in values near the base case.

The results cannot be considered surprising, although we be-

ieve that its detailed study is very interesting. We see that, at the

ost of increasing the price of the treatment MC,we can diminish

ts duration and organ damage quite considerably. By way of con-

lusion, the option of increasing q4 (e.g. to q4 = 5) seems the most

easonable one, getting, at a moderate cost, both a very low dam-

ge to the organ max (x4), and a very low healing time t∗. The last

ine of the table (q4 = 5) shows how an increment of u4 reduces

he treatment duration and organ damage better than increasing u1

q1 = 5).

In view of this result, it seems logical to question what would hap-

en if one now varies the weights ri and tries to analyze how the price

f the treatment of one of the drugs may alter the results (relatively

o a basic scenario). The results we obtain are shown in Table 5. As

n the previous test we saw how increasing the weight q4 related to

he state x4 (the health of the organ) seemed interesting, we are now

oing to study the influence of the weight function r4, as it is the one

ssociated to the control u4. The results show how increasing r4, de-

pite a slight increment of min J, does not produce the same effect

n the total price of the treatment MC. Bear in mind that the objec-

ive function to minimize is J, not MC, which makes this result unsur-

rising. The reason is that the expected decrease of the control u4 is

everaged with a low increase of the control u1. The health of the or-

an (max (x4)) and the healing time (t∗) worsen, logically, but inside

cceptable ranges. Thus, everything seems to indicate that fostering

he use of u4 is a good compromise solution, both from the economic

nd the sanitary viewpoints.
. Conclusions

In this paper, we have presented a method based on Pontryagin’s

inimum Principle to solve the optimal control problem that arises

hen therapeutic enhancement of immune response to invasion by

pathogenic attack is considered. Furthermore, we have presented

n optimization algorithm based on the cyclic coordinate descent

ethod that leads to determination of the optimal solution of the

eneral problem with several therapies. Our method has certain ad-

antages compared with other methods considered state-of-the-art.

irst, other authors do not present these combined therapies explic-

tly. Second, we are able to include more realistic (and complex) prob-

ems, such as the possibility of considering upper bounds for the con-

rols. Other effects like those due to treatment duration and terminal

ost weights are easy to incorporate but have not been considered in

his paper for the sake of simplicity. Precisely this aspect may con-

titute a possible future line of research: analyzing specific diseases,

ith more detailed modeling appropriate to each (for example, with

ore controls or different state variables). We believe that our math-

matical tool easily allows these variations in the approach due to the

implicity of the different techniques it employs.

ppendix A. Proof of Theorem 1

Let H be the Hamiltonian associated with the problem:

(t, x, u, λ) = F (t, x, u) + λ · f (t, x, u) (49)

n virtue of PMP, there exists a Ĉ1 function, λopt (costate variable),

hich satisfies the two following conditions:

˙
opt (t) = −Hx(t, xopt (t), uopt (t), λopt (t)) (50)

˙
opt (t) = −Fx(t, xopt (t), uopt (t)) − λopt (t) · fx(t, xopt (t), uopt (t))

(51)

H(t, xopt (t), uopt (t), λopt (t)) ≤ H(t, xopt (t), u, λopt (t));
∀u, 0 ≤ umin ≤ u ≤ umax (52)

rom (51), it follows that:

opt (t) =
[

K −
∫ t

0

Fxe
∫ s

0 fxdzds

]
e− ∫ t

0 fxds (53)

enoting K = λopt (0) (and omitting the arguments for the sake of

implicity).

From (52), it follows that for each t, uopt(t) minimizes H. Hence, in

ccordance with the Kuhn–Tucker Theorem, for each t, there exists

wo real nonnegative numbers, α and β , such that uopt(t) is a critical

oint of:

∗(u) = F + λopt (t) · f + α · (umin − u) + β · (u − umax) (54)

t being verified that if u > umin , then α = 0, and if u < umax , then

= 0. We hence have:

˙ ∗(uopt (t)) = Fu(t, xopt (t), uopt (t))

+λopt (t) · fu(t, xopt (t), uopt (t)) − α + β = 0 (55)

nd the three following cases:

Case i) umin < u < umax (t is not a boundary point). In this case,

= β = 0 and hence:

u + λopt (t) · fu = 0 (56)

rom (53) and (56), we have:

u +
[

K −
∫ t

0

Fxe
∫ s

0 fxdzds

]
e− ∫ t

0 fxds · fu = 0 (57)

o:

= − Fu

fu
e

∫ t
0 fxds +

∫ t

Fxe
∫ s

0 fxdzds (58)
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(

(i

(

s

)

(

R

If we denote Yx(t), the second member of the above equation, the

following relation is fulfilled:

Yx(t) = K (59)

Case ii) u = umax, then β ≥ 0 and α = 0. In this case, If fu > 0 (resp.

fu < 0), by analogous reasoning, we have:

Yx(t) ≥ K (resp. Yx(t) ≤ K) (60)

Case iii) u = umin, then α ≥ 0 and β = 0. In this case, If fu > 0 (resp.

fu < 0), by analogous reasoning, we have:

Yx(t) ≤ K (resp. Yx(t) ≥ K) (61)

Otherwise, the application of PMP to this Bolza problem leads to the

function λopt having to satisfy the final condition (41).

Appendix B. Concatenation of the extremal arcs

We shall consider:

0 = t0 < t1 < · · · < tp = t f (62)

such that in each (t j−1, t j) the following is fulfilled:

ui min < ui < ui max or ui min = ui or ui = ui max (63)

We shall carry out p steps, in each of which we shall construct

ω j ∈ C1[t j−1, t j] such that ω j(t j) = ω j+1(t j) and fi(t,ω j(t j), ui) =
fi(t,ω j+1(t j), ui) and that the function defined from these as:

qK(t) := ω j(t), where j is such that t ∈ [t j−1, t j] (64)

satisfies the minimality conditions expressed in Proposition 1.

We shall assume, without loss of generality, that fui
(t, q, ui) > 0.

Step 1 (the first arc)

(i) If K ≥ − Fu(t,q0,ui min)

fu(t,q0,ui min)
we set ω1(t) such that ω̇1(t) =

f (t,ω1(t), ui min) in the maximal interval [0, t1], where:

K ≥ − Fu(t,ω1(t), ui min)

fu(t,ω1(t), ui min)
exp

(∫ t

0

fx(s,ω1(s), ui min)ds

)

+
∫ t

0

(
Fx(s,ω1(s), ui min) exp

∫ s

0

fx(z,ω1(z), ui min)dz

)
ds

(65)

ii) If K ≤ − Fu(t,q0,ui max)

fu(t,q0,ui max)
we set ω1(t) such that ω̇1(t) =

f (t,ω1(t), ui min) in the maximal interval [0, t1], where:

K ≤ − Fu(t,ω1(t), ui max)

fu(t,ω1(t), ui max)
exp

(∫ t

0

fx(s,ω1(s), ui max)ds

)

+
∫ t

0

(
Fx(s,ω1(s), ui max) exp

∫ s

0

fx(z,ω1(z), ui max)dz

)
ds

(66)

ii) If − Fu(t,q0,ui max)

fu(t,q0,ui max)
< K < − Fu(t,q0,ui min)

fu(t,q0,ui min)
then ∃u∗ ∈ (uimin , uimax )

such that K = − Fu(t,q0,u∗)
fu(t,q0,u∗)

, and we set ω1(t) the arc of the ex-

tremal in its maximal domain [0, t1] (with ω1(0) = q0, ω̇1(0) =
f (t, q0, u∗)) which satisfies:

K = − Fu(t,ω1(t), u(t))

fu(t,ω1(t), u(t))
exp

(∫ t

0

fx(s,ω1(s), u(s))ds

)
+

+
∫ t

0

(
Fx(s,ω1(s), u(s)) exp

∫ s

0

fx(z,ω1(z), u(z))dz

)
ds

(67)

j-th Step (j-th arc)

A) If ω j−1 has an interior extremal arc in [t j−2, t j−1], there are two

possibilities:
(I) If ω̇ j−1(t j−1) = f (t,ω j−1(t j−1), ui min), we set ωj(t) in the

maximal interval [t j−1, t j] which satisfies the differential

equation ω̇ j(t) = f (t,ω j(t), ui min) with the initial condition

ω j(t j−1) = ω j−1(t j−1) and:

− Fu(t,ω j−1(t j−1), ui min)

fu(t,ω j−1(t j−1), ui min)
≥

− Fu(t,ω j−1(t j−1), ui min)

fu(t,ω j−1(t j−1), ui min)
exp

(∫ t

t j−1

fx(s,ω j(s), ui min)ds

)

+
∫ t

t j−1

(
Fx(s,ω j(s), ui min) exp

∫ s

t j−1

fx(z,ω j(z), ui min)dz

)
ds

(68)

(II) If ω̇ j−1(t j−1) = fu(t,ω j−1(t j−1), ui max), we set ωj(t) in the

maximal interval [t j−1, t j] which satisfies the differential

equation ω̇ j(t) = f (t,ω j(t), ui max) with the initial condition

ω j(t j−1) = ω j−1(t j−1) and:

− Fu(t,ω j−1(t j−1), ui max)

fu(t,ω j−1(t j−1), ui max)
≤

− Fu(t,ω j−1(t j−1), ui max)

fu(t,ω j−1(t j−1), ui max)
exp

(∫ t

t j−1

fx(s,ω j(s), ui max)ds

)

+
∫ t

t j−1

(
Fx(s,ω j(s), ui max) exp

∫ s

t j−1

fx(z,ω j(z), ui max)dz

)
d

(69

B) If [t j−2, t j−1] is the boundary interval, we set ωj(t) the arc of the

interior extremal (with ω j(t j−1) = ω j−1(t j−1)) in its maximal

domain [t j−1, t j], in a similar way to the described in item (iii) of

step 1.
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