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Abstract In this paper, an n-step, linear and unbranched pathway with Michaelis–
Menten kinetics is solved in a quasi-analytical way. The method, based on the optimal
control theory, calculates the optimal enzyme concentrations while minimizing the
operation time. In the computation of the solution, the Lambert W -function plays
a fundamental role, due to the presence of a non-linear kinetic model. Our method
allows us to obtain the generalized solution and to perform the sensitivity analysis of
the catalytic parameters.

Keywords Optimal control · Michaelis–Menten kinetic · Lambert W -function

Mathematics Subject Classification 49J30 · 49M05 · 80A30

1 Introduction

This paper presents a method for obtaining the generalized solution of an n-step system
with an unbranched scheme and non-linear kinetic model in an almost exclusively
analytical way. Most of the previous papers use a bilinear (linear in the metabolite
concentrations, xi , and linear in the enzyme concentrations, ui ) kinetic model for the
solution. For example, an explicit solution for n = 2, can be found in [1], while, for
n = 5, the authors solved the optimization problem numerically. The solution for
n = 3 is obtained quasi-analytically in [2]. In a previous paper [3], we addressed the
minimization of the transition time, and generalized the works of [1] and [2], presenting
the quasi-analytical solution for the general case of n steps, but under the assumption
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of equal catalytic efficiencies of the enzymes (ki = 1). Later, in [4], and addressing
the minimization of the operation time, we extended the theoretical analysis of [3],
considering unequal catalytic efficiencies ki .

There are few works dealing with nonlinear models in the xi . Among these, [5] used
the Michaelis–Menten (MM) model [6], though for a particular case (n = 4). In [7],
a metabolic control analysis is used to obtain the optimal behavior both in the setting
of an unbranched linear pathway and one of MM type. A mathematical model of an
unbranched reaction chain obeying MM kinetics is used in [8] for n = 3. Another
numerical example with a three-step pathway and reversible MM kinetics is shown in
[9]. Besides these numerically solved examples, [10] derives analytic equations but
for a very simple example, modeling a single enzyme that follows MM kinetics and
operates in the middle of an unbranched metabolic pathway.

Focusing on the kinetic models, MM has proven to be a powerful approach for
describing enzyme processes. Due to difficulties in obtaining closed form solutions
for this model, several papers based upon effective scaling and singular perturbation
techniques have been written, giving fairly accurate solutions [11]. A closed form
solution to the MM equation was found, for the first time, in [12], using the Lambert
W -function. A generalization that is still valid when the initial substrate concentration
is close to that of the enzyme was recently presented in [13]. In [14] the Lambert
W -function is employed to estimate the catalytic parameters.

In this paper we present both the solution for the general case of n steps and a
sensitivity analysis of the catalytic parameters (the Km and kcat constants). Using
optimal control techniques, a functional that takes into account the operation time is
minimized. We prove that the optimal enzyme concentration profile (in a quasi-closed
form) is of “bang-bang” type. The paper is organized as follows: In Sect. 2 we abridge
the fundamental theoretical results about three issues: the kinetic model, the Lambert
W-function and Pontryagin’s minimum principle (PMP); in Sect. 3, we state the prob-
lem and, applying PMP, we obtain the optimal solution; numerical simulations of the
solution and a sensitivity analysis based on the catalytic parameters, are presented in
Sect. 4; finally, Sect. 5 summarizes the main contributions of this paper.

2 Theoretical foundations

2.1 Kinetic model

The kinetics of the Michaelis–Menten (MM) model [6] describes the velocity (rate)
of lots of enzymatic reactions. This model assumes a simple 2-step reaction: step 1
(Binding), in which the enzyme E interacts with the substrate S to form the enzyme-
substrate complex ES; step 2 (Catalysis), decomposition of the ES to regenerate the
free enzyme E and the new product P .

E + S
k1
�
k−1
bind.

[ES] k2=kcat→
cat.

E + P (1)

The rate equation of the MM kinetic model is:
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V0 = d [P]

dt
= Vmax. [S]

Km + [S]
= k2. [S]

Km + [S]
[ET ] (2)

where d[P]/dt or V0 is the initial rate of product generation, Vmax is the maximum
rate and [ET ] is the total enzyme concentration. The following ratio of rate constants
is called the MM constant, Km :

Km = k−1 + k2

k1
(3)

The MM equation (2) describes how the initial reaction rateV0 depends on the substrate
concentration, [S]. From (2) follows that Km can also be defined as the substrate
concentration at which the rate Vmax/2 is reached. Several simplifying assumptions
are required to derive the MM equation:

(1) The binding step is fast and the catalytic step is slower.
(2) At an early stage, when the initial velocity (V0) is measured, [P] ≈ 0. Hence, the

inverse transformation of the product can be ignored.
(3) ES reaches steady state immediately, so that [ES] is constant.
(4) The fraction of S that binds to E (to form ES) is negligible, and [S] is constant at

early times.
(5) The total enzyme concentration [ET ] is the sum of the free and substrate-bound

concentrations: [ET ] = [E] + [ES].
The constant Km is characteristic of each enzyme and specific for each substrate.

It is directly related to the affinity of the enzyme for that substrate and does not vary
with the concentration of the former. A small (resp. large) value of Km indicates a high
(resp. low) affinity of E for the specific S, because at a low (resp. high) concentration
of the substrate, the enzyme has already (resp. only) developed half the maximum
rate.

When [S] � Km , the rate and the substrate concentration are directly proportional
to each other and the reaction has first-order kinetics. When [S] � Km , the rate is
equal to the maximum velocity and is independent of the substrate concentration. The
reaction has zero-order kinetics.

2.2 The Lambert W-function

The Lambert W -function, W (z) is a set of functions which are the branches of the
inverse of the function:

z = f (W ) = WeW (4)

where W is a complex variable. In this paper we focus on real-valued W (x), which is
defined only for x ≥ −1/e and is double-valued on (−1/e, 0).

Adding the condition W ≥ −1, we get a single-valued function W0(x) which is
the principal branch of the W -function. In this case, W0(0) = 0 and W0(−1/e) = −1.
For W ≤ −1, one gets the lower branch, denoted W−1(x), which is decreasing from
W−1(−1/e) = −1 to W−1(0−) = −∞.
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We refer the reader to [15] for a survey on existing results on this function. For
example, by implicit differentiation, one proves easily that all branches of W satisfy:

dW

dx
= W (x)

x(1 + W (x))
; x /∈ {0,−1/e} (5)

In [12], a closed solution to equation (2) is given:

[S] (t) = KmW

(
[S0]

Km
exp

(−Vmaxt + [S0]

Km

))
(6)

which we are going to use extensively in this work for an n-step system with an
unbranched scheme.

2.3 Pontryagin’s minimum principle

We provide a summary of Optimal Control Theory in this section. More specifically,
we state Pontryagin’s Minimum Principle (PMP). An optimal control problem, in the
multidimensional case, with free end-time t f and free end state x(t f ) can be posed as
the following equation:

min
t f ,u(t)

J =
∫ t f

0
F(x(t), u(t), t)dt + B[t f , x(t f )] (7)

subject to:

ẋi (t) = fi (x(t), u(t), t); xi (0) = xi0; i = 1, . . . , n (8)

u(t) ∈ U (t), 0 ≤ t ≤ t f (9)

with x(t) = (x1(t), . . . , xn(t)) ∈ R
n the state vector, and u(t)= (u1(t), . . . ,un(t)) ∈

R
n the control vector. The optimum t∗f is unknown and to be determined. The fol-

lowing hypotheses are assumed: (i) F and f = ( f1(t), . . . , fn(t)) are continuous.
(ii) F and f have partial first derivatives with respect to continuous t and x. They
may have discontinuous derivative in u. (iii) The control variable, u(t), may be have
discontinuities it only needs to be piecewise continuous. (iv) The state variable, x(t),
is continuous, but its derivative only needs to be piecewise continuous (x(t) admits
corner points). And (v) B has continuous partial first derivatives. The set of admissible
controls, U , is often compact and convex. The Hamiltonian is defined as:

H(x(t), u(t), λ(t), t) = F(x(t), u(t), t) + λ(t)f(x(t), u(t), t) (10)

where λ(t) = (λ1(t), . . . , λn(t)) is the costate vector. The following theorem [16]
establishes the necessary conditions for optimality for the problem being addressed
here:

123

Author's personal copy



J Math Chem (2016) 54:1351–1369 1355

Theorem 1 Pontryagin’s minimum principle (PMP)Letu∗(t) be the optimal piece-
wise control path, and x∗(t), the optimal associated state path, defined in the interval
[0, t f ]. There is a continuous function, λ∗(t), which has piecewise continuous first
derivatives, such that for each t ∈ [0, t f ], the following conditions are verified, for
each i = 1, . . . , n:

(i) λ̇∗
i (t) = −∂H(x∗(t), u∗(t), λ∗(t), t)

∂xi
; λ∗

i (t
∗
f ) = ∂B[t∗f , x∗(t∗f )]

∂xi
(ii) H(x∗(t), u∗(t), λ∗(t), t) ≤ H(x∗(t), u(t), λ∗(t), t); u(t) ∈ U (t)
(iii) ẋ∗

i (t) = fi (x∗(t), u∗(t), t); x∗
i (0) = xi0

(iv) H(x∗(t∗f ), u∗(t∗f ), λ∗(t∗f ), t∗f ) + ∂B[t∗f , x∗(t∗f )]
∂t f

= 0

(11)

The solution may not be interior so that minimizing the Hamiltonian does not nec-
essarily imply ∂H/∂u = 0. If the dynamic function f , and the integrand F , have no
explicit time-dependence, the problem is said to be autonomous. In this case, Ht ≡ 0,
which implies that the Hamiltonian is constant throughout said solution:

H(x∗(t), u∗(t), λ∗(t)) = const. (12)

When the control u appears linearly in F(x(t), u(t), t) and in f(x(t), u(t), t), then:

H(x(t), u(t), λ(t), t) = ν(x(t), λ(t), t) − μ(x(t), λ(t), t)u (13)

As we shall eventually see, in our specific case the optimality condition (ii) leads to
the minimization of a linear function of n variables of the following type:

min
u∈UH = min

u∈U

{
−

n∑
i=1

μi ui

}
(14)

where the functions μi = −∂H/∂ui are called the switching functions. Minimizing
H with respect to ui leads to:

u∗
i (t) =

⎧⎨
⎩
ui max if ∂H/∂ui < 0
using if ∂H/∂ui = 0
ui min if ∂H/∂ui > 0

(15)

If ui switches between its upper and lower limits only at isolated points in time, then
the optimal control is said to be a bang-bang type control. Those times are called
the switching times. If ∂H/∂ui = 0 for every t in some open subinterval, then the
original problem is called a singular control problem and the corresponding trajectory,
a singular arc using.
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3 Statement of the problem and optimal solution

We are going to focus on unbranched metabolic pathways with MM kinetics as
described below. Consider the following unbranched metabolic pathway composed
of n irreversible reactions converting substrate x1 into product p:

x1
u1→ x2

u2→ x3
u3→ · · · → xn−1

un−1→ xn
un→ p (16)

where x1(t) is the substrate concentration at time t , p(t) the concentration of the
final product at time t , xi (t) (i = 2, . . . , n) the concentration of each intermediate
compound at time t , and ui (t) (i = 1, . . . , n) the concentration at time t of the enzyme
catalyzing the i-th reaction. For the sake of simplicity, we use normalized quantities:
the ui are divided by the maximum total enzyme concentration, and the xi and p are
divided by x1(0). Using (2) we get:

vi (xi (t), ui (t)) = ki xi (t)

Kmi + xi (t)
ui (t) (17)

where vi is the rate of the i-th reaction (i = 1, . . . , n), and the dynamical model for
the pathway shown in (16) is given by conservation of mass:

ẋi (t) = vi−1(xi−1(t), ui−1(t)) − vi (xi (t), ui (t)); (i = 1, . . . , n) (18)

So, the reactions in (16) can then be modeled by the set of differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = − k1x1

Km1 + x1
u1 x1(0) = 1

ẋ2 = k1x1

Km1 + x1
u1 − k2x2

Km2 + x2
u2 x2(0) = 0

· · ·
ẋn = kn−1xn−1

Kmn−1 + xn−1
un−1 − knxn

Kmn + xn
un xn(0) = 0

(19)

with xi (t) ≥ 0. Due to normalization, we have x1(0) = 1, and:

x1(t) + x2(t) + · · · + xn(t) + p(t) = 1, ∀t ≥ 0 (20)

Our goal is to transform x1 into product p as fast as possible. Thus, we shall minimize
the operation time, which is defined in terms of the concentration of the final product,
p(t f ), with t f as the final time. In the case of an exhaustible initial substrate, x1, from
(20), and imposing p(t f ) = C f (0 < C f < 1), we obtain:

x1(t f ) + x2(t f ) + · · · + xn(t f ) = 1 − C f (21)
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So that the optimization problem may thus be defined as the following control problem
(Pr):

(Pr) : τC f = min
u1,...,un

∫ t f

0
dt = min

u1,...,un
t f

subject to (19), (21) and:

U (t) = {u ∈ R
n|u1 ≥ 0, . . . , un ≥ 0; u1 + · · · + un ≤ 1} (22)

Using PMP, we get the following solution to (Pr):

Theorem 2 Optimal solution The optimal i-enzyme profile is of bang-bang type and
satisfies:

u∗
i (t) =

{
1 for t ∈ [ti−1, ti )
0 for t /∈ [ti−1, ti )

; i = 1, . . . , n (23)

where {t0, t1, t2, . . . , tn} are the switching times, with t0 = 0 and tn = t f . If we
denote by x ji (t) the optimal j-thmetabolite concentration in the i-th interval [ti−1, ti ],
i = 1, . . . , n, with x10(t0) = 1, then the optimal solution is:

xj1(t) for j

Km1W

(
x10(t0)
Km1

e
x10(t0)

Km1 e
− k1

Km1
(t−t0)

)
1

x10(t0) − x11(t) 2
0 3, . . . , n

(24)

xji(t) for j

x j j (t j ) 1, . . . , i − 1

KmiW

(
xii−1(ti−1)

Kmi
e
xii−1(ti−1)

Kmi e
− ki

Kmi
(t−ti−1)

)
i

xii−1(ti−1) − xii (t) i + 1
0 i + 2, . . . , n

(25)

xjn(t) for j

x jn(t j ) 1, . . . , n − 1

KmnW

(
xnn−1(tn−1)

Kmn
e
xnn−1(tn−1)

Kmn e− kn
Kmn

(t−tn−1)

)
n

(26)

Proof See Appendix 1. �

4 Numerical simulations

We have developed a program using Mathematica® which allows us to easily obtain
the optimal solution for problems of any dimension n. As Mathematica® includes the
function ProductLog[z], which is a symbolic version of the Lambert W -function, it
permits us to perform the main operations with it: derivation, integration, plotting, etc.
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4.1 Example of optimal solution

As an illustrative example, first we consider n = 4 and the following values for the
catalytic efficiencies ki (s−1) and the MM constants Kmi (mM):

i 1 2 3 4
ki 1 2 4 3
Kmi 1 0.9 0.8 0.7

(27)

Assume p(t f ) = C f = 0.9. We shall minimize the operation time according to the
specific ratio (90 % in this case) of the initial substrate to be converted into the product.

In Table 1, the optimal solutions for n = 2, 3, 4 are given. The switching times ti
for i = 1, . . . , n are given as are the total operation times τC f = tn = t f , in boldface.
These values are computed solving the nonlinear system (54) (see Appendix 1). To
this end, we make use of the Mathematica® command FindRoot[·]. The fact that we
obtain the solution by successively increasing the value of n is not accidental: the
FindRoot[·] command is based on Newton-Raphson’s method and requires an initial
seed for finding local solutions. We have verified that working this way, the values of
ti computed for case n − 1 can be used as seeds for case n. This way, the convergence
of the method is guaranteed without requiring any initial estimation of the solution.
Figure 1 shows the optimal solution obtained for the enzyme concentration for the
case n = 4. As Theorem 2 states, due to the linearity of the control, the solution of the
optimal control problem is of bang-bang type and all the ui are 1 in all the intervals
where they are active.
Figure 2 shows the optimal solution for the substrate concentration, x1, the concen-
trations of the intermediate compounds, x2, x3, x4, and the concentration of the final
product, p, for the case n = 4. It is relevant to point out that once the optimal val-
ues shown in Table 1 are obtained numerically, the remaining values of the solution
are immediately obtained analytically using the closed-form formulas of Theorem 2.
The time required by the program to complete this example was 0.094 s on a budget
computer (Intel Core 2/2.66 GHz).

Table 1 Switching times and
operation time of the optimal
solution

n t1 t2 t3 t4

2 3.57301 5.58414 – –

3 3.70160 5.77137 6.87851 –

4 3.83301 5.96261 7.09668 8.42125

Fig. 1 Optimal enzyme profile
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Fig. 2 Profiles of Metabolite and product

Table 2 Switching times and operation time of the optimal solution

n t1 t2 t3 t4 t5 t6 t7 t8

2 0.3569 1.0091 – – – – – –

3 0.4118 1.1919 1.9909 – – – – –

4 0.4446 1.3019 2.1810 3.0039 – – – –

5 0.4810 1.4242 2.3928 3.2975 4.5606 – – –

6 0.4960 1.4749 2.4806 3.4193 4.7354 5.5486 – –

7 0.5108 1.5248 2.5669 3.5390 4.9072 5.7482 6.6839 –

8 0.5189 1.5522 2.6145 3.6050 5.0019 5.8582 6.8113 7.4628

Bold values indicate the total operation time

To verify the behaviour of our method when increasingn,we present a second example,
considering n = 8 and the following values for the catalytic efficiencies ki (s−1) and
the MM constants Kmi (mM):

i 1 2 3 4 5 6 7 8
ki 100 50 60 70 50 100 60 90
Kmi 10 12 15 16 18 19 13 12

(28)

We assume once again p(t f ) = C f = 0.9. In Table 2, the optimal solutions for all
the values of n are given.
The convergence of the method without using our method is very difficult, due the
complexity of the Lambert Function. However, using for n, the initial estimation of
the solution given by n − 1, the convergence is always achieved. The time required to
complete this example was 20.905 s on a budget computer (Intel Core 2/2.66 GHz).

After extensive testing on the above example we have analyzed in detail the influ-
ence of the values of the constants in both the catalytic and the Michaelis–Menten.
As regards the interpretation of the results, we may present the following conclusions
from the qualitative point of view:

(1) If ki decreases, ceteris paribus, then the intervals between switching times, ti −
ti−1, increase and vice versa. This result is logical from the point of view of
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reaction kinetics, because if ki is small, then so is the reaction rate and hence the
active interval of each ui must be larger.

(2) if Kmi increases, ceteris paribus, then the intervals between switching times,
ti − ti−1, increase and vice versa. This result is also logical, because if Kmi is
big, then the reaction rate is small and hence the active interval of ui must be
larger.
– These two results are independent of the position of the constants(ki and Kmi )

in the reaction.
(3) In the first interval, starting from x1(0) = 1, substrate x1 is converted into x2,

which reaches its maximum value x2(t1) at the first switching time, t1. At this
moment, x1 stays constant with value x1(t1), which it will keep until the end, at
time t f . The process is likewise repeated for all xi , as follows from the solution
being of bang-bang type.

(4) The maximum value obtained by each compound xi (ti−1), becomes progres-
sively smaller as the process advances, regardless of the values of ki and Kmi .
– The values xi (ti−1) increase for increasing ki , ceteris paribus, and vice versa.

The rest of values x j (t j−1), ( j �= i) also increase w.r.t. the value obtained in
(4).

– The values xi (ti−1) decrease for increasing Kmi , ceteris paribus, and vice versa.
The rest of values x j (t j−1), ( j �= i) also decrease w.r.t. the value obtained in
(4).

(5) If ki = k j and Kmi = Kmj (for all i, j), the constant value reached by each
compound xi (ti ), becomes progressively smaller as the process advances.
– The values xi (ti ) decrease for increasing ki , ceteris paribus, and vice versa.

The rest of values x j (t j ), ( j �= i) increase w.r.t. the value obtained in (5).
– The values xi (ti ) increase for increasing Kmi , ceteris paribus, and vice versa.

The rest of values x j (t j ), ( j �= i) decrease w.r.t. the value obtained in (5).
(6) Product p is only generated in the last interval [tn−1, t f ] and the concentrations

of the substrates in this time period are constant.
(7) The minimal operation time τC f increases—as is natural—with the number of

intermediate compounds, n.
(8) The switching times are increasingly delayed for increasing n, regardless of the

values of ki and Kmi .

Table 3 summarizes the qualitative influence of ki and Kmi on several characteristics
of the optimal solution.

In Table 4 we present the execution times obtained for increasing values of n. We
have taken, in this case, ki = 50 (s−1) and Kmi = 10 (mM).

The execution times suggest the exponential character, O(4n), of the algorithm’s
computational complexity.

Table 3 Qualitative influence
of ki and Kmi

xi (ti−1) xi (ti ) ti − ti−1 τC f

ki ↗ ↗ ↘ ↘ ↘
Kmi ↗ ↘ ↗ ↗ ↗
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Table 4 Influence of n in the execution time

n 2 3 4 5 6 7 8 9 10

t (s) 0.015 0.032 0.109 0.343 1.279 5.007 20.748 84.848 342.438

4.2 Sensitivity analysis

In this section, we present the sensitivity analysis of the optimal solution. Sensitivity
analysis (SA) (see, for example, [17,18] and [19]) explores the effect of the change
of a parameter on the solution of a mathematical model. Consider a general model
with one dependent variable Y and several independent variables, X = (X1, . . . , Xn),
where Y = f (X). One the most usual methods of SA is Differential SA. In it, the
sensitivity coefficient, φi , for the independent variable, Xi , is defined as:

φi = dY

dXi
(29)

When a closed form expression for Y = f (X) is known, this coefficient is very easy
to compute. In our case, employing the analytical formulas (24), (25) and (26) we
can calculate the sensitivity coefficient, φi j , of the concentration of the intermediate
compounds and substrate xi with respect to the catalytic efficiencies, k j :

φi j = dxi
dk j

; (i = 1, . . . , n) , ( j = 1, . . . , i) (30)

As we have already pointed out, the derivative of the Lambert W -function is easily
computed using (5), so that the above φi j can be explicitly obtained. Their values for
i = 1, 2, 3, 4 are plotted in Fig. 3.

The main results are:

Fig. 3 Sensitivity coefficient φi j
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(a) If all the ki are equal, then the greatest influence on each xi corresponds to the
parameters ki and ki−1, the other k j for j < i −1 exerting a lesser influence than
the last two. Moreover, this latter influence is almost the same for all of them and
follows the shape of the metabolites.

(b) The influence of ki on xi is most relevant in the time interval during which the
reaction xi → xi+1 takes place. It thence remains constant with a value which
may be considered as significant (in the example, �30 % of the maximum value
for φ11).

(c) The influence of ki−1 on xi is relevant almost exclusively during the time when
the reactions xi−1 → xi → xi+1 take place. The sensitivity coefficient in the
remaining times is constant and practically negligible.

(d) The influence of k j on xi for j < i −1 is also only relevant during the time when
the reactions xi−1 → xi → xi+1 take place.

(e) If all the ki are equal, then the values of the sensitivity coefficients stay within a
range during all the reaction and their time interval of influence is shifted.

(f) If k j decreases, then φi j increases. This is why, in the example (with ki = 1 the
smallest one), we see that, despite (a), φ41 is greater than all the other coefficients.

One can also perform the Differential SA with respect to the MM constants Kmj :

�i j = dxi
dKmj

; (i = 1, . . . , n) , ( j = 1, . . . , i) (31)

Figure 4 shows the corresponding results. Conclusions are very similar to those
obtained for for φi j :

(a) If the Kmi are equal for all i , then the greatest influence on each xi corresponds
to the parameters Kmi (now with positive derivative) and Kmi−1 (with negative
derivative). The remaining parameters for Kmj (for j < i − 1) exert again the
least influence and their graphs have a similar profile to the metabolites.

(b) The influence of Kmi on xi is most relevant in the time interval when the reaction
xi → xi+1 takes place and remains constant afterwards, with a value which

Fig. 4 Sensitivity coefficient �i j
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Fig. 5 Optimal cost, t f , as a
function of ki

Fig. 6 Optimal cost, t f , as a
function of Kmi

is even more significant than those of the ki (in our example, �52 % of the
maximum value for �11).

(c) The greatest influence of Kmi−1 and Kmj (for j < i − 1) on xi happens during
the reactions xi−1 → xi → xi+1 and afterwards the sensitivity coefficient is
virtually negligible.

(d) If Kmj decreases, then the coefficient �i j increases.

We finish this section with the simplest SA method: the one-at-a-time (OAT)
method. The idea is to iteratively vary one parameter at a time while keeping the
others fixed. We must to use this method to perform the SA of the operation time, t f ,
with respect to ki and Kmi , since the analytic relation among them is unknown.
Figure 5 represents the OAT SA for the catalytic efficiencies, ki . Keeping the remaining
k j (for j �= i) constant, we successively vary each ki until doubling the initial value
given in (27). For a better understanding and comparison, we represent on the x-axis,
�ki (the relative increment) in per unit and on the y-axis, the operation time t f (s).
The main conclusions are:

(i) The operation time t f always decreases for increasing ki . This is a totally natural
result, given the kinetic interpretation of these constants.

(ii) The operation time t f is less sensitive to higher values of ki . For example, dou-
bling k1 to k1 = 1 yields a decrease in t f of 23.75 %, whereas the same percentage
increase in k3 yields a decrease in t f of just 7.12 %.

(iii) The least values of t f are always obtained for the largest ki (in this case k3).

Analogue results are shown in Fig. 6, for the OAT SA for the Kmi .
In this case, the operation time t f always increases for increasing Kmi . The reason

was explained in Sect. 2.1, when we gave the kinetic interpretation of these constants.
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As regards the sensitivity of t f , unlike the ki , it is greater the greater the value of each
Kmi is: doubling Km1 to Km1 = 1 yields an increase of 32.6 % in the value of t f ,
whereas doubling Km4 to Km4 = 0.75, only increases t f by 11.2 %. Moreover, we
notice a remarkable fact related to the influence of ki on Kmi : as k3 > k4, the total
time t f remains minimum for the greatest ki (in this case, k3) and this despite Km3
being greater than Km4.

5 Conclusions

We have presented in this paper for the first time the quasi-analytical solution of an
n-step linear unbranched pathway with Michaelis–Menten kinetics. As objective func-
tion we minimize the operation time, defined by specifying the final concentration of
the product. Traditionally, kinetics with non-linear equations, like Michaelis–Menten,
have only been solved approximately. The closed-form formulae of Theorem 2 allow
finding the solution for problems of arbitrary dimension, with the only limitation of
solving the nonlinear system. With the proposed iterative method of progressively
finding the solution for increasing values of n, we have verified that the solution of the
system poses no special difficulty from the numerical point of view. The reason is that
at each step n, the starting seeds for unknowns 1, . . . , n − 1 can be estimated to high
precision by using the switching times computed at the previous step and the value of
the new unknown can also be easily estimated. All the issues related to convergence
of numerical processes, frequent in other methods, are thus prevented.

Appendix 1: Proof of Theorem 2.

We now prove that the solution obtained using Pontryagin’s Minimum Principle is
effectively a solution of our problem. In (22), we have F = 1, B = 1 and the
Hamiltonian H is:

H = 1 + λ1

[
− k1x1

Km1 + x1
u1

]
+ λ2

[
k1x1

Km1 + x1
u1 − k2x2

Km2 + x2
u2

]

+ · · · + λn

[
kn−1xn−1

Kmn−1 + xn−1
un−1 − knxn

Kmn + xn
un

]
(32)

which is autonomous, so that Ht ≡ 0 ⇒ H(t) = ct . This condition together with (iv)
implies that H(t) = 0. Now the optimality condition (ii) leads to:

min
u∈UH = min

u∈U

{
−

n∑
i=1

ki (λi − λi+1)xi
Kmi + xi

ui

}
= min

u∈U

{
−

n∑
i=1

μi ui

}
(33)

with λn+1 = 0. According to the optimality condition (i), we have:

·
λi = ki Kmi (λi − λi+1)

ui
(Kmi + xi )2 ; (i = 1, . . . , n) (34)
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It is known from (33) that the control ui is activated when the switching function
μi reaches its maximum. Moreover, when this happens, the coefficient μi must be
positive, because otherwise ui = 0. Hence, it follows that λi is decreasing. From (33):

μi = ki (λi − λi+1)xi
Kmi + xi

≥ 0 ⇒ λi ≥ λi+1 (35)

We obtain the optimal solution constructively by intervals, starting at t = 0 and
concatenating the results. This procedure will prove essential in order to obtain a
simple solution to the problem. We shall also see that using the following condition
in (22):

U (t) = {u ∈ R
n|u1 ≥ 0, . . . , un ≥ 0; u1 + · · · + un ≤ 1} (36)

we are not going to require either the final condition (i) λ∗
i (t

∗
f ) = 0 for the costate

variables, or the transversality condition (iv) H(t) = 0. As a matter of fact, we shall
see that it will not be necessary to compute λ∗

i , so that we shall not compute H(t)
either.

(1) Interval: [0, t1].
We reason by contradiction. Assume that u1 = 0. From (19):

ẋ1 = − k1x1

Km1 + x1
u1 = 0

x1(0) = 1

⎫⎬
⎭ ⇒ x1(t) = 1, ∀t (37)

and the product would not be produced. Hence, we have u1 = 1 and from condition
(36) we get:

ui = 0, i = 2, . . . , n (38)

Once the optimal values for the enzymes are computed, we can solve now (19):

ẋ1 = − k1x1

Km1 + x1
x1(0) = 1

⎫⎬
⎭ ⇒ x1(t) = Km1W

(
1

Km1
e

1−k1 t
Km1

)

ẋ2 = k1x1

Km1 + x1
x2(0) = 0

⎫⎬
⎭ ⇒ x2(t) = 1 − x1(t)

ẋi = 0
xi (0) = 0

}
⇒ xi (t) = 0; i = 3, . . . , n

(39)

In Appendix 2 we give the details of the solution. In order to generalize the formula,
it is interesting to use the following notation: we denote by x ji (t) the concentration of
j-metabolite in the i-interval [ti−1, ti ], i = 1, . . . , n, with x10(t0) = 1. So, we have:

x11(t) = Km1W

(
x10(t0)
Km1

e
x10(t0)

Km1 e
− k1

Km1
(t−t0)

)

x21(t) = 1 − x11(t)
xi1(t) = 0; i = 3, . . . , n

(40)

From (34), the following holds:
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·
λ1 = k1Km1(λ1 − λ2)

(Km1 + x1)2 ; ·
λi = 0, i = 2, . . . , n (41)

From (33) and (19), after some elementary computations and substituting λ̇1 and ẋ1
by their values, we get

μ1 = k1(λ1 − λ2)x1

Km1 + x1
⇒ ·

μ1 = k1(λ̇1 − λ̇2)x1

Km1 + x1
+ k1(λ1 − λ2)ẋ1

(Km1 + x1)
2 = 0 (42)

On the other hand:

μ2 = k2(λ2 − λ3)x2

Km2 + x2
⇒ μ̇2 = k2(λ2 − λ3)Km2

(Km2 + x2)
2

k1

Km1 + x1
x1 ≥ 0 (43)

So that ·
μ1 = 0 ⇒ μ1 = ct
·
μ2 ≥ 0 ⇒ μ2 = increasing
μi = 0 ⇒ μi = 0; i = 3, . . . , n

(44)

(2) Interval: [t1, t2] .

With a reasoning analogue to the one used for the first interval:

u1 = 0, u2 = 1; ui = 0, (i = 3, . . . , n) (45)

and:

ẋ1 = 0
x1(t1) = x11(t1)

}
⇒ x12(t) = x11(t1)

ẋ2 = − k2x2

Km2 + x2
x2(t1) = x21(t1)

⎫⎬
⎭ ⇒ x22(t) = Km2W

(
x21(t1)
Km2

e
x21(t1)

Km2 e
− k2

Km2
(t−t1)

)

ẋ3 = k2x2

Km2 + x2
x3(t1) = 0

⎫⎬
⎭ ⇒ x32(t) = x21(t1) − x2(t)

ẋi = 0
xi (t1) = 0

}
⇒ xi2(t) = 0; i = 4, . . . , n

(46)

which gives:

·
λ1 = 0; ·

λ2 = k2Km2(λ2 − λ3)

(Km2 + x2)2 ; ·
λi = 0, i = 3, . . . , n (47)

and performing the adequate substitutions, one proves that:
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Fig. 7 Illustration of the
behavior of the switching
functions

·
μ1 ≤ 0 ⇒ μ1 = decreasing
·
μ2 = 0 ⇒ μ2 = ct
·
μ3 ≥ 0 ⇒ μ3 = increasing
μi = 0 ⇒ μi = 0; i = 4, . . . , n

(48)

In Fig. 7, the behavior of the switching functions is shown.
The values for each successive interval are similarly obtained, by concatenating the
solutions. For the sake of simplicity, we present only the solution for the last one.

(n) Interval: [tn−1, t f ].
In this case:

ui = 0, (i = 1, . . . , n − 1); un = 1 (49)

ẋi = 0
xi (tn−1) = xii (ti )

}
⇒ xin(t) = xii (ti ); i = 1, . . . , n − 1 (50)

and

ẋn = − knxn
Kmn + xn

xn(tn−1) = xnn−1(tn−1)

⎫⎬
⎭ ⇒

⇒ xnn(t) = KmnW

(
xnn−1(tn−1)

Kmn
e
xnn−1(tn−1)

Kmn e− kn
Kmn

(t−tn−1)

)
(51)

·
μi = 0 ⇒ μ2 = ct; i = 1, . . . , n − 2
·
μn−1 ≤ 0 ⇒ μn−1 = decreasing
μn = 0 ⇒ μn = ct

(52)

Once the optimum values for x∗
i and u∗

i have been obtained, it is still required to
compute the values of the following unknowns: the switching times t1, t2, . . . , tn−1
and the operation time t f . In order to do so, we use the restriction (21) which we have
not used yet. The simplest way is to apply the Lagrange multipliers to the augmented
functional:

L(t1, t2, . . . , tn−1, t f , β) = t f + β(x1n(t f ) + x2n(t f ) + · · · + xnn(t f ) − C f ) (53)
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where the values of the concentrations x1n(t f ), x2n(t f ), . . . , xnn(t f ) are given by (24),
(25) and (26), and in which one sees that the unknowns t1, t2, . . . , tn−1 appear. We
need to solve the non-linear system:

∂L

∂t1
= 0; ∂L

∂t2
= 0; . . . ; ∂L

∂tn−1
= 0; ∂L

∂t f
= 0; ∂L

∂β
= 0 (54)

which can be done with any computer algebra software. This is the only part of the
solution which is not carried out analytically, whence our calling it “quasi-analytical.”
Now the problem is completely solved.

Appendix 2: Solution of the state equations

In order to shed some light on the solution of the state equations, we carry it out
completely for the case of the interval [0, t1]. First, we solve the differential equation
for x1(t):

dx1

dt
= − k1x1

Km1 + x1
⇒

(
Km1

x1
+ 1

)
dx1 = −k1dt (55)

Integrating:
Km1 ln x1 + x1 = −k1t + C (56)

Imposing the initial condition x1(0) = 1, we get C = 1, so that

Km1 ln x1 + x1 = −k1t + 1 ⇒ ln x1 + x1

Km1
= − k1

Km1
t + 1

Km1
(57)

By exponentiation:

e
ln x1+ x1

Km1 = e
1

Km1
− k1

Km1
t ⇒ x1e

x1
Km1 = e

1
Km1

− k1
Km1

t
(58)

Dividing by Km1:
x1

Km1
e

x1
Km1 = 1

Km1
e

1
Km1

− k1
Km1

t
(59)

And from the definition of the Lambert W -function

x = W (x)eW (x) (60)

we get:

x1(t) = Km1W

(
1

Km1
e

1
Km1 e

− k1
Km1

t
)

(61)

In order to obtain the closed form expression for x2(t), instead of integrating

ẋ2 = k1x1

Km1 + x1
; x2(0) = 0 (62)
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it is much easier to realize that
ẋ1 + ẋ2 = 0 (63)

from which follows, immediately, that

x1(t) + x2(t) = c ⇒ x1(0) + x2(0) = c ⇒ c = 1 (64)

so that we get the recurrence relation:

x1(t) + x2(t) = 1 ⇒ x2(t) = 1 − x1(t) (65)

And one proceeds similarly for the remaining intervals.
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