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a b s t r a c t

This paper presents the problem of finding the optimal harvesting strategy, maximizing
the expected present value of total revenues. The problem is formulated as an optimal
control problem. Combining the techniques of Pontryagin’s Maximum Principle and the
shooting method, an algorithm has been developed that is not affected by the values of the
parameter. The algorithm is able to solve conventional problems as well as cases in which
the optimal solution is shown to be bang–bang with singular arcs. In addition, we present
a result that characterizes the optimal steady-state in infinite-horizon, autonomous
models (except in the discount factor) and does not require the solution of the dynamic
optimization problem. We also present a result that, under certain additional conditions,
allows us to know a priori the final state solution when the optimization interval is finite.
Finally, several numerical examples are presented to illustrate the different possibilities of
the method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Renewable resources [1] include those resources that exhibit growth, maintenance, and recovery from exploitation over
an economic planning horizon. The economics of this resources traditionally considers stocks of fish, forests, or freshwater.
The principal question in the management of renewable resources is [2]: How much of a resource should be harvested
during the present bearing inmind the future time periods? Time is usually considered over the horizon of a single manager
or economic operation. Moreover, from an economic point of view, the economic value has been traditionally discounted to
take into account a positive time preference. In this paper, we consider the particular case of harvesting of fish [3], although
its extension to other problems of renewable resources is straightforward.

Harvesting of fish is both an ecological and economic issue. In the economic context, the renewable resource problem is
stated as a maximization of profit over a future time horizon, subject to the natural dynamics of the harvested resource, an
initial stock size, a target for the end of the optimization interval (or a limit in the case of an infinite-time horizon), and other
technology constraints. A large number of papers has focused on the optimal harvesting policies when the resource stock
follows deterministicmodels (see an excellent summary in [4]). In this paper, we also consider a deterministic environment.
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When formulating a physical problem, the first step is to obtain a suitable mathematical model of it. Simplifications are
frequently used to make the problem tractable. The previous literature has typically focused on the case of linear harvest
functions. In this paper, however, we avoid the errors associated of using a linear model or the inconvenience of estimating
the values of more complex models for the harvest function. To this end, and in line with [5,6], we model the dynamics of
the fish stock biomass considering the harvest as a independent variable.

Furthermore, what usually occurs is that the model parameters present a range of variation and this variation can lead
to problems of different mathematical nature. This is the case of the parameters associated with marine fishing [5,6]. Faced
with the complication of having to use different techniqueswhen the functional is linear or nonlinear in the control variable,
our method presents the contribution of being valid in cases that range between quasi-linearity to singular arcs. It is also
valid, of course, in conventional solutions. As we shall see later, the stated problem can be considered as an Optimal Control
(OC) problem, which has some noteworthy features. First, the optimization interval is infinite. Second, the time t is not
explicitly present in the problem (time-autonomous problem), except in the discount factor. Third, we impose constraints
on the control and, four, it constitutes a quasi-linear problem when considering real values for the parameters. To solve
the problem, we have designed an algorithm capable of jointly handling all these features. In short, we may state that our
methodmakes use of a basic result of OC: Pontryagin’sMaximumPrinciple (PMP) [7] combinedwith the shootingmethod [8]
to build this optimization algorithm.

Another important property of intertemporal economic problems is related with their long-term stability, i.e., when the
problem converges to a steady-state. The method developed in [9] characterizes the optimal steady-state in single-state,
infinite-horizon, autonomous models (except in the discount factor) by means of a function, called the evolution function,
and defined only in terms of themodel’s parameters. Themethod does not require the solution of the dynamic optimization
problem. This method was applied in [10] for a very simple particular case. We now follow the same procedure, but for our
more general functional. To the best of our knowledge, the stated problem has never been addressed using this approach.
With respect to the previous result, we have also obtained a result that allows us, employing certain simplifications, to
know a priori the final state solution when the optimization interval is finite, but of sufficient duration to have previously
reached the steady state. Once again, it is not necessary to solve the dynamic problem, but it is necessary for the system to
be autonomous.

Section 2 of the paper presents a complete overview of the differentmodellings needed for the problem being addressed.
Furthermore, the main mathematical results that will be used in its solutions are presented. The optimization algorithm
is developed in Section 3, with particular attention being paid to the theorem on which this algorithm is based, namely
Theorem 3: a necessary and sufficient maximum condition. The most cumbersome part of the algorithm, where the
concatenation of extremal arcs to impose constraints on the control is described in detail, is summarized in the Appendix.
Section 4 presents several numerical examples to illustrate the algorithm’s performance under different conditions. Thus,
not only the steady state is analysed, but also the dynamics of the solution, the influence of the chosen model, its sensitivity
to relevant parameters such as the initial stock and the discount rate, and a comparison with the case of a long-term finite
time horizon. An example of a quasi-linear model is also presented in this section, thus illustrating how the algorithm is
able to solve both conventional problems and problems which, by their nature, tend towards bang-singular solutions.

2. Statement of the problem

2.1. Biological models

For the study of the economics of a renewable resource [1], we shall first see the pattern of biological growth of the
resource. In this paper, we consider the growth function for a population of some species of fish. We assume that this
fishery has a intrinsic growth rate denoted by r , which represents the difference between the population’s birth and natural
mortality rates. Let us assume that the population stock is x. Then, in the absence of human harvesting, the rate of change of
the population, ẋ, over time is given by:

ẋ(t) = rx(t). (1)

Integrating this equation, and for a positive value of r , we can straightforwardly see that the population grows exponentially:

x(t) = x0ert (2)

where x0 is the initial stock level. This result is only plausible over a short interval of time. It iswell known that anypopulation
of fish has a finite carrying capacity, k, which limits the population’s growth. To include this effect, the literature presents
several models in which the actual growth rate depends on the stock size. A commonly used functional form is the simple
logistic function (or Verhulst equation):

ẋ(t) = fsl(x) = rx(t)

1 −

x(t)
k


(3)

where r denotes the intrinsic growth rate and k, the carrying capacity of the species. This model is a good approximation to
the natural growth processes ofmany fish populations, because it has twoproperties: (1) compensation, i.e. the proportionate
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Fig. 1. Biological models.

growth rate of the stock (ẋ/x) declines as the stock size rises, and (2) amaximum stock size k. An example of the simple logistic
function is shown in Fig. 1(a) using the data for Denmark cod [5] that we shall present in detail in Section 4.

The graph represents the relationship between the stock size, x(t), and the rate of change, ẋ(t), of the population due to
biological growth. For the simple logistic function, ẋ(t) is a quadratic function of the resource stock size, x(t). The maximum
amount of growth, xMSY , will occurwhen the stock size is equal to half of k, whereMSYare the initials formaximumsustainable
yield. The Verhulst equation belongs to a more general class of models, the so-called Bernoulli equation:

ẋ(t) = r(t)x(t) − d(t)Nθ+1
; r(t) = b(t) − d0(t) (4)

where r(t) is, once again, the intrinsic growth rate.
Several generalizations of the logistic growth model exist and, among them, we will use themodified logistic model [1]:

ẋ(t) = fml(x) = rxγ (t)

1 −

x(t)
k


. (5)

Thismodel has forγ > 1 the property of depensation (as opposed to compensation), i.e., at low stock levels, the proportionate
growth rate (ẋ/x) is an increasing function of the stock size. A function showing depensation at stock levels below xD (and
compensation thereafter) is shown in Fig. 1(b), the data corresponding to Norway cod [5], which we shall use in Section 4.
Other approaches are the Gompertz equation:

ẋ(t) = rx(t) ln
k

x(t)
(6)

the Beverton–Holt model, the Ricker equation, etc.

2.2. Harvesting and economic models

When human harvesting is included in the problem, the dynamics of the fish stock biomass (x) is modelled as:

ẋ(t) = fl(x) − h(t) (7)

ẋ being the instantaneous change in stock biomass, h, the rate of biomass harvest, and fl(x), the logistic growth function.
As already stated, we shall use the simple (3) and the modified (5) logistic growth function in this paper.

Many factors determine the size of the production function, i.e. the harvest, h. First of all, the harvest will depend on the
amount of resources devoted to fishing and, for the sake of simplicity, many authors (see, for example, [1,10–12]) assume
that all the different dimensions of the activity of harvesting can be aggregated into onemagnitude called effort, E(t). Second,
and broadly speaking, the harvest will depend on the size of the resource stock. Hence, we have:

h(t) = H(E(t), x(t)). (8)

Thus, in this model, h depends on the fishing effort, E (for example, size of nets, number of trawlers, number of fishing days)
as well as the population level. This relationship can take a variety of particular forms. One very simple form [10,13], which
appears to be a relatively good approximation, is given by:

H(t) = qE(t)x(t) (9)

where q is a constant number, often called the catchability coefficient, E(t) is fishing effort, and x(t) is the fish stock level
at time t . The proportionality constant, q, describes, how ‘‘easy’’ the fish can be harvested. This approach has obvious
advantages in terms of mathematical tractability, but constitutes a relatively simple approach. A more general production
function can be written in the Cobb–Douglas form:

H(t) = qEα(t)xβ(t) (10)

where α and β are two positive parameters such that α +β ≥ 1 ((9) is the particular case with α = β = 1). This is a widely
used model in economics; however, its use in fishery models has been very uncommon [11].
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In this paper, we avoid the inconvenience of using (9) or estimating the values of the Cobb–Douglasmodel for the harvest
function. To this end, and in line with [5,6], wemodel the dynamics of the fish stock biomass (x) in themore general form as:

ẋ(t) = fl(x) − h(t) (11)
where h(t) will be considered as a independent variable.

Let us now see how to model the cost functions. Let π(x, h) be the instantaneous net revenue from the harvest of the
stock biomass, given as [14]:

π(x, h) = p(h)h − c(x, h) (12)
where p(h) is the inverse demand function and c(x, h), the cost function associatedwith the harvest.We assumean economic
model with downward sloping demand and stock-dependent costs verifying:

∂p(.)
∂h

< 0;
∂c(.)
∂h

> 0;
∂c(.)
∂x

< 0. (13)

These conditions are accomplished in real-world fisheries. The functional forms for the demand and cost functions adopted
in this paper are:

p(h) = p0 − p1h (14)

c(x, h) =
chα

x
(15)

where h represents landings of fish and p0 and p1 are coefficients. The cost c(x, h) is defined as total costs less depreciation
and interest payments, i.e., an approximation to total variable costs. These models correspond to a real-world fishery,
where the price of the harvest depends on the amount harvested and the cost of harvesting depends on the stock biomass.
Substituting (14) and (15) in (12), the profit function is:

π(x, h) = p0h − p1h2
−

chα

x
(16)

where themeaning of the parameters is: p0 is the price of the stock, p1 is the strength of demand, c is the cost of exploitation
and α is the harvest cost parameter.

2.3. Objective functional

Ourmodel of renewable resource exploitation is an open-access fisherymodel, in which each firm takes themarket price
of landed fish as given. The firm’s objective is to maximize profits from the harvest schedule over an infinite time horizon,
subject to the dynamic constraint Eq. (7) and other natural and policy restrictions that involve limits (or bounds) for the
harvest, h(t), and stock, x(t). Hence, our objective is to maximize profit from the harvest schedule over an infinite time
horizon:

max
h(t)


∞

0
π(x, h)e−δtdt = max

h(t)


∞

0


p0h − p1h2

−
chα

x


e−δtdt (17)

subject to:

ẋ(t) = fl(x) − h(t); x(0) = x0 (18)
h(t) ∈ H(t); x ∈ [0, k] (19)

where δ > 0 is the discount rate, i.e. the marginal returns on capital for the company, and x0 is the initial stock level.
Regarding this functional, we are interested in two kinds of problems or solutions in this paper:
(i) The first is the equilibrium or steady-state solution. In this solution, the resource stock size is unchanging over time

(a biological equilibrium) and the fishing harvest is constant. Once equilibrium is achieved, it would remain unchanged
provided that relevant economic or biological conditions remain constant.

(ii) The second kind of solution is devoted to the dynamics of renewable resource harvesting, i.e., the adjustment path to-
wards the equilibrium, or from one equilibrium to another as conditions change. In this case, we study the fishery re-
sponse over time to disturbances, and how a system would reach a steady state if it were not already in one.

As can be seen, the stated problem (17)–(19) is one of Optimal Control (OC) that presents a number of noteworthy fea-
tures. First, the optimization interval is infinite. Second, the time t is not explicitly present in the problem (time-autonomous
problem), except in the discount factor. Third, we impose constraints on the control and, fourth, it constitutes a problem
which is quasi-linear when real values are considered for the parameters. In fact, in many real cases [5], p1 (strength of
demand) is close to 0, and α (harvest cost parameter) is near to 1. Hence, we are dealing with a quasi-linear model.

Facedwith the complication of having to use different techniqueswhen the functional is linear or nonlinear in the control
variable, the contribution of our method is that it is valid in cases ranging between quasi-linearity and singular arcs. We
have used the combined techniques of Pontryagin’s Maximum Principle (PMP) [7] and the shooting method to build this
optimization algorithm.
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2.4. Optimal control theory

Due to the nature of problem (17), (18), (19) presented above, in which the control variable has constraints, we believe
that optimal control theory, and more specifically Pontryagin’s Maximum Principle, is the ideal tool. Let us begin by pre-
senting the simplest optimal control problem, which is posed in the unidimensional case.
Case 1. Fixed end-time, T , and free end state, x(T ):

max
u(t)

J =

 T

0
F(x(t), u(t), t)dt + B[T , x(T )] (20)

subject to:

ẋ(t) = f (x(t), u(t), t); x(0) = x0 (21)
u(t) ∈ U(t), 0 ≤ t ≤ T (22)

where x0 and T are fixed. The following hypotheses are assumed to be verified: (i) F and f are continuous; (ii) F and f have
partial first derivatives with respect to continuous t and x; (iii) The control variable, u(t) needs to be piecewise continuous;
(iv) The state variable, x(t), is continuous, and its derivative needs to be piecewise continuous (i.e. x(t) admits corner points);
and (v) B has continuous partial first derivatives. The set of admissible controls, U , is often compact and convex. A functional
of the type considered above is said to be Bolza form. The Hamiltonian is defined as:

H(x(t), u(t), λ(t), t) = F(x(t), u(t), t) + λ(t)f (x(t), u(t), t) (23)

where λ(t) is the costate variable. The following theorem (see, for example, [7,15]) establishes the necessary (but not
sufficient) conditions of optimality for the problem being addressed here (20), (21), (22).

Theorem 1 (Pontryagin’s Maximum Principle (PMP)). Let u∗(t) be the optimal piecewise control path and x∗(t), the optimal
associated state path, defined in the interval [0, T ]. There is hence a continuous function λ∗(t) which has piecewise continuous
first derivatives, such that for each t ∈ [0, T ], the following conditions are verified:

(i) λ̇∗(t) = −
∂H(x∗(t), u∗(t), λ∗(t), t)

∂x

(TC) λ∗(T ) =
∂B[T , x∗(T )]

∂x
(ii) H(x∗(t), u∗(t), λ∗(t), t) ≥ H(x∗(t), u(t), λ∗(t), t); u(t) ∈ U(t)
(iii) ẋ∗(t) = f (x∗(t), u∗(t), t); x∗(0) = x0.

(24)

The solution may not be interior and hence maximizing the Hamiltonian (ii) does not necessarily imply ∂H/∂u = 0.
Moreover, the transversality condition (TC) is modified depending on the final conditions of the problem.
Case 2. Fixed end-time, T , and fixed end state, x(T ). The final condition for the state variable, x(T ), replaces the final condition
for the co-state variable, λ∗(T ) (or transversality condition) that was obtained in the previous case.
Case 3. Fixed end-time, T , and end state lower bounds, x(T ) ≥ x. In this case, TC is replaced by:

λ∗(T ) −
∂B[T , x∗(T )]

∂x
≥ 0 (=0, if x(T ) ≥ x). (25)

Case 4. Free end-time, T , and free end state, x(T ). In this case, the optimal time, T ∗, is unknownand to bedetermined.Moreover,
it is known that a further condition must be met in addition to conditions (i), (TC), (ii) and (iii), namely:

(iv) H(x∗(T ∗), u∗(T ∗), λ∗(T ∗), T ∗) +
∂B[T ∗, x∗(T ∗)]

∂T
= 0. (26)

2.5. Infinite horizon problems

In this paper, we consider a functional with a very important additional feature: an infinite time horizon. Moreover, our
functional will be stated in the Lagrangian form; i.e., using the term B[T , x(T )] ≡ 0. We thus have:

max
u(t)

J =


∞

0
F(x(t), u(t), t)dt. (27)

When addressing problems in which the end-time, T , is not finite, drawbacks can arise when ensuring the convergence of
the integral, which is the goal. An interesting case, and one which often occurs in economics, is that in which the integrand
takes the form:

F(x(t), u(t), t) = G(x(t), u(t), t)e−δt (28)
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where δ is some positive rate of discount common in economic analysis, and G is an upper bounded function. Under these
conditions, the integral is found to be convergent for each admissible control. The idea is that the discount factor and the
exponential function cause the function F to tend towards 0, when G has an upper bound, say G:

∞

0
G(x(t), u(t), t)e−δtdt ≤


∞

0
Ge−δtdt =

G
δ
. (29)

Another point to keep in mind is how to generalize transversality conditions suitably to the case of an infinite time horizon.
If we focus on the case being addressed in this paper, with a free end state, x(∞), it seems logical to expect that it will be
necessary to verify the following TC:

lim
t→∞

λ(t) = 0. (30)

However, this condition is not always necessary for problems with an infinite time horizon, as can be seen in some
well-known counterexamples. Nonetheless, it can be shown [16] that the condition (30) is necessary for problems with
a time discount, as in our case.

2.6. Bang-singular solutions

To conclude this section, we also present the theory underlying the particular case of the control appearing linearly [15]:

max
 T

0
[f1(t, x) + uf2(t, x)]dt

ẋ(t) = g1(t, x) + ug2(t, x); x(0) = x0
u(t) ∈ U(t), 0 ≤ t ≤ T

(31)

because, as mentioned in the Introduction, the functional is very close to this case in real numerical examples. The
Hamiltonian is now linear in u and can be written as:

H(t, x, u, t) := f1(t, x) + λg1(t, x) + [f2(t, x) + λg2(t, x)]u. (32)

The optimality condition (ii), maximize H w.r.t. u, leads to:

u∗(t) =

umax if Hu > 0
using if Hu = 0
umin if Hu < 0

(33)

and u∗ is undetermined if:

Φ(x, λ) ≡ Hu = f2(t, x) + λg2(t, x) = 0. (34)

The function Φ is called the switching function. If Φ = 0 only at isolated points in time, then the optimal control switches
between its upper and lower bounds, which is known as a bang–bang control. The times when the OC switches from umax to
umin or vice-versa are called switching times. If Φ = 0 for every t in some subinterval, then the original problem is called a
singular control problem and the corresponding trajectory, a singular arc.

Finally, the following theorem [15,17] establishes a sufficient condition for the optimum.

Theorem 2 (Mangasarian’s Theorem). Let u∗(t), x∗(t), λ∗(t) be the results obtained when applying PMP, ∀t ∈ [0, T ], to the
optimum control problem. If it is verified that: (a) F and f are concave in x, u, for each t ∈ [0, T ]; (b) B is concave in x;
and (c) λ∗(t) ≥ 0, for each t ∈ [0, T ], if f (x(t), u(t), t) is nonlinear in x, u, then u∗ is the optimal control problem, with x∗

being the optimal state path and λ∗, the optimal path of the costate variables.

There is no constraint on the sign of λ if f is linear in x and in u. We shall see the verification of this theorem to guarantee
the maximality of the solution obtained by PMP later on in the paper.

3. Optimization algorithm

Our problem (17)–(19) can be straightforwardly stated as anOCproblem in Lagrange form simply consideringu(t) = h(t)
as the control. Let us consider the following problem:

max
u(t)

J =


∞

0
F (t, x(t), u(t)) dt (35)
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subject to satisfying:

ẋ(t) = f (t, x(t), u(t)) , 0 ≤ t ≤ ∞ (36)
x(0) = x0 (37)
u(t) ∈ U(t), 0 ≤ t ≤ ∞ (38)

where J is the functional, F = π(x, h)e−δt is the objective function, x, the stock, is the state variable, with initial condition x0,
the harvest h ≡ u is the control variable,U = [umin, umax] denotes the set of admissible control values, and t is the operation
time, which starts from 0 and goes to ∞. The state variable must satisfy the state Eq. (36) with given initial conditions (37).
In this statement, the final state is to be free. Let H be the Hamiltonian function associated with the problem

H(t, x, u, λ) = F (t, x, u) + λ · f (t, x, u) (39)

whereλ is the costate variable. Using PMP, the optimal solutionmust be obtained from a two-point boundary value problem.
In order for u∗

∈ U to be optimal, a nontrivial function λ must necessarily exist, such that for almost every t ∈ [0, ∞):

ẋ = Hλ = f ; x(0) = x0 (40)

λ̇ = −Hx; lim
t→∞

λ(t) = 0 (41)

H(t, x, u∗, λ) = max
u(t)∈U

H(t, x, u, λ). (42)

In virtue of PMP and Eq. (41), there exists a piecewise C1 function λ that satisfies:

λ̇(t) = −Hx = −Fx − λ(t) · fx (43)

and hence:

λ(t) =


K −

 t

0
Fxe

 s
0 fxdzds


e−

 t
0 fxds (44)

denoting K = λ(0). From (42), it follows that for each t , u(t) maximizes H . Hence, in accordance with the Kuhn–Tucker
Theorem, for each t , there exists two real non negative numbers, β1 and β2, such that u(t) is a critical point of:

H(u) = F + λ(t) · f + β1 · (umin − u) + β2 · (u − umax) (45)

it being verified that if u∗ > umin, then β1 = 0 and if u∗ < umax, then β2 = 0. We thus have
·

H = 0 and the following cases:
Case (1) umin < u∗ < umax. In this case, β1 = β2 = 0 and hence

Fu + λ(t) · fu = 0. (46)

From (44) and (46), we have:

K = −
Fu
fu

· e
 t
0 fxds +

 t

0
Fx · e

 s
0 fxdzds. (47)

If we denote by Yx(t) (the coordination function) the second member of the above equation (the coordination equation), the
following relation is fulfilled:

Yx(t) = K . (48)

Case (2) u∗
= umax, then β2 ≥ 0 and β1 = 0. By analogous reasoning, and bearing in mind that fu = −1 < 0, we have:

Yx(t) ≤ K . (49)

Case (3) u∗
= umin, then β1 ≥ 0 and β2 = 0. By analogous reasoning, we have:

Yx(t) ≥ K . (50)

The theoretical development carried out allows us to present a necessary maximum condition.

Theorem 3 (A Necessary Maximum Condition). Let u∗ be the optimal control, let x∗
∈ C1 be a solution of the above problem.

Then there exists a constant K ∈ R such that:

If umin < u∗ < umax =⇒ Yx∗(t) = K
If u∗

= umax =⇒ Yx∗(t) ≤ K
If u∗

= umin =⇒ Yx∗(t) ≥ K .
(51)

Thus, the problem consists in finding for each K the function xK that satisfies (37):

xK (0) = x0 (52)
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the conditions of Theorem 3 and, from among these functions, the one that satisfies the transversality condition:

lim
t→∞

λ(t) = 0. (53)

From the computational point of view, the algorithm consists of two fundamental steps:
Step (1) The construction of xK . The construction of xK can be performed using a discretized version of the coordination
equation (47). For each K , we construct the xK , using (48) andwhen the values obtained do not obey the constraints (38), we
force the solution to belong to the boundary until themoment established by conditions (49) and (50). Appendix summarizes
this process of concatenating extremal arcs.
Step (2) The calculation of the optimal K . The calculation of the optimal K could be achieved by means of an adaptation of
the shooting method. Varying the coordination constant, K , we search for the extremal that fulfils the second boundary
condition (53). The procedure is similar to the shooting method, used to resolve second-order differential equations with
boundary conditions, which may be performed approximately using elemental procedures. Starting out from two values
for the coordination constant, K : Kmin and Kmax and using a conventional method such as the secant method, our algorithm
converges satisfactorily, as we shall see in the section with numerical examples.

The transversality condition (53) can be easily imposed because, when x(t) reaches the steady state, λ(t) begins to
converge asymptotically towards zero. The stopping criterion for the algorithm is based on the desired tolerance. We shall
see this fact in greater detail in Example 1 in Section 4.
A sufficient minimum condition

We shall now verify the following conditions of Mangasarian’s theorem. First, we see that F is concave in x, u, for each
t ∈ [0, T ], given that in our case:

F(x, u, t) =


p0u − p1u2

−
cuα

x


e−δt . (54)

Second, we need to verify that f is also concave in x, u, for each t ∈ [0, T ]. In our case, we have that:

ẋ(t) = f (x(t), u(t), t) = fl(x) − u(t). (55)

It is straightforward to verify that the condition is only fulfilled for the simple logistic growth function (3):

fl(x) = fsl(x) = rx(t)

1 −

x(t)
k


(56)

but not for the modified logistic growth function, fml(x) (5). Third, given that B ≡ 0 in our model, B is concave in x. Finally,
we only need to verify that λ∗(t) ≥ 0, for each t ∈ [0, T ]. Let us recall that from (46):

Fu + λ(t) · fu = 0. (57)

It is therefore straightforward to obtain:

λ(t) = −
Fu
fu

= Fu =


p0 − 2p1u − α

cuα−1

x


e−δt > 0 (58)

in the case of real models where, as we shall see, it is always verified that p1 > 0 and α > 1.
With all the above, it has been demonstrated that, when the single logistic growth function is used, the conditions of

Theorem 3 are also sufficient.

3.1. Steady-state solution

As presented in [9], when the terminal time is infinite, it is not always necessary to study the evolution to the optimal
solution. For time-autonomous problems, where the time, t , is not explicitly present in the problem, except in the discount
factor, the optimal solution is time invariant in the long term and converges to an equilibrium state. The method developed
in [9] characterizes the optimal steady-state in single-state, infinite-horizon problems, by means of a simple function of the
state variable, called the evolution function, defined in terms of the model’s parameters. The method does not require the
solution of the dynamic optimization problem. Themethod considers the one-dimensional, infinite-horizon problems of the
form:

max
u(t)

J =


∞

0
G(x(t), u(t))e−δtdt (59)

ẋ(t) = f (x(t), u(t)) , x(0) = x0. (60)

For a steady-state solution, u = R(x), the evolution function, is defined by:

L(x) = δ


Gu(x, R(x))
fu(x, R(x))

+ Ẇ (x)


(61)
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with:

W (x) =
1
δ
G(x, R(x)). (62)

The function L(x) serves to formulate the following necessary condition for the location of the optimal steady state xs:
L(xs) = 0 (63)

that is valid for internal states (i.e., without the influence of the bounds, U(t)). The idea underlying the method can be
illustrated considering the classic problem of Calculus of Variations of the following form:

max


∞

0
F (t, x(t), ẋ(t)) dt = max


∞

0
G(x(t), ẋ(t))e−δtdt, x(0) = x0. (64)

The Euler equation corresponding to this problem:

Fx −
d
dt

Fẋ = 0 (65)

computing the total derivative of the time partial d
dt Fẋ, can be rewritten into an alternative version that is often more

convenient:
Fx = Fẋt + Fẋxẋ + Fẋẋẍ. (66)

When the solution x(t) tends towards a steady state, xs, by definition:
ẋ = ẍ = 0 (67)

and, for this particular functional (64):
Fẋt = −δFẋ. (68)

We solve for xs by setting ẋ = ẍ = 0 in the above Euler equation and obtain the implicit condition:
Fx = Fẋt → Gx(xs, 0) + δGẋ(xs, 0) = 0 (69)

which corresponds to (63), since, according to the chain rule:

Gẋ =
dG
du

du
dẋ

=
Gu

dẋ/du
=

Gu

fu
. (70)

This method was applied in [10] for a particular case of considering the linear model for harvesting in terms of effort:
h(t) = qE(t)x(t) (71)

and a very simple profit function of the form:

π(x(t), E(t)) = ph(t) − c1E(t) −
c2E2(t)

2
. (72)

We now follow the same procedure, but for our more general functional. To the best of our knowledge, the stated problem
has never been addressed using this approach. Considering:

max
u(t)


∞

0
G(x(t), u(t))e−δtdt = max

h(t)


∞

0
π(x(t), h(t))e−δtdt (73)

ẋ(t) = f (x(t), u(t)) = fl(x) − h(t); x(0) = x0. (74)
At the equilibrium state, xs, ẋ = 0, therefore the equilibrium harvest is obtained as:

us = R(xs) → hs = fl(xs). (75)
Differentiating the functions G and f with respect to h, we have:

Gu

fu
=

πh

fh
= −πh. (76)

Now from (62), we have:

W (xs) =
1
δ
G(xs, R(xs)) =

1
δ
π(xs, fl(xs)). (77)

Differentiating with respect to xs gives Ẇ (xs), and substituting in the evolution function (61) and equating to zero according
to the necessary condition (63):

L(xs) = δ

−πh(xs, fl(xs)) + Ẇ (xs)


= 0. (78)

The above equation can be solved for xs, allowing us to obtain the harvest equilibrium, hs. We can thus know the
steady-state solution a priori, without solving the dynamic problem. This important result will be verified in the section
containing numerical examples.
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Table 1
Parameters for cod.

Denmark Iceland Norway

r 0.603 0.6699 0.000665
k 1433 1988 2473
p0 18.66 20.96 12.65
p1 0.006344 0.0426 0.00839
c 3886.426 5363.179 5848.1
α 1.069 1.1 1.1

Where: r is the potential (or intrinsic) growth rate, k is the carrying capacity of the stock, p0 is the price of
the stock, p1 is the strength of demand, c is the cost of exploitation and α is the harvest cost parameter.

3.2. Long-term horizon: the end state

Inspired by the previous section, in this section we present a new result that allows us to calculate a priori the final value
that is reached when the optimization interval is not infinite (once again, without the need to solve the dynamic problem).
To do so, we shall use the samemodel as above, but with an optimization interval [0, T ], assuming that it is long enough for
the steady state to be reached in its development. In order to obtain the result, we need to make an additional assumption:
the systemmust be autonomous, and hence wemust consider δ = 0. As in [9], the solution must be interior, unconstrained
by bounds. Let us consider the following problem:

max
 T

0
F (x(t), ẋ(t)) dt; ẋ(t) = fl(x) − h; x(0) = x0 (79)

max
h(t)

 T

0
π(x, h)dt; ẋ(t) = fl(x) − h; x(0) = x0. (80)

Based on the preceding hypotheses, the method starts out from the well-known result of the calculus of variations [15]
which states that Euler’s equation can be rewritten for autonomous systems as follows:

F − ẋFẋ = cte. (81)

Given that the solution for the steady state, (xs, hs) (with ẋ = 0), may be known a priori by means of the method explained
in the previous section, the value of the constant, cte, present in (81) can be obtained straightforwardly:

cte = F(xs) = π(xs, hs). (82)

If we now consider the finalmoment, T , the two following conditionsmust be simultaneously verified at thatmoment, given
that the end state is free:

Fẋ(x(T ), h(T )) = 0
F(x(T ), h(T )) = cte. (83)

The first is the transversality condition corresponding to the free end state, and the second the simplified Euler equation (81).
Simply solving this system, the end state (x(T ), h(T )) can be obtained straightforwardly.

4. Numerical examples

In this section, we shall see the excellent behaviour of our approach via several examples. We use the parameters
estimated by [5] based on Northeast Arctic cod, capelin and herring. Themodel in Denmark and Iceland for the three species
is the simple logistic function:

ẋ(t) = rx(t)

1 −

x(t)
k


(84)

whereas in Norway, the model obtained is a modified logistic function:

ẋ(t) = rx2(t)

1 −

x(t)
k


. (85)

The data for cod can be seen in Table 1, and for capelin and herring, in Table 2. In these tables, growth is measured in 106 kg
and time in year for the biological parameter values, prices are measured in NOK/kg for the economic parameter values and
costs are measured in 106 NOK for the parameter values of the cost function. All the results presented in what follows were
obtained using a program written by the authors and implemented in Mathematica 10.0©. For example, the equations are
easily solved using the FindRoot command.
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Table 2
Parameters for capelin and herring.

Denmark Iceland Norway

r 0.5442 1.1008 0.00021781
k 4896 3669 8293
p0 4.0104 1.211 1.0
p1 0.0007511 0.0001 0.0
c 0.02198 0.000175 0.07
α 1.33 2 1.4

Where: r is the potential (or intrinsic) growth rate, k is the carrying capacity of the stock, p0 is the price of
the stock, p1 is the strength of demand, c is the cost of exploitation and α is the harvest cost parameter.

Fig. 2. Steady-state solution.

4.1. Example 1: steady-state solution

To begin, we present the basic case for Denmark cod, in which we shall obtain the steady-state solution. The results
obtained for the optimal stock profile, x(t) in (106 kg), and the optimal harvest path, h(t) in (106 kg yr−1), are shown in
Fig. 2. We have assumed an initial stock x0 = 1162 (106 kg), x0 ∈ [0, k], with k = 1433 (106 kg), these optimal paths being
obtained using a 5% discount rate, δ. We shall maintain this value of δ in all the examples (unless otherwise noted).

The steady state in this model is characterized by:

x∗
= 862.06 106 (kg) (86)

h∗
= 207.14 106 (kg yr−1) (87)

t∗ = 4.4 (yr) (88)

where t∗ is a parameterwe have introduced to characterize the speed atwhich the steady state, x∗, is reached. It is defined as
the time required for the solution to vary less than 0.5% from x∗. From thatmoment on, harvesting is adjusted to compensate
for the natural growth of fish. This value of h∗ can easily be verified using the simple logistic function fsl(x∗) for the case of
Denmark cod. In this case, we have assumed that the constraints do not affect the harvest, h(t), and we have considered
H(t) = [hmin, hmax] = [0, 500], measured in (106 kg yr−1), i.e. open-access fishery, which means that the fishermen do as
they choose, without any regulations being applied.

As noted in the previous section, the steady-state solution can be calculated a priori using Eq. (78). Solving this equation
in xs, we obtain very similar values to those obtained by means of our numerical solution:

xs = 862.096 106 (kg) (89)

hs = 207.105 106 (kg yr−1). (90)

However, it should be recalled that what is most important is to determine both this value and the dynamics of the process
towards said steady state. Using a discretization of 100 subintervals for each year, the algorithm ran very quickly. Greater
discretization was not needed to obtain the desired accuracy. Starting out from two values for the coordination constant,
K : Kmin and Kmax and using a conventional method such as the secant method, we achieve the prescribed tolerance in (53):
tol = 1 ·10−5 in only 10 iterations (see Fig. 3(a)), the CPU time required by the program being 7.92 s on a personal computer
(Intel Core 2/2.66 GHz). The optimal value of K is 7.715135951256791. The variation in λ(t) and its asymptotic behaviour
towards zero, can be seen in Fig. 3(b).

Finally, we present the value of the obtained optimum profits. In this case, it is more illustrative to consider a finite
optimization interval so that the differences between the different cases considered can thus be more appreciable. For that
reason, we show, for example, the optimum profits obtained during the 12 first years: max J12 = 22 783.2 (106 NOK).

4.2. Example 2: dynamics towards the steady state

In this example, we undertake some dynamics analysis for the model. We shall work once again with Denmark cod for
the sake of comparison with the previous example. As already noted, once the steady state has been reached, the solution
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Fig. 3. Convergence of the algorithm.

Fig. 4. Dynamic solution towards the steady state.

will remain constant as long as disturbances do not occur in the problem. That is precisely the situation that we shall now
analyse, one that we consider ofmajor interest. Suppose that for biological reasons, for instance, the harvesting rate needs to
be reduced during a year. How does this affect the solution? Fig. 4 shows the optimal profile in the case that the harvesting
of fish has a maximum limit of 150 (106 kg). That is, let us assume that h(t) ∈ H(t) = [0, 150]. This maximum limit,
hmax = 150 (106 kg yr−1), is notably lower than the value obtained for the steady state, h∗

= 207.10 (106 kg yr−1).
As can be seen, the optimal paths change with respect to the previous case. The stock logically recovers during the period

of limited harvesting, t ∈ [5, 6]. However, the most noteworthy effect is that, before this period begins, the optimal profile
of h no longer follows the trend towards h∗, and harvesting rises to a value of 235.1 106 (kg yr−1). Just after this period
[5, 6], harvesting commences with this same value and the solution then tends towards the steady state (86) and (87). The
profits now obtained during the first 12 years are slightly lower than before: max J12 = 22753.1 (106 NOK). The optimal
solution is now obtained with a value of K = 7.710904992048142.

Note that this is precisely another of the features of our approach: the possibility of imposing, in a simpleway, constraints
on the control of the following kind: h(t) ∈ H(t). This situation may be straightforwardly generalized to the case of
considering more periods with constraints.

4.3. Example 3: sensitivity analysis

In this example we consider questions such as how a system would reach a steady state if it were not already in one.
Let us now assume the biological parameters to be fixed for each country and species. This assumption is fairly realistic, at
least for the medium-term horizon. Accordingly, we shall analyse the influence of the initial stock, as this is the parameter
that is most likely to vary as a function of different biological circumstances like, for example, environmental catastrophes,
diseases, etc. As regards the economic parameters and values of the prices,we shall only analyse the influence of the discount
rate and the rest of parameters will be fixed.

The results are shown in Fig. 5 and Table 3. First we fixed δ = 0.05 andwe considered different values for the initial stock,
x0, within its maximum range. These values can be seen in the first column of Table 3. We have included very few legends
in Fig. 5 as each case can be easily recognized on the basis of the values of x0 and h(0). Then we fixed x0 = 1162 (106 kg),
and we considered different values for the discount rate, δ. In this example, we have not wanted to consider constraints on
the harvest, except the natural constraint of hmin = 0 (106 kg yr−1), in order to be able to compare all the results.

As can be seen, the further x0 moves away from the steady-state value, x∗
= 862.06 (106 kg), the greater the time needed

to achieve that state, t∗, increases. It is also plain to see that the greater x0, the greater the profits, max J12. The table also
shows the optimal K obtained by our algorithm. The units are: x0 in 106 (kg), δ in (%), t∗ in (year), max J12 in 106 NOK, and
h(0) in 106 (kg yr−1).

Finally, the behaviour of h(t) is worthy of comment. We see the directly proportional relationship obtained between x0
and h(0) and that harvesting is negligible for a certain time interval from values of x0 ≤ 400 106 (kg) upward. It should
be noted that part of this interval corresponds to the constraint hmin = 0 imposed by the problem. However, another part
corresponds to an interval when harvesting is almost negligible. In order to be able to quantify this phenomenon, we define
two new variables: t0, which represents the time during which the constraint hmin = 0 is active; and t1, defined as the time
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Fig. 5. Influence of the initial stock.

Table 3
Influence of initial stock and discount rate.

x0 K t∗ max J12 h(0) δ K t∗ max J12 h(0)

1400 6.6603393 4.93 24573.0 582.81 3 7.8764491 4.33 25240.0 422.25
1200 7.5413941 4.51 23154.0 459.76 4 7.7951229 4.37 24007.0 428.24
1000 8.4606491 3.65 21554.0 316.69 5 7.7151359 4.41 22783.0 434.14
800 9.3205921 2.79 19772.0 156.12 6 7.6364540 4.44 21803.0 439.95
600 10.0185747 4.41 17836.0 17.13 7 7.5590614 4.48 20817.0 445.66
400 11.5816150 5.36 15710.0 0.0
200 18.0849817 6.47 12904.0 0.0
100 31.4387574 7.74 10580.0 0.0

Table 4
Restriction on harvest.

x0 t0 x(t0) t1 x(t1)

400 – – 0.59 509.8
300 0.06 308.6 1.22 509.6
200 0.87 308.0 2.03 508.7
100 2.15 307.8 3.31 508.4

required for harvesting to be h(t) > 1 106 (kg yr−1). The results are given in Table 4. The units are: x0, x(t0) and x(t1) in
106 (kg); t0 and t1 in (year).

As can be seen, t0 and t1 vary notably as a function of x0. Nevertheless, although they are not strictly constant, the stock
values corresponding to these values can in fact be considered to approach a threshold value. This shows that, although they
are not an exclusive function of the model parameters, these two stock values can thus be considered an approximation.
Furthermore, bear in mind the somewhat arbitrary nature of the definition of t1. In addition, the behaviour of the control,
h(t), so close to 0 during the interval


t0, t1


, is not surprising, considering that this is a solution that tends towards a

bang-singular path.
The influence of discount rate, δ, is only shown in Table 3, because the plots of x(t) and h(t) do not give relevant

information. As can be seen, the greater δ, the greater the time needed to achieve the stationary state, t∗, and also h(0)
increases. Logically, the benefit decreases.

4.4. Example 4: model of the logistic function

Let us now see the influence of the model of the logistic function. To do so, we compare the case of Denmark cod with
that of Norway cod, which, as already stated, was modelled by [5] by means of a modified logistic function of the form:

fml(x) = rx2(t)

1 −

x(t)
k


. (91)

The results are shown in Fig. 6. We have assumed an initial stock value x0 = 2400 (106 kg), x0 ∈ [0, k], with k = 2473
(106 kg), and a 5% discount rate, δ. The steady state in this model is characterized by:

x∗
= 2172.31 106 (kg) (92)

h∗
= 381.55 106 (kg yr−1) (93)

t∗ = 2.56 (yr). (94)

The optimal value of K is 0.6736459964308549 and the optimum profits obtained during the 12 first years: 15927.1
(106 NOK). As can be seen, the behaviour is qualitatively similar to that obtained for the simple logistic function. The only
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Fig. 6. Influence of logistic function.

Table 5
Parameters of the quasi-linear model.

Case p1 t∗ x∗ h∗ Case α t∗ x∗ h∗

0 p01 4.4 862.0 207.1 0 α0 4.4 862.0 207.1

1 p01
5 2.4 838.6 209.9 1 1 +

α0
−1
5 4.2 808.0 217.0

2 p01
10 2.1 836.1 210.1 2 1 +

α0
−1
10 4.2 802.4 217.4

Case p1 α t∗ x∗ h∗

0 p01 α0 4.4 862.0 207.1

1 p01
5 1 +

α0
−1
5 2.2 790.4 213.7

2 p01
10 1 +

α0
−1
10 1.8 783.6 214.1

observed difference is in the speed at which the steady state is reached. In this case, the parameter t∗ is only 2.56 (yr). The
explanation lies in the steeper slope of the logistics curve.

4.5. Example 5: quasi-linear model

As already stated, two of the representative parameters of themodel behave distinctively in the real case being addressed
in this paper (Denmark cod). The strength of demand, p1, is thus close to 0 and the harvest cost parameter, α, is close to 1.
Let us see what happens if this effect is accentuated and we force the model to adopt to a quasi-linear equation of the form:

π(x, h) = p0h − p1h2
−

chα

x
≃ p0h −

ch
x

. (95)

This assumption is not farfetched. It suffices to observe in Table 2 what happens to p1 when capelin and herring species
are considered in the three countries. We now compare the solution with that obtained in Example 1 and shall therefore
once again consider the same general conditions and the same constraints on the harvest h(t), with H(t) = [hmin, hmax] =

[0, 500],measured in (106 kg yr−1).While they did not exert an influence in Example 1,we see that they nowdo so decisively.
The results are shown in Table 5 and Fig. 7. The units are: t∗ (year), x∗ 106 (kg) and h∗106 (kg yr−1).

We start from the baseline case, with p01 = 0.006344 and α0
= 1.069, and then progressively reduce their value. We

study the influence of each coefficient separately and also jointly. Fig. 7(a) shows the behaviour when reducing p1, Fig. 7(b)
when reducing α and, finally, Fig. 7(c) presents the joint study.

As can be seen, the coefficient p1 has the most pronounced effect on t∗. The coefficient α barely reduces t∗, although it
does modify the values of x∗ and h∗. As can be appreciated, the optimal solution for h(t), when reducing both coefficients,
tends progressively towards the bang-singular form, as befits a problem of a quasi-linear nature. It can thus be seen that the
steady state is reached much faster. In this problem, the unique solution would be that corresponding to the steady state.

4.6. Example 6: comparison with a fixed end-time

Finally, we present an example in which we consider the end time to be fixed. Though up until now we have considered
a range of infinite optimization, let us now analyse what happens if the interval is considered finite, [0, T ], considering for
example, a T = 10, 15, and 20 (yr) planning period. Once again, we compare the results with the baseline case presented
in Example 1: Denmark cod. The optimal results obtained can be seen in Fig. 8. A very striking fact can be observed on the
optimal path. Yet again, the steady state (86) and (87) is reached at time t∗ = 4.4 (yr). However, by setting an end-time
for the harvesting of the biomass, the solution leaves the steady state when approaching the end of the interval and seeks a
final stock value of approximately x(T ) ≃ 534.2 106 (kg). It should be stressed here that this optimal value is not fixed in
the approach, but is freely sought by the problem. Furthermore, it is also the same value regardless of the initial stock, x0.

This end state value cannot be predicted a priori when the system has a discount, unlike what occurred with the
steady-state value. However, it can be calculated when the discount is zero and therefore the system is autonomous. As
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Fig. 7. Solution for the quasi-linear model.

Fig. 8. Optimal solution with a fixed end-time.

Table 6
Influence of T on the end state.

T 1 2 3 4 5 6 7 8 9

x(T ) 678.49 576.29 548.77 539.60 536.25 534.98 534.49 534.30 534.23

we saw earlier, in order to calculate this value, it suffices to solve the system (83), i.e., once we have previously calculated
the value of the constant corresponding to the steady-state value (82). The optimization interval must be long enough for
the steady state to be reached. In our example with t∗ = 4.4, we have verified that it suffices to consider T > 10.

The following are the results for the same model as in Example 1 (Denmark cod), but assuming δ = 0 instead of 5%.
Solving Eq. (78) in xs, we now have that:

xs = 895.530 106 (kg) (96)

hs = 202.538 106 (kg yr−1). (97)

With these values, the value of the constant (82) becomes cte = 2251.09. Moreover, solving the system (83), we obtain the
end state, x(T ), h(T ):

x(T ) = 542.14 106 (kg) (98)

h(T ) = 538.548 106 (kg yr−1). (99)

Numerical simulations using our algorithm have fully confirmed these predicted values. These values, x(T ) and h(T ), are
therefore an exclusive function of the model parameters.

Returning to the case with a discount (δ = 0.05), the value of x(T ) is different to that obtained with δ = 0, but the latter
can be taken as a good approximation. As for the influence of the length of the interval, T , it should be noted that the value
of x(T ) is practically constant from T > 10 upward, thus showing the negligible influence of the discount term, e−δt , for
long t . For values of T < 10, marked variations in the value of the end state can be observed for the lowest values of T . The
results are shown in Table 6.

The reader might intuitively think that, in this case with a fixed T , the optimal solution would seek to reduce the stock
muchmore at the end of the interval. As can be seen, however, this is not the case. This is related to the special features that
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problems of renewable resources present. To achieve the optimal end state, x(T ), the harvest, h(t), undergoes a very sharp
final increase of h(T ) ≃ 526.1 (106 kg yr−1). This value is also very similar for all the cases with T > 10. To obtain x(T )
without any constraints, we have assumed that hmax = 600 (106 kg yr−1).

Note that in this case the solution was obtained using the same algorithm as before, though now the transversality
condition (53) has been changed to that presented in the PMP (24), i.e. λ(T ) = 0. The reader should likewise note that there
are other possible extensions of the problem, which we discuss in the final section of the paper.

Note. Similar results can be obtained using the values for Iceland cod, and for other varieties: capelin and herring. These
results are not presented here for the sake of brevity. As the convergence of the algorithm was seen to behave in every case
in a similar way to how it behaved in Example 1, we have therefore not shown this behaviour for the other examples.

5. Conclusions and future perspectives

In this paper, we have presented a completely general algorithm for solving optimal control problems within the
framework of renewable resources. Although the case studied in detail in this paper corresponds to the model of harvesting
marine resources, it can be straightforwardly extended to cover other problems of a similar nature (such as, for instance,
forestry harvesting). The scope of the paper comprises all those problems in whichmathematical modelling leads to models
with variable parameters. Moreover, this variability often makes the type of solution to the optimal control problem vary.
This means that many conventional algorithms become invalid, as they are not able to address conventional solutions,
bang–bang solutions or solutions containing singular arcs simultaneously. The main advantages of our method worth
highlighting are: rapid convergence, the possibility of easily imposing constraints on the control, versatility in tackling
different logistic models, the ability to tackle quasi-linear models leading to solutions of the quasi-bang-singular type and
models with different types of final conditions. The proposed algorithm, specially designed for this problem, shows good
convergence properties.

We have also presented the adaptation to our model of an important result that allows us to obtain the value of the
optimal solution of the steady state when the optimization interval is infinite. In the case of a finite optimization interval,
though onewith a sufficient value to reach the steadywithin said interval, we have presented a new result which, employing
the simplification of an autonomous system, likewise allows us to obtain a priori the end value of the state and of the control.

Regarding future perspectives, we believe that the problem posed in this paper offers many possibilities. For example, a
possible extension would be to consider the case of a free end-time, T , and fixed (or lower bounded) end state, x(T ). In this
case, the optimum total time of harvesting of the resource would constitute the unknown variable in the problem. Another
possible extension would be to consider several species simultaneously, so that there is some kind of biological interaction
between them. In this case of multispecies, however, the OC problem becomes multidimensional and new mathematical
tools must be designed. Finally, we cannot fail to mention another possible variant of the study, namely the addition of
stochasticity to make the deterministic model more realistic.

Appendix. Formal construction of the dynamic solution

To formally construct the function xK , we shall consider:

0 = t0 < t1 < · · · < ∞ (100)

such that in each (tj−1, tj) the following is fulfilled:

umin < u < umax or umin = u or u = umax. (101)

We shall carry out p steps, in each of which we shall construct ωj ∈ C1
[tj−1, tj] such that ωj(tj) = ωj+1(tj) and

f (t, ωj(tj), ui) = f (t, ωj+1(tj), ui) and that the function defined from these as:

xK (t) := ωj(t) where j is such that t ∈ [tj−1, tj] (102)

satisfies the maximality conditions expressed in Theorem 3.
Concatenation of the extremal arcs
Step [1] (the first arc)

(i) If K ≤ −
Fu(t,x0,umin)

fu(t,x0,umin)
, we set ω1(t) such that ω̇1(t) = f (t, ω1(t), umin) in the maximal interval [0, t1], where:

K ≤ −
Fu(t, ω1(t), umin)

fu(t, ω1(t), umin)
exp

 t

0
fx(s, ω1(s), umin)ds


+

 t

0


Fx(s, ω1(s), umin) exp

 s

0
fx(z, ω1(z), umin)dz


ds. (103)
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(ii) If K ≥ −
Fu(t,x0,umax)
fu(t,x0,umax)

, we set ω1(t) such that ω̇1(t) = f (t, ω1(t), umin) in the maximal interval [0, t1], where:

K ≥ −
Fu(t, ω1(t), umax)

fu(t, ω1(t), umax)
exp

 t

0
fx(s, ω1(s), umax)ds


+

 t

0


Fx(s, ω1(s), umax) exp

 s

0
fx(z, ω1(z), umax)dz


ds. (104)

(iii) If − Fu(t,x0,umax)
fu(t,x0,umax)

> K > −
Fu(t,x0,umin)

fu(t,x0,umin)
, then ∃u∗

∈ (umin, umax) such that K = −
Fu(t,x0,u∗)

fu(t,x0,u∗)
, and we set ω1(t) the arc of the

extremal in its maximal domain [0, t1] (with ω1(0) = x0, ω̇1(0) = f (t, x0, u∗)) which satisfies:

K = −
Fu(t, ω1(t), u(t))
fu(t, ω1(t), u(t))

exp
 t

0
fx(s, ω1(s), u(s))ds


+

 t

0


Fx(s, ω1(s), u(s)) exp

 s

0
fx(z, ω1(z), u(z))dz


ds. (105)

[j-th Step] (j-th arc)

(A) If ωj−1 has an interior extremal arc in [tj−2, tj−1], there are two possibilities:
(I) If ω̇j−1(tj−1) = f (t, ωj−1(tj−1), umin), we set ωj(t) in the maximal interval [tj−1, tj] which satisfies the differential

equation ω̇j(t) = f (t, ωj(t), umin) with the initial condition ωj(tj−1) = ωj−1(tj−1) and:

−
Fu(t, ωj−1(tj−1), umin)

fu(t, ωj−1(tj−1), umin)
≤ −

Fu(t, ωj−1(tj−1), umin)

fu(t, ωj−1(tj−1), umin)
exp

 t

tj−1

fx(s, ωj(s), umin)ds



+

 t

tj−1


Fx(s, ωj(s), umin) exp

 s

tj−1

fx(z, ωj(z), umin)dz


ds. (106)

(II) If ω̇j−1(tj−1) = fu(t, ωj−1(tj−1), umax), we set ωj(t) in the maximal interval [tj−1, tj] which satisfies the differential
equation ω̇j(t) = f (t, ωj(t), umax) with the initial condition ωj(tj−1) = ωj−1(tj−1) and:

−
Fu(t, ωj−1(tj−1), umax)

fu(t, ωj−1(tj−1), umax)
≥ −

Fu(t, ωj−1(tj−1), umax)

fu(t, ωj−1(tj−1), umax)
exp

 t

tj−1

fx(s, ωj(s), umax)ds



+

 t

tj−1


Fx(s, ωj(s), umax) exp

 s

tj−1

fx(z, ωj(z), umax)dz


ds. (107)

(B) If [tj−2, tj−1] is the boundary interval, we set ωj(t) the arc of the interior extremal (with ωj(tj−1) = ωj−1(tj−1)) in its
maximal domain [tj−1, tj].
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